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1. SCHEDULING QUASI-MINMAX MODEL
PREDICTIVE CONTROL

Scheduling quasi-minmax MPC is an MPC algo-
rithm developed by (Lu and Arkun, 2000) ini-
tially for linear parameter varying (LPV) system,
then developed for nonlinear systems in (Lu and



Arkun, 2002). In this algorithm, the system is
expressed as a combination of a dynamic linear
model with a linear parameter varying model.
The linear dynamic model is used to express the
current dynamic behavior of the nonlinear system,
and the linear parameter varying (LPV) model
is used to approximate the future nonlinear be-
havior. Linear parameter varying model has been
successfully used to approximate nonlinear system
(see (Johansen and Foss, 1993) and (Banerjee et

al., 1997)). First of all, the plant operating space is
partitioned into several local descriptions by linear
models that are valid at some regimes. Then a
”global” model is interpolated between the regions
by using a parameter vector as interpolating or
model validity function. A linear parameter vary-
ing model can be written in the following form:

x(k + i + 1|k) = A(ρ(k + i|k))x(k + i|k)

+B(ρ(k + i|k))u(k + i|k), i≥1

y(k + i|k) = Cx(k + i|k) (1)

where

A(ρ(k + i|k)) =

N
∑

j=1

ρj(k + i|k)Aj

B(ρ(k + i|k)) =

N
∑

j=1

ρj(k + i|k)Bj (2)

[Aj , Bj ] are local models that can be obtained
around different operating points. Here N is the
number of the local models included in the LPV
model, and ρj(k+i|k) is the scheduling parameter
reflecting the validity of the local linear models.
More details of linear parameter varying model
can be found in (Lu and Arkun, 2000).

In LPV model, the scheduling parameter ρj(k +
i|k) for i≥1 are generally unknown. However, the
current time parameter ρ(k|k) may be measured
or estimated (see (Banerjee et al., 1997)). Then
the current nonlinear dynamics can be expressed
explicitly by a current linear model.

x(k + 1|k) = A(ρ(k|k))x(k|k) + B(ρ(k|k))u(k|k)

y(k|k) = Cx(k|k) (3)

The current linear model can also be obtained
from linearization of the nonlinear model:

˙̃x = f(x̃, ũ)

ỹ = Cx̃ (4)

where x̃ is the state variable, ũ is the control
variable, and ỹ is the output variable. By using
Taylor series expansion around current point k,
we will have

˙̃x≈ f(x̃(k|k), ũ(k − 1|k − 1))

+
∂f

∂x
|x̃(k|k),ũ(k−1|k−1)(x̃ − x̃(k|k))

+
∂f

∂u
|x̃(k|k),ũ(k−1|k−1)(ũ − ũ(k − 1|k − 1))(5)

where x̃(k|k) is the measured current state vari-
able and ũ(k − 1|k − 1) is the control action
calculated from the previous point. The discrete
state space model can be written as

x(k + 1|k)≈A(k|k)x(k|k) + B(k|k)u(k|k) + θ(k|k)

y(k|k) = Cx(k|k) (6)

The detail derivation can be found in (Lu and
Arkun, 2002).

Scheduling quasi-minmax MPC minimize an in-
finite horizon objective function based on the
combination of linear model and linear parameter
varying model. The formulation of the algorithm
can be expressed as:

min
U∞

0

J∞
0 =

∞
∑

i=0

[x(k + i|k)T Qx(k + i|k)

+u(k + i|k)T Ru(k + i|k)]

= xT (k|k)Qx(k|k) + uT (k|k)Ru(k|k)

+

∞
∑

i=1

[x(k + i|k)T Qx(k + i|k)

+uT (k + i|k)Ru(k + i|k)]

= J1
0 (k) + J∞

1 (k) (7)

where Q and R are appropriate weights, and U∞
0

stands for all the control actions from the current
time to the infinity.

U∞
0 = {u(k + i|k), i = 0, 1, 2, · · ·} (8)

The optimization is solved subject to the following
constraints:

• Constraints on the control action that will
be implemented to the plant u(k|k) and the
resulting output y(k + 1|k)

umin(k)≤u(k|k)≤umax(k)

ymin(k + 1)≤y(k + 1|k)≤ymax(k + 1)(9)

• Upper bound constraint which makes the
predicted state variables varying within an
invariant ellipsoid, and the objective function
starting from the next step J∞

1 (k) is upper
bounded by the worst case value.

