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Abstract. The max-plus-linear (MPL) system is a state-space description for a cer-
tain class of discrete-event-systems, and it has remarkable analogous features to the
conventional linear state-space description in the modern control theory. Hence, sev-
eral control techniques in the modern control theory have been extended so that they
could be applied to MPL systems. In the research context, the internal model control
(IMC) for MPL systems has been proposed by Boimond et al. and it succeeds to real-
ize feedback control techniques for discrete-event-systems described in MPL systems.
In this paper, the IMC control for MPL systems is extended to the case where the
controlled systems are given as MPL systems with linear parameter varying structure,
which is called LPV-MPL systems. In the LPV-MPL systems, the systems parame-
ters are explicitly represented in the systems description. Hence, the obtained IMC
control law can utilize the additive information on the parameters variations effec-
tively when the parameters are measured on-line, or the variation of the parameters
are scheduled beforehand. The effectiveness of the proposed IMC is shown through a
numerical example where it is applied to a two-inputs, two-outpus production system
with four machines.
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1. INTRODUCTION

The researches on modeling and control of discrete-
event-systems using max-plus algebra have been
reported recently(Cohen et al., 1989; Baccelli
et al., 1992). The basic operations of max-plus
algebra are maximization and addition, which
have a remarkable analogy with ones of conven-
tional algebra. Especially, state-space descriptions
in the max-plus algebra for a certain class of
discrete-event-systems become linear representa-
tions which are similar to state-space equations
in the traditional modern control theory (van den
Boom and Schutter, 2001a). Hence, the several re-
searches on control design for the max-plus-linear

(MPL) systems have been reported from the view-
point of the analogy (Boimond and Ferrier, 1996;
van den Boom and Schutter, 2001a; van den Boom
and Schutter, 2001b).

The internal model control (IMC) for MPL sys-
tems has been proposed by (Boimond and Fer-
rier, 1996) in the research context. It succeeds to
realize feedback control techniques for discrete-
event-systems described in MPL systems. In the
IMC control, however, it takes much time to re-
cover from the output delays because the input
signals are modified just after the output errors
are observed. Hence, it would be desirable that the
information on the parameters variation would be



collected beforehand, and it could be utilized ef-
fectively.

On the other hand, the MPL systems with lin-
ear parameter varying structure, which is called
LPV-MPL systems was proposed, and the design
method for inverse systems of LPV-MPL systems
was developed (Masuda et al., 2002). In the LPV-
MPL systems, the systems parameters are explic-
itly represented. Hence, the obtained control law
can utilize the additive information on the param-
eters variations effectively when the parameters
are measured on-line, or the variation of the pa-
rameters are scheduled beforehand.

Therefore, in this paper, the IMC control is ex-
tended so that it can be applied to the LPV-
MPL systems. In the proposed control law, the
information on the parameters variations in addi-
tion to the feedback signals are effectively utilized
for recovery from the output delays due to large
parameters variation. Furthermore, owing to the
IMC control law, the proposed method has ro-
bust property even when the the information on
the parameters variations has some errors.

The effectiveness of the proposed IMC is shown
through a numerical example where it is applied to
a two-inputs, two-outpus production system with
four machines.

2. MATHEMATICAL PRELIMINARIES

The basic operations of max-plus algebra are ad-
dition denoted by ⊕ and mulitiplication denoted
by ⊗, which are defined as follows.

x ⊕ y = max(x, y), x ⊗ y = x+ y, x, y ∈ Rε

where Rε = R∪{−∞}, and R stands for the real
field. Let ε be defined as −∞, which is the unit
element of the addition ⊕, and let e be defined as
0, which is the unit element of the multiplication
⊗. We also define the following operations.

x ∧ y = min(x, y), x\y = −x + y (1)

The above operations are extended to the matrices
calculation whose elements belong to Rε. So, if
A, B ∈ Rm×n

ε , C ∈ Rn×p
ε , then

[A⊕B]ij = [A]ij ⊕ [B]ij = max
(
[A]ij , [B]ij

)
(2)

[A ∧B]ij = [A]ij ∧ [B]ij = min
(
[A]ij , [B]ij

)
(3)

1 ≤ i ≤ n, 1 ≤ j ≤ m

[A⊗C]ij =

n⊕
k=1

(
[A]ik ⊗ [C]kj

)
= max

k=1,···,n

(
[A]ik + [C]kj

)
(4)

where [ · ]ij stands for the element in the i-th row,
j-th column of the matrix, and

n⊕
k=1

ak = max(a1, a2, · · · , an)

. If d ∈ Rε, A ∈ Rm×n
ε , then

[d ⊗ A]ij = d⊗ [A]ij (5)

Furthermore, we define the operator � in the fol-
lowing way.

