
A STATE-SHARED MODELING APPROACH

TO TRANSITION CONTROL

Zhenhua Tian and Karlene A. Hoo 1

Department of Chemical Engineering

Texas Tech University, Lubbock, TX

Abstract: A rigorous theoretical derivation of a state-shared model structure for
multiple-input multiple-output (MIMO) systems is proposed. When a nonlinear
system transitions in a large operating space, this state-shared modeling approach
can be used to approximate the nonlinear system, such that effective model-
based controllers can be applied. A MIMO nonlinear reactor system illustrates
the proposed approach.
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1. INTRODUCTION

In the chemical industry, it has become quite com-
mon for plants to produce more than one grade
of product, the choice being dictated by mar-
ket forces. This is particularly true for polymer
industries, where product and grade transitions
occur frequently. This necessitates the use of a
controller that can successfully regulate the plant
not only at the operating points, but also during
the transition.

Useful measures to evaluate a transition control
strategy are no violation of constraints, speed of
response, satisfactory performance, and closed-
loop stability (Narendra et al., 1995).

Nonlinear behavior is not an uncommon charac-
teristic during the transition. This feature serves
to not only heighten the control problem but
also to require a nonlinear dynamic model of the
process for control studies. However, due to a
lack of available high fidelity nonlinear models,
because nonlinear control methods are not well-
understood, and closed-loop stability arguments
are difficult to prove, nonlinear strategies are very
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difficult to implement (Tian and Hoo, 2002b).
Additionally, the maintenance costs of nonlinear
control algorithms are usually substantially higher
than those of linear control algorithms for the
same process (Eker and Nikolaou, 2002).

A popular option is to use multiple linear mod-
els that together represent the nonlinear system.
Thus, many transition control strategies are based
on linear models with fixed parameters so that
linear control theory can be applied. For large
operating spaces, the issue of how many fixed
model/controller pairs are needed remains unan-
swered. A variety of the multiple model strategies
employ a conditional probability to determine how
to combine a set of fixed models to generate a new
model that better represents the plant outputs
(Aufderheide and Bequette, 2001). Others adapt
the existing models and controller parameters us-
ing a model reference adaptive control (MRAC)
framework (Narendra et al., 1995; Gundala et

al., 2000).

It is well known that different control strategies
can be attempted once the estimation model is
chosen. Whether a more robust controller can
be used to assure stability and improved perfor-



mance, is an intriguing question. Sun and Hoo
(1999a, 1999b) presented a robust dynamic tran-
sition control structure for time-delayed systems
using a set of fixed models and controllers. Tian
and Hoo (2000b) used H∞ controllers based on
fixed and adaptive models.

In this work, a state-shared model framework rep-
resents multiple fixed and adaptive models. The
state-shared model consists of a non-minimal re-
alization and a non-minimal identifier. The former
is developed at the known operating points, while
the latter is used at any other point. The param-
eters in the measurement equation are adapted.
Thus, all models, adaptive and fixed, can be cast
into such a structure, in which all the models share
the same states but the parameters in the mea-
surement equation represent different operating
points.

The rationale for using adaptive and fixed mod-
els is to ensure that there is at least one model
with parameters sufficiently close to those of
the unknown plant to provide accurate controller
response. The fixed models together with sta-
ble switching provide speed, while the intelligent
adaptive models and tuning provide accuracy.

From a system identification point of view, the
state-shared model has attractive properties such
as the uniqueness of the identified parameteriza-
tion and convergence of the adaptable parameters.

The coefficient matrices in the state-shared model
are selected to be controllable by the designer.
The existence and uniqueness criteria for this type
of parameterized model are based on a uniquely
identifiable parameterization known as a matrix
fraction description (MFD) (Kailath, 1980). The
convergence of the parameter adaptation is also
proven. For an m-input m-output linear MIMO
system, the total number of identified parameters
is derived to be Nθ = n(m2 + 1), where n is
the upper bound of the McMillan degree of all
nominal linear models.

The organization of the paper is as follows. Section
two begins with a brief review of some relevant
results and properties of linear MIMO systems.
Section three develops the state-shared model and
presents the existence and uniqueness criteria.
The convergence of the identifier is also analyzed.
Section four demonstrates the construction of the
state-shared model on a MIMO nonlinear system
studied by (Gundala et al., 2000) that undergoes
a production rate transition. Lastly, section five
summarizes the findings.

2. PRELIMINARIES

An m-input p-output linear time-invariant (LTI)
system has a transfer function H(s) ∈ Rp×m(s),

the set of (p × m) matrices with polynomial
elements (Antsaklis and Michel, 1997; Kailath,
1980).

