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Abstract: A new control method called Active-Disturbance Rejection Controller (ADRC) 
is proposed for temperature control of a batch polypropylene reactor in this paper.  This 
controller is mainly composed of three parts, i.e. “extended state observer” (ESO), input 
reference signal tracking-differentiator (TD) and a non-linear state error feedback 
(NLSEF) control law. The simulation results have shown that ADRC can obtain quite 
good performances with the process uncertain. As the control algorithm in DCS ADRC is 
developed and tested for a batch polypropylene reactor in a local Petro-Chemical plant. 
The experiment results have indicated that the controller can give much better dynamic 
responses than the other control algorithms conducted several years ago.  
 
Key words: Polypropylene reactor, Temperature control, ADRC (Active-Disturbance 
Rejection Control) 

            
            
            

1. INTRODUCTION 
 
Batch polymerisation reactors are still extensively 
used to produce useful products, due to their 
production flexibility and similarity in principle to 
the laboratory reactors. To increase product quality 
and insure the reproducibility, it is necessary to 
improve the automation level of such processes. The 
dynamic characteristics of batch polymerisation 
reactors would considerably change with the 
progress of reaction because the reactors have strong 
non-linearity and the uncertainties caused by process 
raw materials, catalysts and so on. Therefore the 
control of the polypropylene rectors are very difficult 
in practice. In this case, it is important to design the 
Advanced Process Control system (APC) for the 
reactor control. The APC must be robust to the 
process non-linearity and uncertainty.  
Several applications of adaptive controllers to the  
control of polymerisation process are reported 
(Embiricu.M,et al,1996). However, they need some 

assumptions for noise, disturbance and manipulated 
variables in order to estimate process model 
parameters. Recently a number of model predictive 
controllers which can treat constraints on 
manipulated variables and provide more economical 
operation have been reported. ( Zoltan Nagy and 
Serban  Agachi, 1997 ). But they can not consider 
the uncertainty of process parameters and the 
dynamics change caused by non-linearity. 

 
In this paper, a new type of robust non-linear control 
strategy i.e. Active Disturbance Rejection Controller 
(ADRC) (Han 1998) is proposed to control the  
temperature of a batch polypropylene reactor. 
The whole paper is organized as follows. The control 
problem is described in Section 2, section 3 is related 
to the design of the non-linear controller ADRC, 
including a simulation example. In section 4 the 
conducted experiments and results in the batch 
polypropylene reactor of Guangdong Petro-Chemical 
plant are presented..
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Fig.1. The sketch diagram of the batch polypropylene reactor
 2. FORMULATION OF CONTROL PROBLEM 



 
 

2.1 Process Description 
 

The Fig.1 shows the sketch diagram of a batch 
polypropylene reactor that is under control. The 
batch stirred tank reactor is used to produce 
polypropylene. The operation of the whole process 
generally consists of the following steps:  
As the initial step, the propylene, surfactants, 
initiators and monomer mixture are charged to the 
reactor. After this initial stage, the reaction mixture is 
heated to the desired temperature of polymerisation. 
At the third stage the polymerisation is going on, 
which generally will take about 3~4 hours. The last 
step is to cool down the reaction mixture to the 
temperature required for further processing,, then 
unload the all materials from the reactor. 
 

2.2 Control Scheme 
 
Since the whole process need heating and cooling 
respectively depending on what stage the process is 
in the split control scheme is applied.   
When the controller output is between 0 and 50%, 
the controller is in cooling mode, the controller 
output is used to control the cooling water Sc valve. 
While the controller output is in the range of 50 and 
100%, the controller is in heating mode, the 
controller is used to control the heating water valve 
Sh,. 
When the heating water valve is open, the heating 
water is flowed directly into the jacket, the 
temperature of reaction mixture is then heated to 
nearly 40℃,at this point the reaction transits from   
endothermic to exothermic, correspondingly Sh is 
close and Sc is open, the temperature of the reactor is 
controlled to track the profile required by products 
quality via adjusting the flow of cooling water.  
 
 

2.3.The process characteristics and control 
requirements 

 
The polymerisation of propylene presents the 
following characteristics: 
� The index of the product include: average 

molecular weight, molecular weight distribution 
(NWD), particle diameter, particle size 
distribution and porosity. A proper temperature 
would keep these index within the good range. 
� The process is of batch type and the 

physical-chemical properties of the mixture are 
changing during the batch, thus the temperature 
control is fairly difficult. 
� The disturbances often occur during the batch 

cycle. The process is of high nonlinear as far as 
the dynamic behaviour is concerned. 

 
The control requirement imposed by the process 
engineer is that the maximum deviation of the 
temperature is within ±0.5℃ around the set point in 
order to ensure the good quality of the product. 
Therefore the previous feature of the process require  
advanced control method.  
 
 

3. ACTIVE DISTURBANCE REJECTION 
CONTROLLER (ADRC) 

 
 

3.1 The structure of ADRC 
 
ADRC is developed by Professor Han in 1998. ( Han 
1998) In the following the scheme and control 
algorithm of ADRC is depicted. 
In order to control a class of uncertain system: 
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where  represents uncertain 
function, w is an unknown disturbance , is the 
control variable and y is the measurable state variable. 
The structure of non-linear active disturbance 
rejection controller is shown in Fig.2. 
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Fig.2 .The structure of ADRC 

 
ADRC is composed of three parts: Tracking-- 
Differentiator (TD), Extended State Observer (ESO) 
and Non-linear State Error Feedback (NLSEF) 
control law.  
TD is a dynamic system where the response of the 
system can be designed for tracking the continuous 
and differential signal of the given input reference 
signal. Extended State Observer is used to estimate 
the state variables of the process and the estimation 
of the total disturbances. If the parameters and 
functions of the ADRC are properly chosen the 
controller is able to drive the state trajectory to the 
desired reference signal. 
 
 

3.2 ADRC algorithm implementation 
 
For a process of second order, the discrete algorithm 
of ADRC is as follows: 
 
Tracking-Differentiator (TD) 
 
The discrete form of TD (Han Jingqing and Yuan 
Lulin, 1999; Han Jingqing and Wang Wei, 1994) is 
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where T is sampling period, v is the input 
signal at time , 

)(k
k r determines the tracking rate, 

while  influences the filter effect when input 
signal is pollute by noise. The function of  is 
defined as follows: 
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If we properly select the parameter r , TD can 
obtain the continuous and differential signal of the 
input by tracking the input reference signal . )(tv
 
Extended State Observer (ESO) 
 
Defining non-linear function as 
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then the equation of ESO is 
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Appropriately select the parameters of 
ESO: { baaa ,,,,,,, 030201210 }βββδ , 
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 (Han J, 1995) 
 
Non-linear State Error Feedback (NLSEF) control 
law 
 
The final control law consists of the following 
equations: 
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where , is error and derivative of error between 
the outputs of TD and system output, b are 
modulation coefficient of the function 
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As a matter of fact, is considered 
to be the extended state variable of uncertain system. 
If successfully converges to 
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it is possible to realize the state feedback and model, 
external disturbance compensation. If the parameters 
and function of the ADRC are suitably chosen, the  
system tracking,, regulation and stability can be 
guaranteed and the control variable is able to 
drive the state trajectory to the desired reference 
signal. 

)(tu

, 12 αβ
.1,75.

 
 

3.3  Simulation example 
 
Assumed a time variable system is as follows: 
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The reference signal is a square wave the amplitude 
of which is 5 and the frequency is 0.1 Hz. To control 
the output of the system for tracking the reference 
signal, ADRC is applied to the system as shown in 
Fig.2, The parameters of ADRC are tuned as follows: 
{ }bdaaaThr ,,,,,,,,,,,,,, 21030201210 αββββδ
={ }1,1.0,250,30,80,80,65,100,25.0,5.0.0,01.0,01.0,10   
 
The control performance was studied by simulation 
and the results are presented in Fig 3.a). From the 
figure, it can be observed that the algorithm can give  
good results for the non-linear time variable process. 
 
 If the process is changed as follows: 
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Keep the parameters and control scheme unchanged , 
Fig.3.b) illustrates the simulation result. Compare 
Fig.3.a) with Fig.3.b), it can be seen that the process 
response is almost the same, thus proving that ADRC 
is robust for the process change. 
 
 
 
 

 
Fig. 3.a) Simulation results for system (9) 



 
Fig. 3.b) Simulation results for system (10) 

 
 

4. EXPERIMENTAL RESULTS 
 
To verify the performance of the control based on 
ADRC, the tested reactor is controlled by a DCS 
system. ADRC control algorithm is programmed and 
inserted to the configuration software of DCS for the 
temperature control of the batch reactor. To ensure 
operating safety of the plant, an AUTO/MAN switch 
is programmed in the DCS configuration and 
monitoring software, When the switch is in AUTO, 
the plant is controlled by ADRC, while switch is to 
set to MAN, the plant is controlled by PID (Actually 
the reactor is controlled by the operators in heating 
stage). 

 
 
 
 
 

 

In Fig. 4, the curve A shows a typical actual 
temperature response by PID in the rising stage of 
temperature. ( Actually the process is manipulated by 
skill operators because conventional PID controller 
can not control the process well). Here it is shown  
that the temperature response is somewhat oscillated 
and has a little overshoot. One of the experimental 
result with ADRC as control algorithm is shown as 
Curve B. Comparing the two curves A and B it is 
easy to find the control performance by ADRC is 
obviously improved . The commissioning of the 
control test was lasted for nearly three month. ADRC 
performed fairly well in this period. Now the 
operating engineers and operators have completely 
accepted the control strategy. 

