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Abstract:. In this paper, an approach for process monitoring using a multivariate statistical 
technique, namely kernel principal component analysis is studied. Kernel principal 
analysis has recently been proposed as a new method for performing a nonlinear form of 
principal component analysis (PCA). The basic idea of kernel PCA is to first map the 
input space into a feature space via a nonlinear map and then compute the principal 
components in that feature space. For the process monitoring application, reconstructed 
input patterns can be obtained by approximating the pre-image of scores in feature space. 
An application study of an electro-pneumatic valve actuator in a sugar factory is 
described. The results show that the kernel PCA approach can detect several actuator 
faults earlier than linear PCA This study indicates the great potential of Kernel PCA for 
process monitoring. Copyright © 2002 IFAC
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1. INTRODUCTION

In recent process industry, on-line monitoring of 
process performance is extremely important for plant 
safety, production efficiency and product quality. As 
industrial systems becoming more heavily 
instrumented, resulting in larger quantities of data 
available for use in process monitoring, and modern 
computers are becoming more powerful, empirical 
modelling approaches that are basically data-driven 
multivariate statistical methods have attracted much 
interest by process engineers. These approaches are 
based on the theory of statistical process control 
(SPC), under which the behaviour of a process is 
modelled using data obtained when the process is 
operating well and in a state of control. Future 
unusual events are detected by referencing the 
measured process behaviour against this model.

Principal component analysis (PCA) is the most 
widely used data-driven technique for process 
monitoring which has been heavily studied and 
applied to industrial systems over the past decade. 
PCA is an optimal dimensionality reduction 
technique in terms of capturing the variance of the 
data, and it accounts for correlations among variables. 

The lower-dimensional representations of the data 
produced by PCA can improve the proficiency of 
detecting and diagnosing faults using multivariate 
statistics. The principal components span a low 
dimensional subspace used for analysis. The details 
of linear PCA can be found elsewhere (Jolliffe, 1986).

However, PCA is a linear technique, which ignores 
the nonlinearities in the process data. Industrial 
processes are inherently nonlinear; therefore, it may 
be necessary to use nonlinear methods. Kramer 
(1991) has generalized PCA to the nonlinear case by 
using autoassociative neural networks. Dong and 
McAvoy (1996) have developed a nonlinear PCA 
approach based on principal curves and neural 
networks that produce independent principal 
components (Song, 2001).

Recently, the conceptual idea of generalizing an 
existing linear technique to a nonlinear version by 
applying the kernel trick has become an area of 
active research. One important result in this direction 
is the extension of linear PCA to kernel PCA, as 
shown by Schölkopf, et al. (1998). In Kernel PCA
they were not interested in principal components in 
input space, but rather in principal components of 



variables, or features, which are nonlinearly related 
to the input variables. Among these are for instance 
variables obtained by taking higher-order 
correlations between input variables. To this end, the 
method of expressing dot products in feature space in 
terms of kernel functions in input space is used. 
Given any algorithm which can be expressed solely 
in terms of dot products, i.e. without explicit usage of 
the variables themselves, this kernel method enables 
to construct different nonlinear versions of it (Vapnik, 
1995).

The present work studies a nonlinear version of PCA 
using kernel technique and an application for process 
monitoring of an electro-pneumatic valve actuator. 
We first introduce the concept of Kernel PCA and 
reconstruction. And then Kernel PCA based process 
monitoring has been illustrated on the electro-
pneumatic valve actuator benchmark system and its 
simulation results are discussed.

2. KERNEL PRINCIPAL COMPONENT 
ANALYSIS

1.1 Principal Component Analysis in Feature 
Spaces
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To do this, one has to solve the Eigenvalue equation
C� �v v (2)
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Next, let us consider this computation in another 
feature space F , which is related to the input space 
by a possibly nonlinear map
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Note that F , the feature space could have an 
arbitrarily large, possibly infinite, dimensionality. 
Here and in the following upper case characters are 
used for elements of F , while lower case characters 
denote elements of NR . It is assumed that we are 

dealing with centered data, i.e.
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perform PCA in feature space, we need to find 
Eigenvalue 0� � and Eigenvectors \{0}�V F with  
the covariance matrix in F ,
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Substituting  C  into the Eigenvector equation, we 
note that all solutions V  must lie in the span of � -
images of the training data. This implies that we can 
consider the equivalent system