Definition 1. A rational transfer function matrix
H(s) is said to be proper if

lim
s→∞

H(s) < ∞

and strictly proper if

lim
s→∞

H(s) = 0

Theorem 1. (Antsaklis and Michel, 1997) H(s) is
realizable as the transfer function matrix of a
linear time-invariant system given by

ẋ = Ax + Bu
y = Cx + V u

if and only if H(s) is a proper rational matrix. If
V is the null matrix, then H(s) is a strictly proper
rational matrix.

Rewrite H(s) as

H(s) =
N(s)

d(s)
d(s) = sn + d1s

n−1 + · · · + dn

where d(s) is the least common multiple of the
denominators of H(s) and deg d(s) = n. Thus,

H(s) = D−1(s)N(s), D(s) = d(s)Ip (1)

and define the degree of the denominator matrix
as

degD(s) ≡ deg det(D(s)) = np

The pair {N(s), D(s)} is called a left matrix
fraction description (left MFD) (Kailath, 1980).

Proposition 1. Given any left MFD of H(s) =
D−1(s)N(s), a state-space realization of order

deg det(D(s)) ≡ deg left MFD

can always be found.

Kailath (1980) provides a procedure to obtain the
realization from the left MFD.

Lemma 1. If H(s) is a strictly proper (proper)
transfer function and the left MFD is given by
Eq (1), then every row of N(s) has degree strictly
< (≤) that of the corresponding row of D(s).

The proof is similar to that of Kailath (1980).

3. MIMO STATE-SHARED MODEL

The aim is to achieve a non-minimal realization/non-
minimal identifier, such that while all the models
share the same state space representation, each
model has unique input/output parameter set.



3.1 A non-minimal realization

Theorem 2. Any controllable and observable m-
input m-output LTI system given by

Yp(s) = H(s)U(s) = D−1(s)N(s)U(s) (2)

with D(s) = d(s)Im and d(s), a polynomial of
degree n, is input-output equivalent to the LTI
system described by the differential equations

ω̇1 = Fω1 + GU ω1 ∈ Rnm×1

ω̇2 = Fω2 + GYp ω2 ∈ Rnm×1

Yp = ΘTω
(3)

by suitable choice of the parameter vector Θ ∈
R2nm×m, and Θ is uniquely determined by the
given H(s). The pair (F,G) should be controllable
with F ∈ Rnm×nm, an asymptotically stable
matrix, and G ∈ Rnm×m. The (F,G) can be
arbitrarily chosen under the given restrictions.

Proof
Consider Figure 1. The transfer functions from
U(s) to v1 and Yp to v2 are given by

ΘT
1
(sI − F )−1G Θ1 ∈ Rnm×m

ΘT
2
(sI − F )−1G Θ2 ∈ Rnm×m

respectively. Define, ΦI ≡ (sI−F )−1G. Then, the
transfer function from the input U to the output
Yp can be expressed as

H(s) =
(

I − ΘT
2
ΦI

)−1 (

ΘT
1
ΦI

)

≡ D−1(s)N(s)

= (D(s)/ΩI(s))
−1(N(s)/ΩI(s))

(4)

where, ΩI(s) ≡ det(sI−F ) = sn+ans
n−1 + · · ·+

a2s + a1. From Eq (4), the following equivalent
relations can be obtained

I − ΘT
2
ΦI =

D(s)

ΩI(s)
ΘT

1
ΦI =

N(s)

ΩI(s)
(5)

Eq (5) includes n(m2 + 1) linear equations with
the same number of unknown variables. It is not
difficult to show that the coefficient matrix of
this system of linear equations is nonsingular,
which means that Θ1 and Θ2 can be determined
uniquely. It then follows that any linear time-
invariant plant can be parameterized as shown in
Eq (3). QED

Remark 1: Theorem 2 implies the existence
of parameter vector Θ such that the transfer
function of the state-space model, given in Eq (3),
is equivalent to H(s), given in Eq (2).

Remark 2: The value of Θ depends on the pair
(F, G) and the coefficients of H(s). Since (F, G)
are under the influence of the designer, Θ is
uniquely determined.

Remark 3: D(s) is block diagonal with the same
elements in each block. As a result, there are only
n elements to be identified to determine Θ2; the
others are zeros. There are nm2 elements in Θ1,
the total number of parameters to be identified is
n(m2 + 1).

It is assumed that the space of operating condi-
tions is large such that there are many possible
operating states. At known operating states, a
suitable linear model can be developed or identi-
fied and such a model will have fixed parameters
in its input/output form.

3.2 A non-minimal identifier

At any unknown operating point, it is not dif-
ficult to construct a non-minimal identifier (not
interpolation). Assume the non-minimal identifier
has the same form as the non-minimal realization.
Because the operating point is not known a priori,
let the parameters in the measurement equation
be adapted to obtain an accurate representation.
The state-space equation of the non-minimal iden-
tifier will be driven by the measured signals, U and
Yp.