 
 

5. CONCLUSION 
 
In this paper a new robust non-linear controller 
ADRC is implemented for the temperature control of 
a batch polypropylene reactor. The Extended state 
observers are used to implement the state estimation 
and realize state feedback for the external 
disturbance compensation. The non-linear control 
law is to drive the state trajectory to the desired 
reference signal. ADRC has been programmed and 
tested in a chemical plant for controlling the reactor 
temperature. Both the simulation and experimental 
results have shown that the performance of ADRC is 
satisfactory. Comparing it with other control 
algorithms, the outstanding feature of ADRC is that 
it is robust to process variation and non-linearity. 
Besides that, it doesn’t require the accurate process 
model. That will provide a new and hopeful choice 
for controlling the difficult processes in industries.  
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Abstract: Multi-way principal component analysis (MPCA) has been successfully 
applied to the monitoring of batch and semi-batch processes in most chemical 
industry. A new approach is presented to overcome the method MPCA’s need for 
estimating or filling in the unknown part of the process variable trajectory deviations 
from the current time until the end. The approach is based on the Multi-block PCA 
method and processes the data in a sequential and adaptive manner. The adaptive 
rate is easily controlled by a parameter that represents the similarity between current 
and past data. The method is evaluated on industrial fermentation process data and is 
compared to the traditional MPCA. The method may have significant benefit when 
monitoring multi-stage batch process where the latent vector structure can change at 
several points during the batch. Copyright © 2003 IFAC 
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1. INTRODUCTION 
 

Batch and semi-batch process play an important role 
in the chemical industry due to their low volume and 
high value products. In most of these processes 
product quality variables are only measured after the 
end of each batch, often hours later in a quality 
control laboratory. This makes it difficult to control 
the product quality or to monitor the progress of 
these batch processes. MacGregor (Kosanovich et al., 
1994, Nomikos et al ,1994, Stefan Rännar, 1998), 
have presented very powerful process analysis, 
monitoring and diagnostic procedures which utilize 
these process variables trajectory data. These 
procedures, based on multi-way PCA (MPCA) 
method (Wold et al, 1982, 1994a), are now being 
widely adopted by the batch chemical industry.  

 
The methods have proven to be very efficient for 
analysis historical data from past production and 
diagnosing operating problems. But when monitoring 
a new batch, the MPCA model, which assumes the 
complete history of the batch data, cannot be used 
directly. At any point during the batch, data on the 
deviations of the variables from its average 
trajectories for the remainder of the batch is not yet 
available. MacGregor and Nomikos (Nomikos et al, 
1995) have proposed several approaches to handle 
this problem that have worked quite well in practice. 

However, it would be nice to have MPCA 
monitoring approaches that do not depend on having 
to fill in these missing data. 

 
In this paper, we present a modification of the 
monitoring method that does not require estimates of 
the data for the uncompleted portion of the batch. 
The approach is based on a multi-block PCA 
algorithm that processes the data in a series manner. 
When monitoring future batches, one need only store 
the loading matrices for the local model at each point 
in time and the score vector from past. This 
step-by-step adaptive approach only requires fewer 
latent variable dimensions and appears to work as 
well as the existing methods. Application in 
monitoring an industrial fermentation process reveals 
that the proposed method gives more objective 
appraisal for new batch and may offer potential 
advantages in situation where the batch has several 
stages. 

 
 

2. MULTI-WAY PRINCIPAL COMPONENT 
ANALYSIS 

 
Multi-way principal component analysis (MPCA) 
(Nomikos et al, 1994) is an extension of 
conventional PCA to handle data in 
three-dimensional arrays. These data, which are 



collected from batch processes, are organized into an 
array X of three-dimension (I*J*K), where, I is the 
number of batches, J is the number of variables, and 
K is the number of time samples over the duration of 
the batch. As illustrated in Fig.1, the array X can be 
unfolded in such a way as to put each of its vertical 
slices (I*J) contain the observed variables for all 
batches at a given time interval side by side to the 
right. The result, a wide and short two-dimensional 
matrix has dimensions (I*JK). MPCA is equivalent 
to performing ordinary PCA on unfolded X and it 
explains the variation of variables about their mean 
trajectories. 

 
MPCA decomposes X as follow, 
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where R is the number of principal components used 
in the analysis, t is score vectors and p is loading 
matrices. E is residual matrix. It accomplishes this 
decomposition in accordance with the principles of 
PCA and separates the data in an optimal way into 
two parts. 

 
This decomposition represents a new coordination 
system obtained by rotating the original variables and 
projecting the data into the reduced space defined by 
the first few principal components, where the data 
are described adequately and in a simpler and more 
meaningful way (Wold et al, 1978). By doing this, 
MPCA utilizes not just the magnitude of the 
deviation of each variable from its mean trajectory 
but also the correlations among them. The 
appropriate number of principal components may be 
determined by cross- validation (Jackson.,1991). 

 

The MPCA algorithm derives directly from the 
nonlinear iterative partial least squares (NIPALS). 
NIPALS is a simple, fast and effective algorithm to 
extract the principal components in a sequential 
manner and is a variant of the power method for 
calculating eigenvectors of a matrix. The algorithm 
proceeds as follow. At first, scale X by subtracting 
from each column its mean and dividing by standard 
deviation, choose arbitrary a column of X  as t , 
arrange XE = , this vector is multiplied by score 
vector t to give the loading vector P and 
normalizes P  to have length one.  
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The new score vector t is calculated and the 
convergence of t is checked. If t has converged 
then to equation (5). Otherwise, one iterates 
equations (2)-(4). 

 
Two approach for MPCA monitoring of process are 
used, one is the squared prediction error (SPE) 
(Jackson, 1991) of residual space as follows, 

EE'=Q ,                              (6) 
The critical value for Q is,  
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Another index is the Hotelling 2T test. 2T value 
can be expressed as,  
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If an observation vector that produce a value 
ofT greater than , the process will be out of 
control. 
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However, one problem arises when MPCA monitors 
a new batch, only the data up to the present time is 
available and nothing is known about the remainder 
of the batch. In order to calculate the score vectors 
for the present batch, the missing data will have to be 
filled with some assumed approaches. MacGregor 
and Nomikos (Nomikos et al, 1995) suggests several 

Batches 
1 

Xk XK X1 N

Variables*Observations 

Fig.1. Overview of the MPCA method. 



methods to solve this, usually, two methods are used. 
The first is put zeros in the vector for all remaining 
missing batch. It assumes that the process will 
continue as a normal batch from the present time 
until the end of the batch. The second approach fills 
in the future data with the current observed value that 
has been normalized. All these method have been 
seen to work in practice. However, it would be more 
satisfying if one would not have to make such 
assumptions when monitoring an on going batch. In 
the following sections, it is shown that by using a 
step-by-step adaptive MPCA, this can be 
accomplished. 

 
 

3. STEP-BY-STEP ADAPTIVE MPCA    
 

In the proposed Step-by-Step Adaptive MPCA 
algorithm the X-block is divided into a number of 
blocks, which are the time slices from the 
three-dimensional batch data matrix and each block 
has N batches and J variables. The different between 
the step-by-step adaptive MPCA from ordinary PCA 
algorithm is that it only looks at one time slice each 
time rather than all of the blocks at once. 

 
The step-by-step adaptive MPCA algorithm proceeds 
as follows. The initial step is to calculate one PCA 
model for the first time slice (k=1), giving the first 
block’s score vector and loading vector , then 

lead in a forgetting factor 
1T 1P
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ahead of the score vector should be retained to 

make a new score vector T  ( T  captures 
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among ), the T will join in the PCA model 
building of the next time slice. The value of l can be 
express as,  
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The algorithm begins with the second time slice and 
continues for the rest of the duration (k= 2, … K).  

 
The first step in building the PCA model for time k is 
to combine the previous score vector that 
summarizes the recent prior history and the present 

 matrix together, then apply the PCA to , 

 is relative score vectors and  is loading 
vectors respectively.  
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The second step is, through (13) decided the first l 
score vectors of  compose T , that will take 
part in the next time slice. 
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where ikλ is the eigenvalue of the ’s covariance 
matrix. 

kD

The third step: define 1+= kk .  If k less than K 
then return the first step. Otherwise, ends. 

 

During this algorithm, kβ is the forgetting factor. It 
controls the number of the columns of the score 
vector . A higher value of kT kβ  will put more 
weight on the previous history and the model will 
adapt slowly, while a low value of kβ will make the 

model adapt fast. Setting kβ to zero will be equation 
to calculating separate PCA modes since it uses no 
memory of previous history of the batches. The value 
of kβ depends on the type of process to be 
monitored.  

 

The criteria of choosing the forgetting factor kβ is 
described as follows, first lead-in the similarity 
(Manabu kano et al, 2002) between time slice k and 
k+1 of data sets.  

 
When two data sets are similar to each other, the 
coefficient of similarity must be near one; the 
corresponding forgetting factor kβ is also high. 
However, the coefficient of similarity should be near 
zero when data sets are quite different from each 
other, the value of kβ  is also low. 