[A � C]ij =
n∧

k=1

(
[A]ik\[C ]kj

)

= min
k=1,···,n

(
−[A]ik + [C ]kj

)
(6)

where
n∧

k=1

ak = min(a1, a2, · · · , an)

. In the subsequent discussions, a ≤ b implies
[a]i ≤ [b]i 1 ≤ i ≤ n for a, b ∈ Rn

ε .

3. THE LPV-MPL SYSTEM

Consider the following MPL systems.

x(k + 1) =Ax(k)⊕ Bu(k + 1) (7)

y(k) =Cx(k) (8)

where A ∈ Rn×n
ε , B ∈ Rn×p

ε , C ∈ Rq×n
ε . And

x(k) ∈ Rn
ε , u(k + 1) ∈ Rε

p, y(k) ∈ Rq
ε are

state variables, control inputs and controlled out-
puts respectively. These variables represent time
instants at which the representing events occur at
k-times. According to the custom, the operation
of multiplication denoted by ⊗ is omitted.

In LPV-MPL systems(Masuda et al., 2002), the
system matrices A, B and C in (7) and (8) are
replaced by the parameter affine formA(d),B(d)
and C(d), which are defined as

A(d) = d0A0 ⊕ d1A1 ⊕ · · · ⊕ dlAl =
l⊕

i=0

diAi

B(d) = d0B0 ⊕ d1B1 ⊕ · · · ⊕ dlBl =
l⊕

i=0

diBi

C(d) = d0C0 ⊕ d1C1 ⊕ · · · ⊕ dlCl =
l⊕

i=0

diCi

where Ai, Bi and Ci,i = 1, · · · l are matrices
whose elements are either ε or e and the size are
the same asA,B andC, respectively, and d is the
parameter vector whose elements are d0, d1, · · · , dl

as is defined in the next.

d= [d0, d1, d2, · · · , dl],

d0 = e, di > 0, i = 1, · · · l
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Hence, the LPV-MPL system can be described as

x(k + 1) =A(d)x(k)⊕ B(d)u(k + 1) (9)

y(k) =C(d)x(k) (10)

In general, the elements of the matrices A, B and
C in the system representation consists of e and ε
and real numbers. The elements of e and ε depend
on the system structure such as the connection
among the machines in the case where the pro-
duction systems are modelled based on the MPL
system. While parameters e and ε are expected to
be unchanged even as time goes by, it should be
considered that the real parameters might be the
varying ones.

4. THE INTERNAL MODEL CONTROL
(IMC)

The internal model control (IMC), which is a pop-
ular control technique in the field of chemical in-
dustries. The block diagram is given in Figure 1..

Fig. 1. The Block Diagram of IMC

In Figure 1., P stands for the real process, and
PM stands for the process model. y and yM are the
controlled process outputs and the model outputs,
respectively. u and r are control input and refer-
ence signals, respectively. rM is modified reference
signals, which satisfy the following equation

rM = r − (y − yM ) (11)

Hence, if the control input is designed so that the
model outputs yM should be equal to the mod-
ified reference signals rM , the controlled process
outputs follow the given reference signals. There-
fore, by using the inverse systems of the model
PM for the controller C in the IMC, we can get
robust tracking of the process outputs to the ref-
erence signals even in the presence of model-plant
mismatch.

Addition to the IMC control, this paper consid-
ers utilizing additive information on the param-
eter variation of the controlled process, depected
in Figure 2.

In Figure 1., θ stands for the parameters of pro-
cess model. In the conventional IMC control, it

Fig. 2. The Block Diagram of the Proposed IMC

takes much time to recover from the output de-
lays because the input signals are modified just
after the output errors are observed. On the other
hand, in the proposed IMC, it can be expected
that we can get better performance because the
information on the parameters variation would be
utilized effectively.

However, the conventional controller requires re-
calculation of the inverse system of the MPL sys-
tem according as the parameters changes because
the relation between controller’s parameters and
the MPL system’s parameters is not represented
explicitly. Therefore, this paper utilizes the in-
verse system of LPV-MPL systems (Masuda et
al., 2002). Since the system’s parameters are ex-
plicitly represented in the LPV-MPL systems, the
additive information on the parameters variations
can be utilized effectively when the parameters are
measured on-line, or the variation of the parame-
ters are scheduled beforehand.