J∞
1 (k)≤xT (k + 1|k)P (k)x(k + 1|k) (10)

where P (k) is a positive definite matrix that
will be decided from optimization.



• Lyapunov stability constraint which forces
the objective function of quasi-min-max de-
crease monotonically:

Φ(k)≤Φ(k − 1) (11)

where

Φ(k) = J1
0 (k) + xT (k + 1)P (k)x(k + 1|k)

Lyapunov stability is guaranteed when the
algorithm is implemented in a receding hori-
zon fashion.

The optimization can be solved by semi-definite
program. Details of the LMI formulation and
derivations can be found in (Lu and Arkun, 2000)
and (Lu and Arkun, 2002).

2. PH NEUTRALIZATION REACTOR AND
EXPERIMENTAL SETUP

The real time application of scheduling quasi-
minmax is conducted at UC Davis by using
a bench-scale pH neutralization experiment. An
acid stream (HCL solution) and an alkaline
stream (NaOH and NaHCO3 solution) are fed
to a well-mixed tank. The pH value is measured
through a sensor located in the tank. The goal of
the controller is to drive the system to different pH
conditions. More details about the experimental
apparatus can be found in (Gálan et al., 2000).

The first principle model can be written:

ż1 =
1

θ
(z1ini. − z1) −

1

θ
z1u

ż2 =−
1

θ
z2 +

1

θ
(z2ini. − z2)u

ż3 =−
1

θ
z3 +

1

θ
(z3ini. − z3)u (12)

where

θ =
V

qA

u =
qB

qA

(13)

z1 is the concentration of HCL, z2 is the con-
centration of NaOH , z3 is the concentration of
NaHCO3. In the experiment, these concentra-
tions are not measured. V is the volume of the
reactor, and qA is the flow rate of the acid, and
qB is the flow rate of the flow of base. In the ex-
periment, the acid flow is constant with variations.
The control variable is the alkaline flow while the
Acid flow is considered a measured disturbance.
The values of the parameters are as follows:

z1ini. = 0.0012molHCL`−1

z2ini. = 0.002molNaOH`−1

z3ini. = 0.0025molNaHCO3`
−1

qA = 1`min−1

V = 2.500`

The pH value is obtained through the following
nonlinear relationships:

h(z, y) = ξ + z2 + z3 − z1 −
Kw

ξ
−

z3

1 + Kxξ
Kw

= 0 (14)

and

ξ = 10−y (15)

where y is the pH value, and

Kx = 10−7mol`−1

Kw = 10−14mol2`−2

From the first principle model, it is observed that
the pH value is in a strong nonlinear relationship
with the input (u = qB

qA
). The steady state curve

is shown in figure 1.
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Fig. 1. Steady state curve of pH value versus the
input u = qB

qA

The first step is to build up a state space model
based on the nonlinear model. If we apply the first
order Taylor expansion onto equation 12, we will
have

A =













−
1

θ
(1 + uss) 0

0 −
1

θ
(1 + uss) 0

0 0 −
1

θ
(1 + uss)













(16)

and

B =













−
1

θ
z1ss

1

θ
(z2ini. − z2ss)

1

θ
(z3ini. − z3ss)













(17)

Notice that A is a diagonal matrix with all the
elements in diagonal are the same. From the



knowledge of h(z, y) = 0, we can have a certain
function of η that

y = η(z) (18)

and the first-order Taylor expansion can be used
again to linearize the function η

y − yss =

[

∂η

∂z1

∂η

∂z2

∂η

∂z3

]





z1 − z1ss

z2 − z2ss

z3 − z3ss



(19)

where

∂η

∂zi

=
∂h
∂zi

ξln(10)∂h
∂ξ

i = 1, 2, 3 (20)

then we have

ẏ =
∂η

∂z1
ż1 +

∂η

∂z2
ż2 +

∂η

∂z3
ż3

=
∂η

∂z1
[(−

1

θ
(1 + uss)z1 −

1

θ
z1ssu]