 
When the calculation as mentioned above is finished, 
K PCA models can be obtained. The Ith model 
relates to the Ith sample time of the batch process. In 
the monitoring phase two statistics with 
complementary information, the squared prediction 
error (SPE) and the Hotelling’s statistics 
( 2T )(Jackson, 1991) can be used. 

 
 

4. APPLICATION  
 

In this section, an industrial typical multi-stage 
streptomycin fermentation process will be 
investigated to evaluate the performance of 
Step-by-Step Adaptive MPCA. The available on-line 
measurements for the employed process are shown in 
table1 and all these measurements are obtained at 
regular sample intervals. 

 
 

Table 1 Online measurements obtained from the 
streptomycin fermentation process 

 

1 Temperature 5 Nitrogen(N) Concentration 
2 Air flow 6 Sugar Concentration 
3 PH 7 Product Concentration 
4 Viscosity   
 
With both good final product concentration 
(26000~30000) and normal variable trajectory, 20 
good batches are used to train the model for process 
monitoring. Both variables are centred about their 
average trajectory and scaled to have unit variance 
prior to the analysis. 

 
A special batch (the initial value of PH of this batch 
is abnormally high, due to the operator’s operation, 



the final product concentration is 24920) is employed 
for comparison between the proposed method and 
MacGregor’s method (Nomikos et al, 1995). The 
Squared Predictive Error (SPE) (solid line) 
monitoring results are listed in following figures, 
where the dotted line represents the 95% SPE 
confidence level. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From figure 2, it’s clear that Step-by-Step MPCA 
detects abnormal behaviours at the beginning of the 
bad batch. As we know, the initial condition of 
fermentation process has large effect on the final 
product quality, thus it’s quite important to detect 

abnormal initial condition as soon as possible. Due to 
operators’ efforts and compensations for the bad 
initial condition, this bad batch is drawn back to 
sub-normal operation trajectory. Compared with 
Step-by-Step MPCA, ignoring the multi-stage 
characteristics and taking the batch as whole, 
traditional MPCA method neglects the efforts of 
operators and evaluates this batch badly. Furthermore, 
using the first method to fill future data, MPCA is 
less sensitive to abnormal operation and the second 
method is too sensitive. 

 
 

5. CONCLUSIONS 
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In this paper, a new Step-by-Step Adaptive MPCA 
algorithm has been presented for the purpose of 
monitoring batch processes. One advantage of this 
approach is that in the monitoring phase, there is no 
need to assume anything about the future deviations 
of the going batch from the normal trajectory. In 
traditional MPCA algorithm, one has to assume the 
operation of the future of the batch in order to 
full-fill the data vector from the current time period 
until the end of the batch. The step-by-step adaptive 
MPCA only works with the present and past data of 
the batch. Thus avoids the filling procedure. Another 
advantage is the model’s ability of adapting to 
different stages of the batch process making it very 
suitable for monitoring multistage batch processes. In 
the industrial fermentation example involved in this 
paper, the step-by-step adaptive MPCA has 
represented its advantage. If one has a process with 
even more stages this method could be more 
advantageous since it will reduce the number of 
variables for monitoring and thereby simplifying the 
presentation of the monitoring results. 

Fig 2 Monitoring of Special Batch
Using Step-By-Step MPCA  
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Abstract: A batch-to-batch iterative product quality optimisation control strategy for a batch
polymerisation reactor is proposed. Recurrent neural networks are used to model the dynamic
behaviour of product quality variables. Model-plant mismatches and unknown disturbances
are reflected in the model prediction errors. The repetitive nature of batch processes enables
this information being discovered from previous batches and used to improve the current
batch operation. Recurrent neural network predictions for the current batch are modified
using prediction errors in previous batches. Because modified model errors are gradually
reduced from batch to batch, the control trajectory gradually approaches to the optimal
control policy and tracking errors also converge. The proposed scheme is illustrated on a
simulated batch polymerisation reactor. Copyright © 2003 IFAC

Keywords: iterative learning, optimisation, recurrent neural networks, batch processes,
polymerisation.

1. INTRODUCTION

Batch-to-batch optimisation of operating conditions
for improving product quality and/or process
efficiency has generated a challenging area of
research in batch processes. Batch-to-batch
optimisation exploits the repetitive nature of batch
processes to determine the optimal operating policy.
The general idea of batch-to-batch optimisation is to
use results from previous batches to find iteratively
the optimal control policies for subsequent batches,
while performing the smallest number of sub-optimal
runs (Srinivasan et al., 2001). Various strategies have
been proposed for batch-to-batch optimisation in the
literatures. Some strategies have been employed to
compensate for modelling error (Dong et al., 1996;
Crowley et al., 2001). Recently, iterative learning
control (ILC) using optimisation has been introduced
to directly update input trajectory. Campbell et al.
(2002) presented a brief survey of linear model based
run-to-run control algorithms for batch processes.
Lee and co-workers in several related articles (Lee et
al., 1999; Lee et al., 2000) proposed the Q-ILC
approach with quadratic criterion for temperature

control of batch processes. It combines ILC with
model predictive control. A linear time-varying
model was built to represent reactor temperature in
relation to feed and a pre-specified trajectory of the
temperature was tracked. It has been shown that
effective tracking control performance can be
achieved despite model errors and disturbances. This
approach demonstrates that based on a linear model
and pre-specified trajectory, temperature control of
batch processes can be carried out by an ILC type
approach.

However, this ILC type approach is difficult to be
used directly for product quality control of batch
processes. It is usually more difficult to set the
reference trajectories for product qualities Yd =
(yd(t)), t∈(0, tf), practically and reasonably than for
temperature. Even if such a reference trajectory can
be set, it is usually difficult to measure how well the
reference trajectory is tracked since many product
quality variables are difficult to be measured on-line.
Although the reference sequences of product
qualities during a whole batch may not be obtained,
the desired values of product qualities yd(tf) at the end



time of a batch are usually known. This makes it still
possible to improve the product qualities from batch
to batch. Furthermore, dynamics of product qualities
cannot be represented accurately using a linear model
since batch processes are operated in transient modes
and their dynamics are intrinsically non-linear. The
development of accurate mechanistic models of batch
processes is usually costly and time-consuming.
Alternatively, an empirical model, e.g. a recurrent
neural network (RNN) model, can be built using
process operation data to represent the non-linear
dynamic characteristics of a batch process. In this
study, RNN models are used to represent the non-
linear relationship between the control trajectory and
some product quality variables. The model
predictions are iteratively modified by using model
prediction errors in previous batches and
optimisation is carried out based on the modified
predictions.

The rest of this paper is structured as follows: Section
2 presents a batch-to-batch model-based iterative
optimisation strategy. A simulated batch methyl
methacrylate (MMA) polymerisation reactor is
presented in Section 3. Section 4 gives simulation
results of the proposed scheme on the MMA
polymerisation reactor. Finally Section 5 draws some
concluding remarks.

2. MODEL BASED BATCH-TO-BATCH
ITERATIVE OPTIMISATION

2.1 Batch process modelling using recurrent neural
networks
We consider a batch process where the run length (tf)
is fixed and divided into N equal intervals. Let us
define the input and product quality sequences as

Uk=[uk(0), uk(1),…, uk(N-1)]T  (1)

Yk=[yk(1), yk(2),…, yk(N)]T (2)

where k is the batch index, y∈Rn are product quality
variables, u∈Rm are the input (manipulted) variables
for controlling the product quality.

In this study, RNN models are used to model the
non-linear relationship between Uk and Yk. Given the
initial conditions (y0, u0) and the input sequence Uk,
RNN models can predict recursively the output (tf)
at the end of a batch. Thus the predictions from RNN
models are long range or multi-step-ahead
predictions. The networks are trained using the
Levenberg-Marquart optimisation algorithm to
minimise its long-range prediction errors. Therefore
RNN models can usually offer much better long-
range predictions than feed forward neural networks
(Tian et al., 2001).

The RNN model predictions can have errors due to
model-plant mismatches and unknown disturbances.
To reduce these errors, the RNN model predictions
can be corrected by adding filtered model errors of
previous batch runs. Crowley  et al. (2001)
introduced a strategy where the model predictions are

corrected by adding the filtered model prediction
residuals obtained from only the immediate previous
run and showed that this can reduce batch-to-batch
variability. As the dynamics of product quality in
batch processes are usually very non-linear and
measurement noise always exists, information of all
previous runs should be used in updating model
predictions for the next run. In this study, the average
model errors of all previous runs are used to modify
RNN model predictions. The RNN model error êk(t)
is defined as

êk(t) = yk(t) - k(t)                    (3)
where yk(t) and k(t) are, respectively, the measured
and predicted values of product quality at time t of
the kth batch. The average model error 

kê (t) of all

previous runs is defined as
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By filtering this average model error, the modified
prediction 1

~
+ky (t) of a RNN model is defined as

1
~

+ky (t) = 1ˆ +ky (t) + α kê (t)   (5)

where α is an adjustable filter parameter.

2.2 Batch-to-batch iterative optimisation control
Given that the whole reference sequence Yd is
available, both Amann et al. (1996) and Lee et al.
(2000) have proposed a quadratic objective that
penalises the input change instead of the input. The
algorithm has an integral action with respect to the
batch index k and achieves the minimum achievable
error in the limit (Lee et al., 2000). For product
quality control of batch processes, only product
qualities at the end of a batch, yd(tf), are available to
set. Then only errors at the end of a batch, f

k 1
~

+E =

yd(tf)- 1
~

+ky (tf), are penalised in the objective function.