5. THE INVERSE SYSTEM FOR LPV-MPL

As is shown in 4., the controller of IMC systems
is designed for the model, so we will give the
model equation of LPV-MPL system besides the
real process model (9) and (10).

xM (k + 1) =AM (dM )xM(k) ⊕ BM (dM)u(k + 1)

(12)

yM (k) =CM(dM )xM (k) (13)

This section gives the inverse system for the
model equation of LPV-MPL system (Masuda et
al., 2002) in (12) and (13).

The first, let the predition equation be derived for
the preparation of the inverse system. By using (9)
and (10), we can get




yM 1(k + δ1 + 1)
...

yM q(k + δq + 1)




=ΓM (dM )xM (k)⊕∆M (dM)u(k + 1) (14)

where

3



ΓM (dM ) =




c1
M (dM)AM (dM )δ1+1

...
cq

M (dM)AM (dM )δq+1


 , (15)

∆M (dM ) =




c1
M (d)AM (dM )δ1BM (dM )
...
cq

M (dM)AM (dM )δq BM(dM )


 (16)

ch
M (dM), h = 1 · · ·q is the h-th row vector of

CM (dM ). δh are called the characteristic numbers
(Boimond and Ferrier, 1996), which imply that
δh-th outputs are firstly influenced after the k-th
input, and they are defined as:

ε= ch
M (dM )BM (dM ) = ch

M (dM )AM (dM )BM (dM )

= · · · = ch
M (dM )AM (dM)δh−1BM (dM ) (17)

ε 
= ch
M (dM )AM(dM )δhBM (dM), h = 1, · · ·q (18)

ε is the vector whose elements are ε. When the
desired reference signals are defined as

r(k) = [r1(k + δ1 + 1), · · · , rq(k + δq + 1)]T,

it is considered that the control law for the inverse
system should be satisfied with the following equa-
tion replaced the predicted output vector in (14)
with the desired reference signals.

r(k) = ΓM(dM )xM (k) ⊕∆M (dM )u(k + 1) (19)

(19) is considered to be a linear matrix equa-
tion in max-plus algebra. Hence, let the equation
be solved based on the linear equation theory in
dioid(Cohen et al., 1989). According to the theory,
after (19) is transformed into

∆M (dM )u(k + 1) = r(k)⊕ ΓM (dM )xM (k) (20)

the greatest subsolution of (20) is calculated. In
(Masuda et al., 2002), the following control law is
introuduced for the inverse systems of LPV-MPL
systems.

u(k + 1) =
I∧

i=1

{
∆T

i N i(dM )

�
(

r(k) ⊕
I⊕

i=1

(M i(dM )Γi)xM (k)

)}
(21)

Here,

ΓM (dM ) =
I⊕

i=1

(M i(dM )Γi) (22)

∆M (dM ) =
I⊕

i=1

(N i(dM )∆i) (23)

where I = (l+1)δ̄+2, δ̄ = maxh δh Γi and ∆i,i =
1, · · ·I are matrices whose elements are all ε and

e. The size of Γi and ∆i,i = 1, · · ·I are the same
as Γ and ∆, respectively. M i(d) and N i(d) are
diagonal matrices.

Therefore, the control law for the proposed IMC
can be obtained as

u(k + 1) =
I∧

i=1

{
∆T

i N i(dM )

�
(

rM (k)⊕
I⊕

i=1

(M i(dM )Γi)xM (k)

)}

(24)

rM (k) = r(k) − (y(k) − yM (k)) (25)

where rM (k) is the modified reference signals.

The main feature of the control law (24) is that
it explicitly includes the parameters of controlled
MPL systems as free parameters. Hence, when the
parameters are measured on-line, or the variation
of the parameters are scheduled beforehand, the
proposed control law can utilize the additive infor-
mation on the parameters variations effectively.

6. A SIMULATION EXAMPLE

Fig. 3. Two-Inputs and Two-Outputs Production
System

Consider a two-inputs, two-outpus production
system with four machines depicted in Figure 3..
The inputs ui(k + 1), i = 1, 2 are defined as
time instants at which the k + 1-th manufac-
tured parts are fed into the input stock in the
line i. The outputs yi(k), i = 1, 2 are time in-
stants at which k-th finished products leaves
the output stock in the line i. The state vari-
ables x1(k), x3(k), x4(k), x6(k) are time instants
at which k-th processing unit starts working in the
machine 1, 2, 3 and 4, respectively. The state vari-
ables x2(k) and x5(k) are time instants at which
k-th processing unit finished working in the ma-
chine 1 and 3, respectively. di, i = 1, · · · , 4 are the
working time in the machine 1, 2, 3 and 4, respec-
tively.