+
∂η

∂z2
[(−

1

θ
(1 + uss)z2 +

1

θ
(z2i − z2ss)u]

+
∂η

∂z3
[(−

1

θ
(1 + uss)z3 +

1

θ
(z3i − z3ss)u]

=−
1

θ
(1 + uss)[

∂η

∂z1
z1 +

∂η

∂z2
z2 +

∂η

∂z3
z3]

+

3
∑

i=1

Bi

∂η

∂zi

u

=−
1

θ
(1 + uss)y +

3
∑

i=1

Bi

∂η

∂zi

u

= apy + bpu (21)

where

ap = −
1

θ
(1 + uss) bp =

3
∑

i=1

Bi

∂η

∂zi

Equation (21) is a state space model, and the state
variable is the pH value itself. In summary, the
state space model can be written

ẋ = apx + bpu

y = x (22)

The state space model is time varying and de-
pends on the operating conditions. ap is the func-
tion of uss, and Bis in bp depends on z1ss, z2ss, z3ss

and z2i, z3i. These terms do not need to be up-
dated on line. The term that needs to be updated
is ∂η

∂zi
which is a function of concentrations z.

However, these variables are not measured from
the plant, more information needs to be obtained
from the first principle model.

In order to have the current linear model updated
in real time, the calculated control actions u is
submitted to the first principle nonlinear model
when it is sent to the plant. From the plant
measurement, we can get the actual pH value
which is yplant and then calculate the value of
ξplant based on equation (15). When the same
control action is submitted into the first principle
model (12), and calculate the state variables,
zmodel. These state variables are updated based
on the value of ξplant by using equation (14)
to cover any mismatches between the plant and
model and any measurement noises. Since we have
to calculate three variables from one equation,
it is assumed that two of the state variables
such as z2, z3 take the values from the model
(z2model, z3model), and only update one state value
such as z1update. Then the compensated state
variable would become

zupdate = {z1update, z2model, z3model} (23)

This updating strategy is also used to get local lin-
ear models around different operating conditions
and formulate the LPV model. The strategy is
shown in the following diagram.

controller

nonlinear model

plant

-

-

- Updated linear model
?

�
�

u y

[ap(k), bp(k), θ(k)]

3. EXPERIMENTAL RESULT ANALYSIS

In the experiments, three pH values are selected,
Ph = 5, Ph = 7, and Ph = 9. Local models are
obtained around these three points by using the
strategy discussed in section 2. From the locations
of these three points in figure 1, it is noticed that
these three conditions have very different dynamic
behaviors. The goal of the control is to track the
pH value changing which is shown in figures 2 and
3. The experiments may start at any initial pH
values while the setpoint is pH = 7. Then the
setpoint changes from pH = 7 to pH = 9, from
pH = 9 back to pH = 7, from pH = 7 to pH = 5,
and finally from pH = 5 to pH = 9. In addition
to the scheduling quasi-min-max MPC, another
two scheduling control algorithms are also tested.



These two controllers are scheduling IMC-PID
controller and multi-linear model based (schedul-
ing) MPC controller.

The algorithm of scheduling IMC-PID controller
can be written as

u = uss + K1(y − yss) + K2

∫

(y(ξ) − yss)dξ(24)

where

K1 =

L
∑

j=1

φjK1,j K2 =

L
∑

j=1

φjK2,j (25)

and K1,j , K2,j are obtained from the formulations
of IMC (Morari and Zafiriou, 1989). Around the
chosen three setpoints, state space model (22) can
be easily converted into the first order model

y(s) =
k

τs + 1
u(s) (26)

where k = −
bp

ap
and τ = − 1

ap
. Based on the tuning

rules of IMC, the gain and integral parameter can
be obtained

K1j =
τ

λk
K2j =

1

λk
(27)

where λ is the tuning parameter which stands
for the closed-loop dynamics. At high-sensitivity
regions, PH = 5, and Ph = 9, the best tuned
values of λ are 100 seconds, and at low-sensitivity
region, Ph = 7, the optimized value is found to be
10 seconds. φj is the normalized gaussian function
(see (Brown et al., 1997)) and can be calculated
from