Considering the constraints on the input trajectory,
the batch-to-batch iterative optimisation problem for
product quality control can be formulated as

1

min
+k

J
U

 = || f
k 1

~
+E ||2Q

 + ||∆Uk+1||
2
R                (6)

s. t.       f
k 1

~
+E = yd(tf) - 1

~
+ky (tf) (7)

∆Uk+1=Uk+1 - Uk (8)

        k+1(t) =fRNN[ k+1(t-1), ..., uk+1(t-1), ...]     (9)

1
~

+ky (t) = 1ˆ +ky (t) + α kê (t) (10)

umin ≤ Uk+1 ≤ umax   (11)

where f
k 1

~
+E is the difference at the end of the (k+1)th

batch between the desired product qualities and the
modified RNN model predictions, fRNN[⋅] represents
the RNN model, umin and umax are low and high
bounds of the input trajectory, Q and R are weighting
matrices and they are selected of the following forms
in this study: Q=λq⋅In, and R=λr⋅IN.

A larger weight λr on the input change will lead to
more conservative adjustments and slower
convergence. The weight λq on the quality error term



should be appropriately selected in relation to the
weight λr so that the performance due to input
changes will not be degraded while the product
quality control is enforced. There are also other
variants of the objective function. For example, the
weight matrix R may be designed to be increaseing
with batches reflecting the improved confidence of
product quality prediction.

The modified prediction error εk+1(t) is calculated as

εk+1(t) = yk+1(t) - 1
~

+ky (t)  (12)

Considering Eq(5), Eq(12) can be rewritten as

εk+1(t) = êk+1(t) - α kê (t)  (13)

Eq(4) can be reformed as
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Then Eq(14) can be rewritten as
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Beacasue (k-1)/k <1, εk+1(t) will converge with
respect to the batch number k. Due to the reduced
prediction errors of the RNN model, the control
trajectory will gradually approach the optimal policy.
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Fig. 1. Batch-to-batch iterative optimisation

As shown in Fig. 1, the batch-to-batch model-based
iterative optimisation scheme is outlined as follows:
At the current batch k, the input trajectory Uk is
implemented and the outputs yk(t) are obtained by on-
line or off-line analysis of samples taken during the
batch. The RNN model predictions for the next batch
are modified by using prediction errors of all
previous runs. Based on the modified predictions

1
~

+ky (t), the quadratic optimisation problem specified

by Eq(6) to Eq(11) is solved and a new control policy
Uk+1 for the next batch is calculated. This procedure
is repeated from batch to batch. Because iterative
optimisation is done in the interval between two
adjacent batch runs, the outputs yk(t), t∈(1,N), could
be obtained after the completion of each run by off-
line analysis of samples taken during the batch.

3. A BATCH POLYMERISATION REACTOR

The simulated batch polymerisation reactor studied
here is based on a pilot scale polymerisation reactor
installed at the Department of Chemical Engineering,
Aristotle University of Thessaloniki, Greece. The

reaction is the free-radical solution polymerisation of
MMA with a water solvent and benzoyl peroxide
initiator. The reactor is provided with a stirrer for
thorough agitation of the reacting mixture. Heating
and cooling of the reacting mixture is achieved by
circulating water at an appropriate temperature
through the reactor jacket. The reactor temperature is
controlled by a cascade control system consisting of
a primary PID and two secondary PI controllers. A
detailed mathematical model covering reaction
kinetics and heat mass balances has been developed
for the bulk polymerisation of MMA. Based on this
model, a rigorous simulation program was developed
and validated on the pilot reactor. The simulation
programme is used to test modelling and control
strategies.

The optimisation control problem for this batch
polymerisation reactor is to find the optimal
temperature profile through minimising a
performance index at a given final time. The
performance index to be minimised is given below

PI  (T) =  ||yd(tf) - y(tf)||
2                   (16)

where y =[X, Mn, Mw]T, X is the monomer
conversion, Mn is the dimensionless number-average
molecular weight (MN) and Mn=MN/MNref, MNref is
set to 3.0×105 (g/mol), Mw is the dimensionless
weight-average molecular weight (MW) and Mw =
MW/MWref, MNref is set to 9.0×105(g/mol), T is the
dimensionless temperature profile and T = (Tr -
Tmin)/(Trmax-Tmin) with Tr being the unscaled
temperature, Tmin is 310K and Trmax is 360K,  yd(tf) is
the desird value at the batch end which is set to [1.0,
1.0, 1.0]T, and tf is the final batch time which is set to
120 minutes in this study. The polymer property
constraint is on Mn:

0.95 ≤ Mn ≤ 1.05     (17)

Also the temperature profile is bounded by

0 ≤ T ≤ 1         (18)

4. SIMULATION RESULTS AND DISCUSSIONS

RNN models are developed to model X, Mn and Mw.
In this study, 31 different sets of temperature profiles
have been randomly chosen within a reasonable
range to generate 31 runs of simulation data. As the
batch duration is 120 minutes and the sampling time
is 4 minutes, each set of data contains 30 samples.
All data are scaled to dimensionless values. Normally
distributed random noises with zero means were
added to all the simulation data to represent the
effects of measurement noises. The standard
deviations of the noises are 0.012, 0.009 and 0.01 for
the dimensionless X, Mn and Mw respectively. The
entire data set was divided into 3 parts, 25 batches of
data were used for training, 5 batches of data for
validation, and the remaining 1 batch for testing.

In the recurrent neural networks, hidden neurons use
the sigmoidal activation function whilst output layer
neurones use linear activation function. The network



weights were initialised as random numbers
uniformly distributed over the range (-0.1, 0.1). The
training algorithm is based on the Levenberg-
Marquart algorithm. Network structures were
determined through cross-validation. It was tested
that introducing monomer conversion X as one of the
inputs of the other two neural networks was
necessary. Different networks were trained on the
training data and the network with the least sum of
squared errors (SSE) on the validation data was
chosen as the best network. The generalisation
performance was then assessed on the unseen testing
data set. The best representations of the three RNN
models selected through cross-validation are
summarised as follows

X̂ (t) = f1[ X̂ (t-1), X̂ (t-2),T(t-1),T(t-2),T(t3)]   (19)

nM̂ (t) = f2[ nM̂ (t-1), nM̂ (t-2),T(t-1),T(t-2),T(t-3),

     X̂ (t-1), X̂ (t-2)]      (20)

wM̂ (t) = f3[ wM̂ (t-1), wM̂ (t-2),T(t-1),T(t-2),

                  X̂ (t-1), X̂ (t-2)]     (21)

where X̂ , nM̂  and wM̂  are, respectively, the model
predictions of X, Mn and Mw. The numbers of hidden
neurons for the above three networks were
determined through cross-validation as 8, 12 and 10
respectively. The SSE of the above models, Eq(19) to
Eq(21), on the validation data set are 0.0978, 0.1935
and 0.2033 respectively. Fig. 2 shows the long-range
predictions of these RNN models on the unseen
testing data set. It is clear that the RNN models have
captured the dynamic trends of the product quailities
in the data quite well, though some prediction errors
still exist.

To investigate the performance of the proposed
control strategy, three cases were studied: Case 1 –
optimisation based upon the mechanistic model; Case
2 – RNN model-based optimisation; and Case 3 –
RNN model based batch-to-batch iterative
optimisationp. In Case 1 and Case 2, the optimisation
problem is specified by Eq(16) to Eq(18) based on
the mechanistic model and the RNN models
respectively, whereas in Case 3 it is specified by
Eq(6) to Eq(11). All these non-linear optimisation
problems were solved by the sequential quadratic
programming method with the termination tolerance
on objective function being set to 10-6. Model errors
in Case 2 are used as the initial condition for the
model prediction modification in Case 3. Here the
batch length was divided into N=10 equal intervals.
The parameters in the optimisation problem in Case 3
were chosen as follows: α = 0.25, λq =3, and λr=10.
Batch processes always exhibit batch-to-batch
variations due to unknown disturbances such as
reactive impurities and reactor fouling (Zhang et al.,
1999). In this study, the initial initiator weight was
set to the nominal value 2.5g for the first 15 batches
and then drops to 2.1g starting at the 16th batch to
simulate the effect of reactive impurities.
Consequently, the simulated reactive impurities act
as a batchwise persisting disturbance.
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Fig. 2. Long-range predictions of RNN models for
(a) X, (b) Mn, and (c) Mw
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Fig. 3. Temperature profile of the 15th batch in Case 3
compared with those in Case 1 and Case 2

The results of the product qualities at the batch end
and the performance indices (PI ) in all three cases
are shown in Table 1. It should be noticed that PI  in
Case 3 was obtained according to Eq(16) after the
optimal temperature policy in Case 3 was applied to
the simulated reactor. Due to RNN model-plant
mismatches, the PI  in Case 2, 0.0493, is 45.8%
worse than that in Case 1. In Case 3, after 15 batches
with iterative optimisation, the PI  is decreased to
0.0382, only 13.0% higher (worse) than that in Case
1. Fig. 3 compares the temperature profile of the 15th

batch in Case 3 with the results in Case 1 and Case 2.

(a)

(b)

(c)



Fig. 4 shows convergence of temperature profiles of
the 1st, 3rd, 11th and 15th batches in Case 3. Under the
proposed batch-to-batch iterative optimisation
scheme, because model predictions were modified by
the results of previous batches and model errors were
gradually reduced, the reactor temperature profile
also converge to the optimal one.