( ( ) ) ( ( ) )k k C� � � � � �x V x V  for all 1, ,k M� � (6) 

and that there exist coefficients 
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Combining (7) and (8), we get
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for all 1, ,k M� �

Defining an M M�  matrix K  by
: ( ( ) ( ))ij i jK � � ��x x , (9) 

this leads to
2M K K� � �� (10) 

where � denotes the column vector with entries
1, M� �� . As K is symmetric, it has a set of 

Eigenvectors which spans the whole space, thus
M K�� �� (11) 

gives us all solutions � of Eq. (10). Note that K  is 
positive semi definite, which can be seen by noticing 
that it equals
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Consequently, K’s Eigenvalues will be nonnegative, 
and will exactly give the solutions M�  of Eq. (10). 
We therefore only need to diagonalizes K. Let 

1 2 M� � �� � ��  denote the Eigenvalues, and 
1, , M

� ��  the corresponding complete set of 
Eigenvectors, with p�  being the first nonzero 

Eigenvalue. We normalize , ,p N
� ��  by requiring

that the corresponding vectors in F be normalized, i.e.
( ) 1k k
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By virtue of (7) and (11), this translates into a 
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For the purpose of principal component extraction, 
we need to compute projections on the Eigenvectors 

kV  in F ( , ,k p M� � ). Let x be a test point with 
an image ( )� x  in F, then



1
( ( )) ( ( ) ( ))

M
k k

i i
i

�

�

�� � � ��

�

V x x x (16) 

may be called its nonlinear principal components 
corresponding to � .

1.2 The Algorithm of Kernel PCA

To perform kernel PCA, the following steps have to 
be carried out: first, we compute the dot product 
matrix.

( ( , ))ij i j ijK k� x x (17) 
Next, solve (11) by diagonalizing K, and normalize 
the Eigenvector expansion coefficients k

�  by 
requiring Eq. (15),
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k� � �� � (18) 

To extract the principal components (corresponding 
to the kernel k) of a test point x, we then compute 
projections onto the Eigenvectors by
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3. RECONSTRUCTION ORIGINAL PATTERNS
BY APPROXIMATE PREIMAGE

When Kernel PCA can be considered as a natural 
generalization of linear PCA, this can be used for 
data compression, reconstruction, and de-nosing 
applications common in linear PCA. However this is 
a nontrivial task, as the results provided by kernel 
PCA live in some high dimensional feature space and 
need not have pre-images in input space. Schölkopf,
et al. (1999) presented some ideas for finding 
approximate pre-images.

Being just a basis transformation, standard PCA 
allows the reconstruction of the original patterns 
from a complete set of extracted principal 
components by expansion in the Eigenvector basis.
In Kernel PCA, this is no longer possible, the reason 
being that it may happen that a vector V in F does 
not have a pre-image in NR . We can, however, find 
a vector z in NR  which maps to a vector that 
optimally approximates V.

To reconstruct the � -image of a vector x from its 
projections onto the first n principal components in F
(assuming that the Eigenvectors are ordered by 
decreasing Eigenvalues size), we define a projection 
operator nP  by
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If n is large enough to take into account all directions 
belongs to Eigenvectors with non-zero Eigenvalue, 
we have ( ) ( )n i iP � � �x x . Otherwise Kernel PCA 
still satisfies that the overall squared reconstruction 

error 2( ) ( )n i ii P � ��

�

x x  is minimal and the 
retained variance is maximal among all projections
onto orthogonal directions in F. In common 
applications, however, we are interested in a 

reconstruction in input space rather than in F. To 
achieve this we compute a vector z by minimizing 
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The hope is that for the kernel used, such a z will be 
a good approximation of x in input space.
In (21), replacing terms independent of z by Ω, we 
obtain

� � � �
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Substituting (20) and (7) into (21), we arrive at an 
expression which is written in terms of dot products. 
Consequently, we can introduce a kernel to obtain a 
formula for ρ which does not rely on carrying out Φ
explicitly.
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4. CASE STUDY: ELECTRO-PNEUMATIC 
VALVE ACTUATOR BENCHMARK PROBLEM

To verify and illustrate the usefulness of Kernel PCA 
for process monitoring, data generated from the 
control valve actuator benchmark system were used.