φj =
exp[ − (

xj(k|k)−xmeasurement(k)
2σj

)2]
∑L

i=1 exp[ − (xi(k|k)−xmeasurement(k)
2σi

)2]

j = 1, 2, · · · , L (28)

σj are the covariance of the measured signals, and
they were 0.25 in the controller tuning. The multi-
linear model based MPC algorithm is modified
from the algorithm in (Kwon and Pearson, 1978).
It was based on one single linear model, and now
it is designed based on multi-linear model. The
formulation is as follows:

min
u(k+i|k)|N

i=1

J(k) =

N
∑

i=1

[x(k + i|k)T Qx(k + i|k)

+u(k + i|k)T Ru(k + i|k)](29)

subject to

umin(k)≤u(k + i|k)≤umax(k)

i = 1, 2, · · · , N (30)

and the terminal constraint

x(k + N |k) = 0 (31)

and

x(k + i + 1|k) =
L

∑

j=1

φj(k)[Ajx(k + i|k)

+Bju(k + i|k)], i = 1, 2, · · · , N (32)

where the normalized weights are also from equa-
tion (28). In the experimental test, the control
and prediction horizon was N = 10 which is
long enough for the system dynamics. The state
variable and input variable weights are the same
with the weights used in scheduling quasi-minmax
MPC algorithm.

Comparison of scheduling quasi-minmax MPC
versus scheduling IMC-PID is shown in figure 2.
The upper plot shows the setpoint tracking of the
pH value, and the lower plot shows the calculated
input variable which is the alkaline flow rate.
From the plots, it is clear to see that scheduling
quasi-minmax MPC has a much better control
performance – the pH value reaches the setpoint
in shorter time while the calculated control action
is larger and quicker. The response of scheduling
IMC-PID controller is slow, and more than that,
even though integral action is included in the
IMC-PID controller design, it fails to reach the
targeted pH values especially at pH = 5 and pH =
9 where the pH value is highly sensitive to the
input variable. Because of its intrinsic limitation,
the scheduling IMC-PID controller fails at these
high-sensitivity regions when the measurement is
noisy.

Comparison of scheduling quasi-minmax MPC
versus multi-linear model based MPC is shown in
figure 3. Faster response and better tracking of the
setpoint can be observed also for scheduling quasi-
minmax MPC. In multi-linear model based MPC
algorithm, even though multiple linear models are
considered and a model is obtained by interpolat-
ing among those models, this one model is used
to predict all the next N steps. The prediction
based on this linear time invariant model cannot
cover the future system dynamic changes even
with a very long prediction horizon. However,
in scheduling quasi-minmax MPC algorithm, the
model contains two parts, the current linear model
to express the current behavior, while the linear
parameter varying model covers the possible fu-
ture nonlinear behaviors. Because of the better
prediction and accurate expression of the current
behavior, the scheduling quasi-minmax MPC can
generate a quicker and larger movement. This can
be seen clearly when the pH changes from 7 to
5, the input variable of scheduling quasi-minmax
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Fig. 2. Comparison between scheduling IMC-
PID controller and scheduling quasi-minmax
MPC controller

MPC reaches the lower limit while the action of
multi-linear model based MPC never reaches the
limit.
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Fig. 3. Comparison between scheduling MPC con-
troller and scheduling quasi-minmax MPC
controller

4. CONCLUSION

In this paper, real-time application of scheduling
quasi-minmax MPC algorithm on a bench-scale
pH neutralization reactor is discussed. State space
model on the pH neutralization reaction is built
based on the first principle nonlinear model, and
an updated strategy of the state space model is
developed based on the plant measurement and

model calculations. Two other control algorithms
are also tested for comparison, one is schedul-
ing IMC-PID controller in which parameters are
obtained from IMC design, and the other one
is multi-linear model based MPC with terminal
constraint. From the experimental results analy-
sis, scheduling quasi-minmax MPC has a better
control performance due to its unique model han-
dling approach: a current linear model which is
updated on-line to capture the current dynamics
while a linear parameter varying model to cover
the possible future nonlinear behaviors. By having
this model structure, the current step prediction
can be made precisely while the future predictions
belong to a range. Therefore a quasi-worst-case of
infinite horizon objective function can be mini-
mized in the algorithm.
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