Table 1. The product qualities and PI  in all three
cases (without impurities)

Case 1 Case 2 Case 3 (15th  batch)
X(tf) 0.8389 0.8321 0.8334

Mn(tf) 0.9527 0.8902 0.9168
Mw(tf) 0.9248 0.9046 0.9403

PI 0.0338 0.0493 0.0382
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Fig. 4. Temperature profiles in Case 3
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Fig. 5. Trajectories of product qualities on the
simulated process: (a) X, (b) Mn, and (c) Mw

Fig. 5 shows the trajectories of X, Mn and Mw in
three cases after the corresponding optimal
temperature policies were applied to the simulated
polymerisation reactor. It can be seen that with
iterative optimisation control, the product qualities in
Case 3 are improved compared to those in Case 2.
Fig. 6 shows the convergence of tracking errors ek

f =
yd(tf)-yk(tf) of the product quality variables after the
first 15 batches in Case 3. It can be seen that tracking
errors have converged after about 11 batches.
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Fig. 6. Convergence of tracking errors ek
f for the first

15 batches in Case 3

20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Case 1: (o) = 0.83352  Case 2: (x) = 0.858  Case 3: (v) = 0.84809

X
 (d

im
en

si
on

le
ss

)

time (min)

simulated process in Case 1
simulated process in Case 2
simulated process in Case 3

20 40 60 80 100 120
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
Case 1: (o) = 1.1354  Case 2: (x) = 1.1675  Case 3: (v) = 1.101

M
n 
(d

im
en

si
on

le
ss

)

time (min)

simulated process in Case 1
simulated process in Case 2
simulated process in Case 3

20 40 60 80 100 120
0.2

0.4

0.6

0.8

1

1.2

1.4
Case 1: (o) = 1.1553  Case 2: (x) = 1.2086  Case 3: (v) = 1.1161

M
w
 (d

im
en

si
on

le
ss

)

time (min)

simulated process in Case 1
simulated process in Case 2
simulated process in Case 3

Fig. 7. Trajectories of product qualities under
reactive impurities: (a) X, (b) Mn, and (c) Mw
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If there are disturbances in a batch process, the
optimal control profile calculated in the previous
batch may not result in the expected product quality.
When the initial initiator weight drops to 2.1g from
its nominal value 2.5g, the PI  in Case 1 and Case 2
become worse if the control policies calculated under
the norminal condition are still employed. As shown
in Table 2, the PI  in Case 1 increases to 0.0702 and
the PI  in Case 2 increases to 0.0917. However, under
the batch-to-batch iterative optimisation scheme, the
PI  in Case 3 can be brought down to 0.0467. Fig. 7
shows the trajectories of product quality variables
under reactive impurities.

Due to the presence of reactive impurities, the
temperature trajectory obtained in the 15th batch of
Case 3 was no longer optimal and prediction errors of
RNN increased. As shown in Fig. 8, the tracking
errors ek

f significantly increased in the 16th batch.
This issue has been successfully addressed by the
model-based iterative optimisation scheme. It can be
seen that ek

f has converged after about 10 batches.
The results in Case 3 demonstrate that, although there
are some model-plant mismatches and unknown
disturbances, the performance index can be gradually
improved under the iterative optimisation scheme.

Table 2. The product qualities and PI  in all three
cases (with unknown impurities)

Case 1 Case 2 Case 3 (30th batch)

X(tf) 0.8335 0.8580 0.8481
Mn(tf) 1.1354 1.1675 1.1010
Mw(tf) 1.1553 1.2086 1.1161

PI 0.0702 0.0917 0.0467
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Fig. 8. Convergence of tracking errors ek
f for the last

15 batches in Case 3

5. CONCLUSIONS

A model-based batch-to-batch iterative product
quality optimisation control scheme for batch
processes is proposed in this paper. Recurrent neural
network models are built to represent the operation of
a batch process and the model predictions are
modified using prediction errors of previous batches.

A quadratic objective function is introduced to the
optimisation problem of product quality control.
Using batch-to-batch iterative optimisation, it has
been demonstrated that model errors are gradually
reduced from batch to batch and the control policy
converges to the optimal policy. The proposed
scheme is illustrated on a simulated batch MMA
polymerisation reactor.
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Abstract: In batch pulp cooking process the wood chips are converted into pulp by  
lignin dissolution in cooking acid. The percentage of non-dissolved lignin is often 
expressed by so called Kappa number. To obtain desired quality of the pulp, Kappa 
number of the pulp should be decreased to the desired value at the end of batch cycle. 
Since reliable on-line commercial sensors of Kappa number are still unavailable, 
developing the soft sensor for measuring Kappa number in batch pulp cooking process is 
of practical significance. In this paper, a kinetic hybrid model is developed to predict the 
Kappa number for the batch cooking process. The effectiveness of the proposed hybrid 
model can be illustrated by the predicted errors for a actual cooking process.  
 
Keywords: Soft sensing, Hybrid mode, Radial basis function network, Pulp cooking  
process. 

 
 
 

 
1. INTRODUCTION 

 
Pulp and paper industry bears the stamp of 
exhaustive energy and raw material consumption. To 
achieve better yield at lower production costs, many 
researchers have been working on the measurement 
and control of Kappa number, an important quality 
index of pulp cooking. Although lots of research 
workers have been conducted in the field of Kappa 
sensor technology in recent years, on-line reliable 
Kappa number measurements in batch digesters is 
still very difficult. Therefore developing Kappa 
number model and the model-based control strategy 
of batch pulp cooking process is a challenge task for 
the pulp industry. 
 
By analyzing the physical-chemical mechanism of 
the cooking process, our research team has 
developed a simplified model for predicting the  
Kappa number, in which the initial charge conditions 
are expressed and correlated with an initial effective 
alkali concentration (sampled at the time of H factor 
equal to a certain number). The model can achieve 
very good predictive result in laboratory condition 
but while the model is used in practical cooking 
process the performances of the model are not very 
satisfied. Because of lack of sufficient off-line data 
to provide comprehensive knowledge of the 
complicated industrial  process,   the  model   is   
only useful over a narrow range of operating 

conditions. For this reason, in this paper it is to try 
developing a hybrid Kappa number model, which 
will provide the predictive Kappa number for the  
last phase of the batch cook process by means of 
learning from the history data.  
 
 

2. BACKGROUND 
 
 
2.1 Soft Sensing Technology 
 
Soft sensing technology is a measurement method 
which employing easily measured variables 
(auxiliary variables) and their relationship (soft 
sensing model) to acquire some variables (primary 
variables), which hard to measure directly. We can 
say that, soft sensing technology is a method of 
information utilizing and rule discovery, data 
classification and variable prediction. Data 
classification extents the data space by estimating the 
unknown data class experientially. Simultaneously, 
variable prediction extents the data temporal space 
by forecasting the variable development. During the 
process of soft sensing modeling, different kind of 
theory and method should be utilized 
comprehensively to dig out useful information. 
 
Artificial neural network technology has been 
introduced in the control field because there are 
many systems whose rigid mathematical models are 

     



hard to acquire, such as highly non-linear chemical 
processes including those found in the pulp industry. 
In this case, ANN may be an effective tool to cope 
with these problems, especially for systems whose   
characteristics and uncertainties are difficult to 
identify using mathematical models. To model such 
systems, ANN can provide some promising solutions 
(Thompson and Kramer, 1994).  
 
In this paper, an empirical predictive hybrid model is 
provided which based on neural network. It also 
takes advantage of Rough Set Theory and fuzzy 
theory to construct the model. First, certain rules and 
uncertain rules are acquired by analyzing the history 
data using Rough Set Theory. Then, Radical Based 
Neural Network is employed to realize the fuzzy 
model. The main steps are: 
(1) Rules Extraction by attribute reduction strategy 

based on rough set theory. 
(2) Using the rules as the node centres of the hidden 

layer to train the RBF. 
 
 
2.2 Rule Extraction 
 
Rough Set Theory 
Rough Set Theory was introduced by Z. Pawlark, a 
polish mathematician, in 1982. It is a relatively new 
soft computing-tool to deal with vagueness and 
uncertainty (Pawlark, 1996). It has received much 
attention of the researchers around the world. Rough 
Set Theory has applied to many area successfully 
including pattern recognition, machine learning, 
decision support, process control and predictive 
modeling. 
 
Rule Extraction 
The concept of un-differentiate relationship is the 
basement of the RS. The other important concepts 
include upper approach, lower approach, boundary 
area and rough abstract function. The main steps are 
listed below using Rough Set methods to discover 
knowledge and decision rules by analyzing and 
simplifying the great amount of measure data (Wang, 
et al., 1998).  
 
(1) Disperse the continuous data interval into 

discrete intervals, using the code of the sub-area 
as the value of the continuous data. 

(2) Acquire the discrete decision table and begin 
attributes reduction, using reduction strategy 
based on differentia matrix, which defines the 
times of the attribute appeared in differentia 
matrix as the attribute significance. 

(3) Based on the simplified result, look for the upper 
approximate set and lower approximate. Then 
sum up the logic rules. 

 
Review these rules and compare them with expert 
experience to acquire the final results. These rules 
will supervise the training of the RBFNN. 
 