The actuator benchmark problem was built by 
Development and Application of Methods for 
Actuator Diagnosis in industrial Control Systems 
(DAMADICS) research training network for 
comparing the properties of fault detection and 
isolation methods based on the real sugar factory 
(DAMADICS RNT Information Website). The 
benchmark actuator selected is a final control 
element or simply named actuator, which interacts 
with the controlled process. The input of actuator is 
the output of the process controller (flow or level 
controller) and the actuator modifies the position of 
the valve allowing a direct effect on the primary 
variable in order to follow the flow or level set point.

Figure I shows the actuator scheme. The actuator 
consists in three main components: control valve, 
spring-and-diaphragm pneumatic servo-motor and 
positioner. Control valve is the mean used to prevent 
and/or limit the flow of fluids. Changing the state of 
the control valve is accomplished by a servomotor. A 
spring-and diaphragm pneumatic servomotor can be 
defined as a compressible (air) fluid powered device 

Figure. I. The actuator scheme



in which the fluid acts upon the flexible diaphragm, 
to provide linear motion of the servomotor system. 
Positioner is a device applied to eliminate the 
control-valve-stem miss-positions produced by the 
external or internal sources such as friction, pressure 
unbalance, hydrodynamic forces etc. It consists in a 
inner loop with a P controller of a cascade control 
structure, including the output signal of the outer 
loop of the flow or level controller and the inner loop 
of the position controller. More details are in 
DAMADICS RNT Information Website.

The basic measured physical values are composed of 
six variables: external controller output (CV), flow 
sensor measurement (F), valve input pressure (P1), 
valve output pressure (P2), liquid temperature (T1) 
and rod displacement (X). The Simulink library
constructed by a non-linear mathematical model of 
the valve was used to generate faulty or fault-free 
data to evaluate Kernel PCA based process 
monitoring. All the measurement signals are 
normalized in the range of <0, 1> referring to the real 
measurement spans.

The training data for Kernel PCA model of the valve 
actuator system are generated without any fault for 
2400 seconds. Total 2100 data except set-up zone 
data for initial 300s are used for building a process 
monitoring model.

Four kind of fault scenarios are considered for 
actuator monitoring in this study.

- Scenario I: Control valve faults (Valve clogging/ 
small abrupt fault)
- Scenario II: Control valve faults (Increased of valve 
or bushing friction/ incipient fault)
- Scenario III: Pneumatic servo-motor faults (Servo-
motor’s spring fault/ big abrupt fault)
- Scenario IV: Positioner fault (Rod displacement 
sensor fault/ incipient fault)

All faults are introduced at 900s of simulation time. 
The initial set-up zone (300s) is not also considered 
to avoid taking into account false detections which 
can occur at the beginning. Therefore, the fault 
situations are introduced at 600s in effect.

5. RESULTS

Two models of linear PCA and Kernel PCA are 
compared for verifying the potential of Kernel PCA 
technique. For this comparison, we define some 
performance indexes.

- Detection time (Tdt): time of detecting fault in three 
successions.
-True detection rate (Rtd):

100d
the number of fault detectionR

faulty situation period
� �

We adopted the detection time for three successive 
detections in order to avoid taking into account false 
detection moments. One can consider false detection
rate as one of performance indexes. In this study, we 
use 99% control limits and then false detection rate is
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Figure. II. The eigenvalues plot

(a) Linear PCA
(b) Kernel PCA (σ2=0.1)
(c) Kernel PCA (σ2=0.2)
(d) Kernel PCA (σ2=0.4)

very small (almost zero). Thus, this index is excluded 
for the comparison.

The number of principal components (PCs) to retain 
in the model should be determined for both of PCA 
and Kernel PCA before training. In the case of 
Kernel PCA, we should determine the Kernel type 
and corresponding parameters (e.g. bandwidth in the 
case of RBF Kernels). We used RBF Kernels in this 
work. Some research shows that RBF Kernels 
consistently yield good performance through an 
empirical assessment of Kernel type performance 
(Baesens, et. al., 2000). 