The non-minimal identifier is given by (3)

ω̇1 = Fω1 + GU ω1 ∈ Rnm×1

ω̇2 = Fω2 + GYp ω2 ∈ Rnm×1

Ŷ = Θ̂Tω

(6)

3.2.1. Parameter adaptation The adaptation of
the parameters must be done in a stable fashion.
In this work, a normalized least-squares for an m-
input m-output system is proposed. For details see
(Tian and Hoo, 2002a).

Let the model-plant mismatch be given by Ỹ ≡
Ŷ − Yp. It can be shown that

lim
t→∞

Ỹ (t) = 0, lim
t→∞

Θ̂(t) = Θ

It is understood that the state-shared model is
both the non-minimal realization of the plant
and the adaptive non-minimal identifier. From
the procedure described in the previous section,
it can be concluded that the parameters of the
state-shared model are uniquely determined by
the transfer functions of the input/output models.
Note that any such realization necessarily fulfills
the requirement that the output of model j, Yj
be an asymptotically correct estimate of output of
the plant Yp if the process model transfer function
were H(s), i.e. Yj → Yp.

3.3 Model reduction

For control implementable solutions, it is desir-
able to use low-order controllers whenever pos-
sible. One means of reducing the order of the



controller is to generate a reduced-order approx-
imation of the plant before designing the con-
troller (Mahadevan and Hoo, 2000; Zheng and
Hoo, 2002).

Reduced-order approximation of plant dynam-
ics is not an uncommon engineering practice. In
general, mathematical models are reduced-order
approximations of the true system generated by
ignoring minor effects during modeling. Clearly,
the number of parameters to be adapted affects
the rate of convergence and the computational
burden.

From the previous section, it is known that the
order of state-shared model for a MIMO system
is 2nm. The input/output number, m, cannot be
changed. To reduce the order of the state-shared
model, the order of d(s) (n) must be reduced. In
this work, a balanced truncation approach is used
(Burl, 1999).

4. EXAMPLE: NONLINEAR REACTOR

The chemical reactor consists of a continuous-
stirred tank reactor in which a single, isothermal,
irreversible reaction given as A(g) + C(g) →
D(l), occurs in the vapor phase (Ricker, 1993).
Components A and C are non-condensible gases
and component D, the product, is a non-volatile
liquid.

The molar balance of each component in the
system is given by,

dNA

dt
= yA1F1 + F2 −

NA

N3

F3 − rD

dNB

dt
= yB1F1 −

NB

N3

F3

dNC

dt
= yC1F1 −

NC

N3

F3 − rD

dVL
dt

= (rD − F4)/ρL

(7)

Nk =

C
∑

i=A

Nik k = 1, . . . , 4

pi =
Ni

∑C

j=ANjk

P i = A,B,C

rD = k0p
v1

A pv2

C

F4 = (χ4 + u4)cv4
√

P − Pr

u4 = Kc(V
∗

L −
VL

VL,max
100%)

where rD is the reaction rate (kmol/h) that de-
pends on the partial pressures of components A
and C, Ni is the number of moles of component
i, and yij is the mole fraction of component i in
stream j. There are two feed streams (F1, F2) a
purge (F3), and a product stream (F4) with units
of kmol/h. The ideal gas law is assumed to be valid

and the liquid density (ρL) is constant. Measured
outputs include the reactor pressure (P), the liq-
uid volume (VL), and the mol% of unreacted A in
F3 (yA3).

For economic, safety, and operational considera-
tions, F4, P , and yA3 should be controlled. The
three manipulated variables are F1, F2 and F3.
The product rate is adjusted by a proportional
feedback controller in response to variations in
the liquid inventory. The control signal from a
liquid inventory controller is u4. There are safety
and production constraints. The reactor pressure
must be maintained below the shutdown limit of
3000 kPa, and F1 and F2 cannot be larger than
their maximum values of 330.46 kmol/h and 22.46
kmol/h, respectively. More details can be found in
(Tian and Hoo, 2002a).

It is desired to transition the reactor between two
production rates, OPI: 100 and OPII: 130 kmol
h−1. An analysis of the model shows that both
states are feasible, stable operating states.

4.1 Modeling

Linearization at the known operating states yields
a linear model in the form,

ẋ = Ax + Bu
y = Cx
x = xp − x̄ y = yp − ȳp

(8)

where x̄ and ȳp are the steady state values of
xp and yp, respectively; A = ∇xpf, B = ∇upf ,
and C is found from the measurement equation.
An eigenvalue analysis shows that the matrix A,
at both OPI and OPII, is asymptotically stable.
Additionally, the linear systems at both operating
states are stable and output controllable imply-
ing that the nonlinear system at these operating
states are at least locally stable. The system is
also observable.