 
2.3 Radical Basis Function Network 
 
In a sense, radical basis function has common ground 
with fuzzy system, or we can realize a certain kind of 

fuzzy system by means of Radical Basis Function 
Network. The number of the nodes in input layer is 
the number of reduction attribute vectors. The 
number of the nodes in hidden layer is decided by 
number of the rules. The transform function of 
hidden layer is Gauss function. 
 

 
 

Fig.1.  Structure of RBFNN 
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Contract to number i rule of a simple system: 
IF x1 IS A1i and x2 IS A2i ... and xn IS Ani , THEN y1 
IS wi1 and y2 IS wi2 ...and  ym IS wim  
 
The centres of Gauss Function are decided by the 
precondition vectors of the fuzzy rules. The weights 
of the output layer are corresponding with the 
posterior parameter of the fuzzy rule. That is RBFNN 
is of some comparability with fuzzy system. 
Comparing with the classical BP neural network, 
RBFNN is more apprehensible (Krzyzak and Linder, 
1998).  
 
 

3. HYBRID MODEL 
 
Choosing initial effective alkali (sampled at time of 
H=200), sulfide degree, H factor and wood chip 
eligible rate as the input variables and Kappa number 
as the output the hybrid model can be developed. 
 
3.1 find the centre value of hidden layer node by 
Rough Set Theory 
 
Using 160 groups data from a factory cooking 
process as an example to illustrate the construction of 
the hybrid model. The first 120 groups data are 
chosen as learning data, last 40 groups of data are 
used to verify the effect. 
 
construct binary decision table 
To construct a decision table, the consecutive 
variables should be converted to be discrete firstly, 
so Equal Interval Division method and Equal 
Probabilities method have been applied, but results 
are not so ideal. These methods are difficult to 
determine the discrete grade. Too rough grade leads 
to appear large amount of inconsistent data. 
Consequently, more inconsistent part of the 

     



constructed decision table will be produced. On the 
other hand, if the grade is too precise, rules can’t be 
abstracted effectively from the decision table. To 
solve the problem, code the decision table, which is 
dispersed by equal interval division method, and the 
table is converted to an approximately binary 
attribute table, then conduct attribute reduction using 
differential matrix method (Wang, Y.Y., 2001). As 
the result, some neighbourhood intervals would join 
together. The steps in details are listed as following: 
(1) Evaluate frequency distribution table of condition 
variables using statistic analysis software, as 
presented in table 1. 
 

Table 1 Variable frequency distribution table 
 

dividing point 
fre- 

quency effective 
 alkali 

sulfide  
degree 

wood 
chip 

eligible 
H factor

-10% 25.43 25.90 69.80 1826.20

-20% 26.97 26.80 73.00 1890.80

-30% 27.90 27.43 74.33 1954.60

-40% 28.68 27.64 75.68 2016.80

-50% 29.37 28.20 77.80 2048.00

-60% 29.92 28.60 79.38 2148.40

-70% 30.54 29.00 80.41 2234.20

-80% 31.16 29.50 81.36 2299.20

-90% 32.55 29.90 84.00 2480.60
 
 (2) Utilize the frequency distribution table and 
maximum limit of variables Condition variables are 
divided into 10 intervals, then each interval is coded, 
for example, the coding result of effective alkali 
variable is shown in table 2. 
 

Table 2 code of effective alkali interval 
 

Inter- 
val 

[22.00 
25.44) 

[25.44 
26.97) 

[26.97 
27.90) 

[27.90 
28.68) 

[28.68
29.38)

Code 0 1 2 3 4 
Inter- 

val 
[29.38 
29.92) 

[29.92 
30.54) 

[30.54 
31.16) 

[31.16 
32.55) 

[32.55
43.00)

Code 5 6 7 8 9 
 
(3) Construct a binary decision table, for a decision 
system, any condition attribute among the system can 
be represented by 9 binary attributes Z , 

whose value domain is { .( as shown in table 3)

80 ,, qq Z…

}1,0  
 
For example, if the value of a sample effective alkali 
is 28.72, the interval code will be 4, then the attribute 
is  after 
conversion. 

}1,1,1,1,0,0,0,0{},,,{ 810 =… eee ZZZ

Decision attributes can be divided into 3 intervals by 
equal frequency. (as presented in table 4) 

 
 

Table 3 binary table of attribute  q
 

Value 0
qZ  1

qZ  ... 7
qZ  8

qZ  

0 0 0 ... 0 0 
1 0 0 ... 0 1 
... ... ... ... ... ... 
8 0 1 ... 1 1 
9 1 1 ... 1 1 

 
 

Table 4 Discretization of Decision Attributes 
 

interval [22.00, 
33.27] 

 [33.27, 
36.90] 

[36.90, 
49.00] 

code 0 1 2 
 
Consequently, there are 36 condition attributes and 1 
decision attribute in the constructed binary decision 
table (as seen in table 5), while the original table only 
has 4 condition attributes and 1 decision attribute., 
the value domain of condition attributes is { , 
while the value domain of decision attributes is 

 

}1,0

}2,1,0{
 

Table 5  binary attribute decision table 
 

Case 
no. 

210
eee ZZZ  
543
eee ZZZ  
876
eee ZZZ  

... 

210
HHH ZZZ  
543
HHH ZZZ  
876
HHH ZZZ  

aK

1 0 0 0 1 1 1 1 
1 1 ... 0 0 0 1 1 1 1 

1 1 0 

2 0 0 0 0 0 0 1 
1 1 ... 0 0 0 0 1 1 1 

1 1 2 

... ... ... ... ... 

119 0 0 1 1 1 1 1 
1 1 ... 0 0 0 0 0 1 1 

1 1 0 

120  0 0 0 0 0 0 0 
1 1 ... 0 0 0 1 1 1 1 

1 1 1 

 
 
(4) Reduce the attributes of the constructed binary 
decision table using the decision attributes reduction 
technique presented in paper (Wang, et al., 1998), 
reduplicate samples reduction is made in vertical and 
reduction based on differential matrix method is 
made on horizontal. As a result, two reduplicate 
samples are reduced and the reduced condition 
attributes are:  
effective alkali{  }, 31

ee ZZ
sulfide degree{  },,,, 86531

sssss ZZZZZ
wood-chip eligible rate{  }, 43

mm ZZ
H factor{  },,,, 87542

HHHHH ZZZZZ
How to merge conditions variables is shown in table 
6.  
 
 
 

     



In the next section, we will train the network by 
using centre value of rule precondition interval as 
centre value of hidden layer nodes of RBF neural 
network, so the logic rules induction is not needed 
here. We can recode each interval based on the 
condition variables interval table above, the coding 
sequence can be 0,...,n-1, where n is number of 
intervals, then the reduction decision table is created. 
 

Table 6 Discretzation of Decision Attributes 
 

Variable 

Inter
-val 
Num
-ber 

Intervals 

Effective 
alkali 8 

[22.00,25.44], [25.44,26.97], 
[26.97,27.90], [27.90,28.68], 
[28.68,29.38], [29.38,30.54], 
[30.54,32.55],    [32.55,43.00],

Sulfide 
degree 5 

[23.00,26.80], [26.80,28.20], 
[28.20,29.00], [29.00,29.90], 
[29.90,33.00] 

Wood 
chip 

eligible 
rate 

8 

[58.00,69.80], [69.80,73.00], 
[73.00,74.33], [74.33,75.68], 
[75.68,80.41], [80.41,81.36], 
[81.36,84.00],    [84.00,89.00],

H 
factor 5 

[1300.0,1954.6], 
[1954.6,2148.4] 
[2148.4,2299.2], 
[2299.2,2480.6], 
[2480.6,5400.0] 

Kappa 
number 3 

[22.00,33.27], [33.27,36.90], 
[36.90,49.00] 

  
 
 
3.2 Determination of RBF neural network hidden 
layer nodes and learning samples 
 
Although equal interval coding method is applied to 
discrete continues interval, the data still may be lost 
or distorted, which will produce inconsistent rule, 
which is that two samples have the same attribute 
value while the decision value is difference. There 
are 3 pairs of inconsistent rules in previous process. 
The appearance of inconsistent rules is a common 
problem when constructing model with data from 
industry fields, especially, when constructing model 
with data from some complex process. Such situation 
does often appear: a pair of input data is nearby in 
distance while the corresponding output is reverse by 
distance meaning, so the extension capability of the 
model is not so ideal. There are many reasons, 
including improper selection of raw pulp sample spot, 
miss-manipulate by operators and some baffling 
reason etc. Consequently, the error between 
evaluation value of model and measurement value 
(off-line) is great when the soft-sensor model is 
running. 
 
 
 

To solve above problem, we should select proper 
discretazation method, separate interval reasonable 
and consult technical mechanism. The necessary 
rules and possible rules should be compared with 
expert experiences and then made proper adjustment. 
Applying distributed RBF network structure, we can 
select the number of decision classification as 
number of subnet, and then divide the original 
problem with m decision attributes into m sub 
problems. To set up soft-sensor model for paper pulp 
Kappa value, decision values are divided into 3 
interval and 3 sub networks are constructed. The last 
result is weighted average of decision values, so can 
keep balance between inconsistent rules. 
 
When training RBF sub network, the number of 
hidden layer’s nodes is determined by number of 
samples in decision table, while the centre value of 
transform function is chosen based on centre of 
interval of condition attributes, for example, a RBF 
sub network with 39 hidden layer nodes, whose 
decision value is 0, the centre value corresponding to 
node i is normalization of centre values for interval 
of sample i. Variances of the Gauss function are all 
set as 1. 
 