In general, the choice of the number of PCs in 
standard PCA is made by cross validation, a few 
rules of thumb and the user’s knowledge of the data. 
4 PCs (98.59 % variance captured) are selected from 
Figure. II. (a) in this work. It is generally useful to 
plot the eigenvalues. When looking at the plot of 
eigenvalues, one looks for a sudden jump in the 
values from the small ones. In the Kernel PCA, the 
problem how many principal components are used 
depends on the Kernel parameters determined (σ2). 
Figure. II. (b)-(d) shows that the lager parameter one 
use, the smaller PCs one should choose. We can 
understand this relation intuitively from the fact that 
RBF Kernels with larger bandwidth can capture more 
complex features. By cross validation, we determined 
the RBF Kernels with σ2=0.1 and 4 PCs (about 92% 
variance captured) to retain in the Kernel PCA model.

When using PCA, one uses primarily Q and T2 for 
detecting system faults. Q statistic is a measure of the 
variation in the data outside the PCA model. T2 

statistic, on the other hand, is a measure of the 
distance from the multivariate mean to the projection 
of the operating point onto the hyper plane defined 
by the PCs, that is, a measure of the variation within 
the PCA model. In practice, violations of the Q and 
T2 limits generally occur for different reasons. 
Assuming a normal value of Q, a T2 fault indicates 
that the process has gone outside the usual range of 
operation but in a direction of variation common to 



Table. 1 The comparison of performance indexes

Detection Time 
(s)

True Detection 
Rate (%)Scenarios Linear 

PCA
Kernel 
PCA

Linear 
PCA

Kernel 
PCA

I 617 611 62.73 51.60
II 2960 2959 19.60 13.79
III - - 3.40 0.13
IV 761 692 79.95 76.60

the process. A Q fault indicates that the process has 
gone in an entirely new direction-something entirely 
new has happened. Most process faults show up in Q. 
Very few faults are detected by T2 alone (Wise, B.M., 
et al., 1999). In this work we use only Q statistics 
and 99% control limit for monitoring measure 
because T2 statistics are under control limit about all 
fault scenarios.

Next Figures and Table 1 summarize the simulation 
results. They show that Kernel PCA outperforms 
linear PCA about all fault scenarios. In the case of
scenario III, servo-motor’s spring fault doesn’t affect 
measured variables much and both of two models 
can not detect this fault well. We can not obtain the 
performance index of detection time in this fault 
scenario. However, the true detection rate of Kernel 
PCA model is much larger than one of linear PCA in 
scenario III.

Figure. III. The PCA monitoring result of scenario I
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Figure. IV. The Kernel PCA monitoring result of 
scenario I

Figure. V. The PCA monitoring result of scenario IV
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Figure. VI. The Kernel PCA monitoring result of 
scenario IV

4 PCs of linear PCA can captures almost 99% of 
variance. Thus One can assert that this actuator 
system can be modelled using linear PCA 
sufficiently and nonlinear technique such as Kernel 
PCA does not have great advantage against linear 
PCA. However Figure. VII shows the small 
nonlinearity in the training data. This nonlinearity 
makes the performance differences between Kernel 
PCA and linear PCA. If we apply Kernel PCA to 
more complex and nonlinear systems (e.g. some 
polymerization processes or biochemical processes), 
the monitoring performance will be much better.
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Figure. VII. The nonlinearity of normal training data

6. CONCLUSION

Kernel PCA can be considered as a nonlinear version 
of PCA and extract more information in nonlinear 
systems. However, Kernel PCA dose not provide the
exact reconstructed input patterns due to implicit 

mapping procedure to high dimensional feature space 
and have some restriction on applying to process 
monitoring.

In this work, we reconstruct input patterns by 
approximating pre-images and apply to valve 
actuator fault monitoring. The simulation result 
shows that Kernel PCA based monitoring can detect 
several actuator faults better and earlier than 
conventional PCA based one. As real world 
industrial processes are not linear clearly, the process
monitoring approach using Kernel PCA has great 
potential to fault diagnosis of the industrial processes.
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