The working times for each machine are d1 = 0.7,
d2 = 0.4, d3 = 0.3, d4 = 0.6 for the first 15 parts,
but the working times are changed into d1 = 1.0,
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d2 = 0.9, d3 = 1.2, d4 = 1.2 after 16-th parts. It
is assumed that the information on the parame-
ter variations are given beforehand. Namely, the
model parameter dMi = di, i = 1, · · · , 4. How-
ever, after 16-th parts, the information on d3 has
error, so the model parameter dM3 is assumed to
be set to dM3 = 0.8.

The reference signal is given as follows

r1(i+ 1) = r1(i) + 1.6, r2(i+ 1) = r2(i) + 1.4

0 ≤ i ≤ 9
r1(i+ 1) = r1(i) + 1.5, r2(i+ 1) = r2(i) + 1.5

10 ≤ i ≤ 30
Then, the proposed control law is applied to the
production system. The following control law can
be derived as is designed in section 4.

u(k + 1) =
2∧

i=1

{
∆T

i N i(dM )

�
(

rM (k)⊕
4⊕

i=1

(M i(dM)Γi)xM(k)

)}

(26)

rM (k) = r(k) − (y(k) − yM (k)) (27)

where

N1(dM ) =
[

dM 1 + dM 2 ε
ε dM3 + dM4

]
,

N2(dM ) =
[

dM 2 + dM 3 ε
ε dM1 + dM4

]
,

M1(dM ) =
[

dM 1 + dM 2 ε
ε dM1 + dM4

]

M2(dM ) =
[
2dM 2 ε

ε ε

]

M3(dM ) =
[

dM 2 + dM 3 ε
ε dM3 + dM4

]

M4(dM ) =
[

ε ε
ε 2dM 4

]

∆1 =
[

e ε
ε e

]
, ∆2 =

[
ε e
e ε

]

Γ1 =
[

ε e ε ε ε ε
ε e ε ε ε ε

]
, Γ2 =

[
ε ε e ε ε ε
ε ε ε ε ε ε

]

Γ3 =
[

ε ε ε ε e ε
ε ε ε ε e ε

]
, Γ4 =

[
ε ε ε ε ε ε
ε ε ε ε ε e

]

The simulation results are shown in Figure 4..

In Figure 4., the output errors, which imply
e(k) = y(k) − r(k) with using both IMC control
law and the information on the parameter varia-
tion are shown.
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Fig. 4. Plots of the 1st output error (o) and the
2nd output error (x) with using both IMC
control law and the information on the pa-
rameter variations (above) and the plots of
the control input (below)

For the comparison, the output errors with only
using the information on the parameter variation
are shown in .
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Fig. 5. Plots of the 1st output error (o) and the
2nd output error (x) with only using IMC
control law (without using the information
on the parameter variations) (above) and the
plots of the control input (below)

From Figure 4., in the case with using both IMC
control law and the information on the parame-
ter variation, the output delays, which mean the
output errors are positive value, does not occur ex-
cept during 3 samples after 16-th sample at which
the working time is changed. From Figure 5. and
Figure 6., however, the output delays occur after
the 16-th sample due to the change of the working
time when either IMC control law or the informa-
tion on the parameter variation is not utilized.

Therefore, it follows from the simulation result
that the utilization of both IMC control law and
the information on the parameter variations im-
proves the performance of the control system.
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Fig. 6. Plots of the 1st output error (o) and the
2nd output error (x) with only using the in-
formation on the parameter variations (with-
out using both IMC control law) (above) and
the plots of the control input (below)

Therefore, we can see that the proposed control
law shows better performance than the conven-
tional IMC control law and the inverse systems
for LPV-MPL systems with using the information
on the parameter variations.

7. CONCLUDING REMARKS

This paper proposed the IMC control for MPL
systems in the case where the controlled systems
are given as MPL systems with linear parame-
ter varying structure, which is called LPV-MPL
systems. In the LPV-MPL systems, the systems
parameters are explicitly represented in the sys-
tems description. Hence, the obtained IMC con-
trol law can utilize the additive information on the
parameters variations effectively when the param-
eters are measured on-line, or the variation of the
parameters are scheduled beforehand.

Furthermore, owing to the IMC control law, the
proposed method has robust property even when
the the information on the parameters variations
has some errors.

The effectiveness of the proposed IMC is shown
through a numerical example where it is applied to
a two-inputs, two-outpus production system with
four machines.
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