   
Fig.2. Distributed RBF network structure 

 
(1) Normalization of data 
Normalization of data is necessary for that 
measurement scale is difference between variables. 
Firstly we can easily get the maximum value domain 
by using statistical analysis because the technical 
variables are limited strictly in certain range. The 
transform formula is as following: 
Provided that variety range is [ , after 
normalizing, 

], maxmin xx
)minmax x−()( min xxxx −=′ . 

 
To satisfy the requirement of precision, we can adjust 
the weight of output. For subnet work 1, where there 
are 38 hidden layer nodes and 41 training samples. 
The following table 7 illustrates how to train the 
three RBF subnet works. 
 

 

     



Table 7 Training of the RBF sub-network 
 

RBF 
Sub- 

network 

Nodes of 
Hidden 
layer 

Training 
samples 

Training 
error 

1 39 41 0.080 

2 32 32 0.032 

3 47 47 0.087 

 
 (2) Distributed model structure 
we should keep to the following rules when select 
proper iµ , 
 

i

M

k k
i M

d

i

∑
== 1

1

α ,

∑
= M

l

i
i

a

a
µ

=l 1

              (2) 

 
where M is number of sub-network (in the paper, 
M=3); is number of training samples for sub-
network i, d is square of  Euclidean distance 
between testing samples and learning samples. 

iM

k

 
 
3.3 Verify the model 
 
In previous work, we have developed a regressive 
equation for Kappa number of paper pulp based on 
kinetics mechanism of delignification (Luo and Liu, 
2000). 
 

]))(ln[( n
bba CEAHHBAK −−=          (3) 

   
where  is Kappa value, H is H factor aK

bH , are H coefficient and effective alkali on 
mass delignification period separately. 

bEA

C is function of sulfide degree,  )ln(SC =
A , B , R  are coefficients to be determined. 

 
Table 8  performance compare 

 

Absolute 
Error  

Mini 
-mum 

Maxi 
-mum mean 

Standar
d 

deviatio
n 

RBFNN 0.08 9.20 2.332 2.1213

Mechanism-
regression 

model 
0.10 12.70 3.592 2.8041

 
Analyzing 40 groups of error tolerances absolute 
values, comparing them with predicted results of 
mechanism-regressive equation, it can be seen that 
the result of RBF neural network is better than 
former (table 8). 
 
 

 

4. CONCLUSIONS 
 
In this paper, a kinetic hybrid model is developed to 
predict the Kappa number on the lat phase of the 
batch cook process. The hybrid model is consisted of 
two modules: the lower essential module and the 
upper module. The essential part of the model is 
Radical Basis Function Neural Networks, which is 
composed by three sub networks. Considering some 
non-linear factors, such as the conflicts existing in 
the sample data, undetectable initial conditions, 
disturbances in cooking and so on, the upper part 
divides the whole secondary variables space into 
different fuzzy subspaces by applying expert 
knowledge and RS (Rough Set) data mining. In each 
space, the sub RBF network is trained to get better 
prediction. The final result is given by synthesize the 
outputs of the three sub network. Effectiveness of the 
proposed hybrid model is illustrated by the error  
between the predictive values and the data obtained 
from the lab. analysis in actual cooking process. It 
also indicates that the empirical model is effective for 
certain non-linear and complicated processes. 
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Abstract: In this paper a new batch laboratory process is described. The process is
inexpensive, modular, and portable. Several processes can be connected together to
form a multi-purpose batch pilot plant. The use of the process in process control
education is described.
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1. INTRODUCTION

A good control engineering course should include
hands-on experiments. A number of laboratory
control processes are available commercially, e.g.,
inverted pendulums, helicopter processes, level-
controlled water tanks, etc. These are commonly
used in laboratory exercises in different basic
and advanced control courses. However, very few
processes exist that illustrate the typical problems
associated with batch control.

In this paper a new laboratory batch tank process
is presented. The process can be used stand-alone
for illustrating the control problems associated
with single-unit batch control. It is also possible
to connect several processes together to form a
multi-purpose batch cell. Used in this way the
process can be used in teaching laboratories on

1 This work has been supported by the Center for Chem-
ical Process Design and Control, CPDC, and the Swedish
Foundation for Strategic Research, SSF. The development
of JGrafchart is funded by the EC/GROWTH project
CHEM aimed at developing advanced decision support
systems for different operator-assisted tasks, e.g., process
monitoring, data and event analysis, fault detection and
isolation, and operations support, within the chemical pro-
cess industries. The CHEM project is funded by the Euro-
pean Community under the Competitive and Sustainable
Growth Programme (1998-2002) under contract G1RD-
CT-2001-00466.

recipe-based batch control and scheduling of batch
processes.

The process consists of a water tank equipped
with inlet and outlet pumps, a heating device,
a cooling device, and an agitator. The sensors
consist of a level sensor and a temperature sensor.
The relatively large amount of actuators means
that the number of discrete operations that can be
performed is quite large (start/stop inlet pump,
start/stop heating, etc). The actuators can also
be controlled with analog signals. This means that
the tank also can be used as a continuous jacketed
tank reactor. The possibility to both cool and heat
can be used to emulate the temperature behavior
of different types of chemical reactions, e.g., the
cooler can be used to simulate an endothermic
reaction in the reactor. In this way the simulation
of the reaction rate can be made temperature
dependent, non-linear, or constant. The process
can also be used for multi-variable control ex-
periments, e.g., simultaneous control of level and
temperature.

The process is made from standard components
and therefore inexpensive. The process is also
small, so small that it fits easily on the desk beside
a standard PC used for control. The connection
between the process and the PC is an ordinary
RS-232 serial line. This also means that it is
straightforward to control the process from an
ordinary laptop PC at lectures and presentations.
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Fig. 1. Outline of the laboratory batch process.

1.1 Outline of the Paper

The process is described in detail in Section 2.
Currently the process is used in the basic course
in process control at the Department of Automatic
Control, Lund Institute of Technology. Section 3
describes the laboratory exercise. A dynamic sim-
ulator for the batch tank process is also described.
In the laboratory exercises the process control sys-
tem is implemented in JGrafchart, a Java-based
environment for graphical programming that com-
bines the functionality of Grafcet/SFC from IEC
61131-3, with Statecharts and procedural and
object-oriented programming concepts. A brief
overview of JGrafchart is given in Section 4. By
combining three tanks in series a multi-purpose
batch cell can be emulated. This is described in
Section 5.

2. PROCESS DESCRIPTION

The batch tank consists of a plexi-glass tube with
a brass bottom. The volume of the reactor is
approximately 0.5 liter. Connected to the reactor
is an agitator, an in-pump, an out-pump, a level
sensor, a temperature sensor, a heater, and a
cooler, see Fig. 1. The cooler consists of a 40 W
Peltier element cooled by a fan.

The outputs from the level and temperature sen-
sors are in the range 0− 10 V, which corresponds
to Empty-Full tank and 0 − 100o C respectively.
The resolution OF THE SENSORS can be up to
10 bits.

The pumps, heater, and cooler can either be con-
trolled with digital, i.e. On/Off, signals or ana-
log signals. The analog signal is transformed us-
ing an integrated microcontroller for pulse width
modulation (PWM). The built-in microcontroller
is an 8-bit ATmega8 from Atmel. The agitator
only has a digital control signal, but to overcome

Fig. 2. The real process.

the problem with friction the microcontroller is
programmed to give a higher control signal right
when the agitator is turned on. The heater is a
24 V, 150 W heating element. There are three
light-emitting diodes (LED) on the front of the
process: one red for showing if the heater is on,
one blue for showing if the cooler is on, and one
red/green LED, which is red if there is some error
and green if the power is on and the process is
OK.

The microcontroller is used for safety interlocks,
e.g., it is not possible to turn the heater on if
the tank is empty, the in-pump will stop once
the tank is full, and there is a protection against
over heating. The microcontroller enables commu-
nication over an RS-232 serial line. This makes it
possible to control the process with a laptop, e.g.,
at presentations and lectures, without using an IO
card.

The water container below the process is an off the
shelf plastic tank with the size: 15 cm high, 30 cm
wide, and 40 cm deep. The container also becomes
a protection for the front part of the process
during transportation. The real batch process can
be seen Fig 2.

The cost of building one process, without the
development cost, is approximately US$1200, of
which half is material and half is work cost.

3. A BATCH PROCESS LABORATORY
EXERCISE

The process is used in a laboratory exercise in
the course“Automatic Process Control”, a fourth-
year course for chemical engineering students at
the Lund Institute of Technology. The laboratory
exercise introduces the students to discrete-event
control of a batch reactor and it also requires the
students to implement a discrete PID-controller.



Both the sequential control and the PID-controller
are implemented in JGrafchart. The sequential
control consists of the following steps:

I) Fill the reactor.
II) Heat the reactor, during simulation of an

endothermic reaction, to a specified temper-
ature using PID-control.

III) Empty the reactor.
IV) Clean the reactor.

The sequence should then be restarted and a new
batch made. A solution in JGrafchart can look like
in Fig. 4.

In the exercise the cooler is used to simulate an
endothermic reaction in the reactor. This way the
simulation of the rate of the reaction can be made
temperature dependent, non-linear, or constant.