At each operating point, a 2-state, 3-input 3-
output reduced-order model corresponding to the
4-state, 3-input 3-output full-order linear model
is obtained by the model reduction method of
balance truncation.

Assume that at any point in the operating space,
the nonlinear system can be approximated by a
reduced-order linear model of order 2 (the up-
per bound of the McMillan degree), but each
model may be different at each operating state.
The aim of the state-shared model structure is
to represent all the linear models by one state-
shared framework. Their measurement equations
represent their differences. From the theory pre-
sented in §3, the state-shared model will have
order nm = 6, with n(m2 + 1) = 20 adaptable
parameters. Let the pair (F,G) be given by,



Fj =





0 1

−a1 −a2



 Gj =





0

1



 j = 1, 2, 3

with a1 = a2 = 1 such that the pair (F,G) are
controllable. It then follows that,

F =





F1 0 0

0 F2 0

0 0 F3





6×6

G =





G1 0 0

0 G2 0

0 0 G3





6×3

At any operating point, given N(s) and D(s), the
measurement equation parameters, (Θ1,Θ2), can
be calculated.

4.2 Model validation

In a neighborhood of OPI, random input distur-
bance signals (zero mean and standard deviations
of 15% of their nominal values at OPI) is intro-
duced to both the nonlinear system and linear
models. To quantify the differences between the
model responses, define the Average Relative Er-
ror (ARE) of the jth measurement after k sample
points by,

ARE(j) = k−1

k
∑

i=1

∣

∣

∣

∣

yp(i, j) − ȳp(j) − y(i, j)

yp(i, j)

∣

∣

∣

∣

(9)

Here, yp(i, j) is the jth output of the nonlinear
system, ȳp(j) is the jth nominal value of the
nonlinear model, and y(i, j) is the jth model
response.

Table 1 lists the AREs among the different mod-
els. The largest errors are associated with F4 but
they are ≤ 1%. Similar results were obtained at
OPII.

4.3 Transition control

The system is forced to transition from 100
kmol/h to 130 kmol/h, while satisfying all other
constraints. First order reference trajectories (dot-
ted lines in the figures) are selected for the three
outputs. A model predictive controller is used
with the state-shared model and measurement
equations to achieve the transition. A controller
horizon of 4 and a prediction horizon of 10 are
selected. To represent a preference among the
controlled variables, output weights of 3, 1, and
10 for P, yA3, and F4, respectively are selected.
Equal weighting of the rate of change in the inputs
is used. The system has constraints on the outputs
and inputs. No special attempts were used to
determine optimal values for these parameters.

Figure 3 shows the closed-loop responses of F4

and P . The production rate achieves its set point
in about 10 hours. There is no violation of the
pressure constraint. The production rate can be

made to reach its the set point within 5 hours
without violation of any constraint, but the con-
troller action is more aggressive.

Figure 4 shows the the closed-loop responses of F4

and P when the system has unmeasured distur-
bances as it transitions. Here, unmeasured output
disturbances, with a signal noise ratio of 10:1,
are introduced into the system. A first order fil-
ter is used to filter out any noise. There are no
constraint violations, and although F4 does not
track closely the reference trajectory, the set point
change is achieved within 8 hours.

In practice, the composition measurement can not
always be obtained in a timely fashion. Assume
yA3 must be inferred from the other measures sig-
nals. Closed-loop performance based on estimates
of yA3 are shown in Figure 5. The transition is
achieved within 8 hours. There is no violation of
the pressure constraint (not shown).

5. SUMMARY

In this work, a method to construct a state-shared
model for MIMO systems is developed and its
properties analyzed. This approach can represent
the plant in such a fashion that all the unknown
parameters of the plant appear as the elements of
a single matrix in the measurement equation of
the state-shared model. A solution of the param-
eter vector is obtained when the transfer function
is known. Existence and uniqueness for the pa-
rameterization are proven. The parameter vector
can be adapted by least-squares, such that the
adaptive model can be obtained with the same
state-space representation.

A nonlinear chemical reactor system that tran-
sitions from one production rate to another was
used to demonstrate the concept of the state-
shared model in a model predictive control frame-
work. Satisfactory closed-loop performance was
achieved even in the face of unmeasured out-
put disturbances and when composition was es-
timated. Future work will be to apply the state-
shared model framework to a plant wide problem
such as the Tennessee Eastman challenge problem.
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Fig. 3. Transition: ideal conditions.
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Fig. 4. Transition: unmeasured output distur-
bances.
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Fig. 5. Transition: estimate composition in the
purge.