3.1 Process Simulator

During the design of the hardware the tempera-
ture dynamics of the process was estimated to be
a first order system with time constant T ≈ 1000s
(if the temperature step is not too large). The
laboratory exercise would take a very long time
if all the experiments should be made on the real
process and therefore a simulation model has been
developed. The simulation model can be used for
development of controller schemes and parameter
adjustments. The speed of the simulation can be
changed.

To be able to plot signals in real time for the real
process it was decided to construct a simulator
server program that offers the following services:

a) A simulated batch process with the same
interface as the real batch process.

b) Possibilities to plot temperature measure-
ments, control and reference signals.

c) An animation of the batch process.
d) A socket interface so that clients can acquire

all of the above services.

It was decided to implement the simulator server
in Java. Two communication threads were imple-
mented. One that sends measurement signals from
the virtual tank to clients connected to the server,
and one that receives commands from clients.

The simulated batch process was implemented as
a subclass of an existing process simulation class
package. The class package provides methods to
simulate systems that are described by differential
or difference equations in real time. The coeffi-
cients for the differential equations were identified
from the real process. The class also provides
methods to animate the process with the public
Graphics2D-class package. A screen-shot from the
simulation is shown in Fig. 3.

Fig. 3. Animation of the tank used both for the
simulated and the real process.

A client, which connects to the server’s socket can
switch the simulation on and off. If the simulation
is on the virtual process will react to the client’s
command signals and visualize the effect in the
animation window. Moreover the signals will be
plotted. If the simulation is turned off only the
animation and plotting capabilities of the server
are used to plot the signals from the real process.

4. JGRAFCHART

JGrafchart is the name of a Java-based version
of Grafchart (Årzén, 2002), an object-oriented
extension to Grafcet/Sequential Function Charts.
JGrafchart consists of a graphical editor and a
run-time system. In the graphical editor the user
creates Grafchart sequential function charts by
copying language elements from a palette us-
ing drag-and-drop. The language elements are
placed on a workspace and connected together
graphically. After compilation the function charts
are executed by the runtime system within the
JGrafchart machine. No native code generation
takes place. A separate execution thread is used
for each top-level workspace. The execution is
periodic. In every cycle the inputs are read, a
scan of the function charts is performed, and the
outputs are written. JGrafchart is shown in Fig. 4.
The drag-and-drop palette is shown to the left.
JGrafchart is implemented in Java 1.4 and Swing.
The graphical object editor class package JGo
from Northwoods Software Corporation is used in
the implementation of the graphical editor. The
public domain parser generator JavaCC is used to
generate parsing code for all textual expressions.
JavaCC is also used to build abstract syntax trees.
Storage to file is provided in the form of XML. The



Fig. 4. Control sequence in JGrafchart

contents of each document can be stored as XML
and later reloaded. It is also possible to store all
top-level workspaces as a single XML file.

The main language elements are steps, transi-
tions, macro steps, procedures, and procedure
steps. A step represents a state where actions are
performed. Four types of actions are supported:
stored actions are executed when the step be-
comes active, exit actions are executed immedi-
ately before the step becomes deactivated, peri-
odic actions are executed periodically while the
step is active, and, finally, normal actions which
are used to associate the truth value of a boolean
variable with the activation status of the corre-
sponding step. Transitions contains a boolean con-
dition and/or event expression that decides when
the transition should be fired. The grammar for
transition expressions and step actions is defined
formally using JavaCC.

JGrafchart supports four different data types:
booleans, integers, reals, and strings. Using special
workspace objects it is possible to create complex
variables, e.g., structs. Workspace objects can also
be used to encapsulate procedures, e.g., behavior.
In this way it is possible to mimic simple object
structures. JGrafchart can interact with the exter-
nal environment in four different ways: using dig-
ital IO, using analog IO, using sockets, and using

XML based communication. Using digital inputs
and outputs JGrafchart can be used directly as
a logical controller. Using analog input and out-
put blocks JGrafchart can communicate with A-D
and D-A converters. This functionality only works
when executing on the Linux PCs in our labora-
tory. Each workspace can act as a client in a TCP
socket connection connecting to some server, e.g.,
a simulator. Using socket input and output blocks
it is possible to read and write variable values
using a simple text-based protocol where each test
message has the following structure: variable

identifier ’|’ value. Finally, using XML in-
put and output blocks, JGrafchart can commu-
nicate with xmlBlaster, an XML-based message-
oriented middle-ware layered on top of XML-RPC
or CORBA. The xmlBlaster server supports com-
munication using the publish/subscribe method
and using remote procedure calls.

The graphical editor provides a number of fea-
tures, e.g., graphical selection of objects, move,
delete, cut-copy-paste, undo-redo, change object
size, group-ungroup, move-to-front, send-to-back.
It is possible to change the grid size and color of a
workspace. In addition to the Grafchart language
elements the editor supports graphical objects,
e.g., texts, rectangles, ellipses, icons, buttons, etc.
Step actions can be associated with a button and
executed when the button is pressed. It is also pos-
sible to dynamically change the attributes (posi-
tion, size, color, and so on) of the graphical objects
using step actions. In this way it is possible to
implement GUIs in the form of animated process
diagrams.

5. A LABORATORY BATCH CELL

The mixed discrete/continuous nature of batch
production systems makes them a challenging
control problem. In multi-purpose batch cells it
is possible to produce multiple products at the
same time using a finite set of equipment units.
The units are organized in a network structure
with a high degree of connectivity. The sequential
information about the ordering of the operations,
and the equipment unit types required for the
different operations, is captured in a recipe. In
order to execute an operation in an equipment
unit, the batch control system must allocate the
resource that the equipment unit constitutes. A
control system for recipe-based batch production
must, hence, include substantially more functions
than what is needed in a control system for con-
tinuous production. An example of a batch pilot
plant is the Procel plant at UPC in Barcelona,
Spain. Procel has been used in several ways in
the research of batch control, see e.g. (Cantón et

al., 1999; Ruiz et al., 2001; Olsson, 2002).
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Fig. 5. Outline of the batch pilot plant consisting of three processes.

Fig. 6. Tank processes connected together to a
small batch pilot plant.

Batch cells are by nature quite large (Procel is
4 m by 2 m by 1 m) and expensive, and not
so well suited for teaching laboratory purposes.
However, by connecting the developed single-tank
processes together a small pilot batch cell plant
can be created. As a test three processes have been
connected together using plastic pipes and manual
valves, see Fig. 5 and Fig. 6. The manual valves
can easily be replaced with automatic magnetic
valves if desired. The plant is highly flexible and
connected in such a way that each of the tanks can
transfer its content to any of the other tanks or
empty it out to the water container below. The
plant has the same functionality as the Procel
pilot plant.

The control system is implemented in JGrafchart
according to the S88 batch control standard (ISA,
1995; IEC, 1997). Each tank is modeled as
an equipment unit in the control system. The
equipment unit contains equipment operations or
phases for performing the different control actions
on the physical batch tank unit. The recipes are
represented as JGrafchart procedures consisting
of sequences of recipe operations or recipe phases.
The recipe operations or phases call the corre-
sponding equipment operations or phases using
method calls. In JGrafchart it is also possible to
include an animated process diagram that can
be used as operator interface. The JGrafchart
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Fig. 7. Distributed control system according to the
batch control standard S88.

solution can either be centralized executing on
a single PC or distributed executing as multiple
JGrafchart applications either within the same PC
or on different PCs, e.g., one PC for each equip-
ment unit and one supervisory PC for the recipe
handling and the operator interface, see Fig. 7.
The distributed solution relies on the possibility in
JGrafchart to communicate using XML-messages.

To include the manual valves in the control sys-
tem, dialog windows requesting the operator to
manually open and close the valves have been
added. Instead of opening the valve automatically
it brings up the dialog and waits for the opera-
tor to confirm that the valves are in the correct
position. A dialog window can be seen in Fig. 8.
How JGrafchart can be used for operator support
is described in (Årzén et al., 2002). If automatic
magnetic valves are added to the plant they can



Fig. 8. Dialog window in JGrafchart for manual
control of valves in a transfer operation

either be considered to be a part of the existing
units or they can form a separate valve-battery
unit. If the valves are grouped as a new unit the
control system for the single tank process can
be re-used without change. New operations need
to be added for the transfer from one process
to another but to a large content this could be
part of the valve-battery unit. This way the plant
could easily be extended to more units over time,
only the control of the valve battery needs to be
changed.

A recipe for the manufacture of a certain prod-
uct in the plant may for example consist of the
following sequential operations:

• Fill Unit 1.
• Heat Unit 1.
• Transfer to Unit 2.
• Wait.
• Transfer to Unit 3.
• Cool Unit 3.
• Empty Unit 3.

The recipe implemented as a procedure in JGrafchart
is shown in Fig.9.

6. CONCLUSIONS

An inexpensive, portable, and flexible laboratory
batch process has been developed. The process is
used within the chemical engineering education at
Lund Institute of Technology. The process can be
used for teaching sequential, PID, multi-variate,
and recipe-based control. It has also been used in
the development of an exception handling strategy
for batch control (Olsson, 2002).

A major advantage of the modularity and size of
the process is that it can easily be disconnected
and stored or transported. Once disconnected
each process can be fitted into a bag and easily
carried by one person.

Start

Transfer U3 Receive U2

Cool

Empty

Finished

Fill U1

Heat U1

Transfer U2 Receive U1

Wait

Fig. 9. A recipe implemented in JGrafchart
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