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Abstract: This paper provides a design method for two-degrees-of-freedom PID
controllers including switched PD compensator based on bilinear matrix inequal-
ities (BMIs). Two design specifications based on Hs norm are formulated in
BMIs, and PID parameters can be exactly obtained by solving the BMI problems
via branch and bound algorithms. A set of PD compensators can be obtained
simultaneously using proposing design method. The most effective parameter is
selected out of the set of PD compensator based on the switching criterion which
obtained from estimated system conditions using recursive least square algorithms.

Numerical example is also shown.
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1. INTRODUCTION

PID controllers play a critical role in 80-90 per-
cent of chemical process systems [1]. They are
widely used because of their simple structures
which consist of only three parameters, that is,
proportional parameter, integral parameter, and
derivative parameter. It is, however, difficult to
tune those parameters practically since the pro-
cess dynamics often change due to changes in
operating conditions or various disturbances. We
have to design controllers such that they have
both robustness for changes in conditions of the
systems and good tracking properties. PID con-
trollers with one-degree-of-freedom can not have

robustness and good tracking properties since
they are contrary properties. In order to design
the controller with robustness and good tracking
properties, this paper deals with two-degrees-of-
freedom PID control systems, which have a PID
control system and a PD compensator.

The design of many conventional control systems
has resulted in an optimization problem, which
can be solved by numerical computation based
on powerful computer support. One of the most
useful tools is bilinear matrix inequality (BMI),
which is a flexible framework for analysis and
synthesis of control systems. Although checking
the solvability of BMI problems is NP hard [2], it



is not hard to obtain an exact solution of a BMI
problem via branch and bound algorithms if it has
a few parameters. Fortunately, a design problem
of PID controller has only three parameters, so
that we can design PID controller based on BMI.

This paper formulates the design problem of PID
controllers with two-degrees-of-freedom as a BMI
problem. The aim of the control design is to
make the control system has both robustness and
good tracking properties. In order to reduce the
conservativeness of the control system, this paper
deal with PD compensator which has switching
structure. This switching structure is constructed
from a system estimator using recursive least
squares algorithms, the switching criterion based
on stationary gain of the estimated system and a
set of pre-specified PD parameters corresponding
to the switching criterion.

This paper is organized as follows. The system
description, problem formulations and the design
method of PID controller with two-degrees-of-
freedom based on BMI are given in Section 2.
In Section 3, for more effective PD compensator,
a switching structure based on adaptive control
method is constructed. Section 4 provides branch
and bound algorithms in order to obtain an ex-
act solution of BMI problems. Finally, numerical
simulation examples are presented in Section 5.

2. CONTROLLER DESIGN BESED ON BMI
2.1 System description

Consider a system described by the following
continuous-time model:

K, —Ls
G(s) = 1+OTse L (1)

where K expresses the system gain, T is the time-
constant and L refers to the delay. By using the
first order Padé approximation of the delay, the
system is approximated as

K 1-%
1+Ts 1+4

1%

G(s)

(2)

Here, utilizing multiples of the sampling time
period T in the equation (2), the continuous-time
model is transformed to the following discrete-
time model:

A0 == B ult) + 160 ()
where

Az =14 a2 + agz? (4)
B(z™Y) = by + b1zt

Fig. 1. Closed-loop system with two-degrees-of-
freedom.

and u(t), y(t) and £(t) denote the control input
signal, the corresponding output signal and the
stochastic noise, respectively. The operator z ™!
denotes a backward shift, that is, z7ly(t) =
y(t — 1), and A denotes the differencing operator
defined as 1 — z~1. This paper deals with the
descrete-time model (3) as the control object
instead of the continuous-model (1).

Next, consider the control system represented by
the PID controller with two-degrees-of-freedom in
Fig.1, where r(t) and e(t) refer to the reference
signal and the control error, respectively. H(z~1)
and R(z~!) denote a low pass filter, and where
C1(z71) and Cy(27 1) denote the PID controller
and the PD compensator, respectively. And they
are given by

k;
01(2_1) =k.+ Z + Aky (5)

Co(zY) = —ko — Akg (6)

The two-degrees-of-freedom PID controller in (5)
and (6) includes five parameters: propotional
gains k. and k,, integral gain k; and derivative
gains k4 and kg. The one-degree-of-freedom PID
controller C (27 1) is required to satisfy the design
specification for the system perturbation and the
stochastic noise by using fixed PID parameters
which are obtained from the BMI solution dis-
cussed in Section 4. And the PD compensator
Cs(271) which has a set of pre-specified PD pa-
rameters corresponding to the divided small per-
turbations, is required to satisfy the good tracking
property by using switching structure based on
the estimator discussed in Section 3.

2.2 Problem fomulation

This paper deals with the 5 norms which rep-
resent the integral squared errors (ISE) of the
control system. They can evaluate the two design
specifications which require the robustness for the
control system and the tracking property for the
reference signal. Moreover these evaluation mea-
sures result in the optimization problem which is
represented by matrix inequalities.



First, we consider the error transfer function of
the control system in Fig.1. In order to evaluate
the tracking property for the step reference signal,
E.(z71) is defined as the transfer function from
r(t) to e(t). Since a step input is given by r(z71) =
1/(1 — z71) and &(271) = 0, E.(27!) can be
expressed as

1y _AGETH =27 Bz (27
B = mae e naae )

Similarly, in order to evaluate the influence of the
stochastic noise £(t), Eq(z7 1) is defined as the
transfer function from &£(t) to e(t). We assume
that £(z71) is a white noise which is represented
by é(271) =1 and r(27!) = 0, then E4(z7!) can
be expressed as follows.

- AA(z7Y) + 27 1B(2z7 1) AC (7)) (®)

Ed(z_l)

The ISE is described as
1 [ .
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where F = E,. or E; and 7 is positive constant.
Because the Ho-norm of E(z71) is defined as

1
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the performance measure based on ISE results in
the following two inequalities.

| Erll2 </ (12)
| Eall2 <+v7a (13)

The purpose of this paper is to minimize 7, in
(12) for a given ,/74.

In this paper, the error systems (7) and (8)
are realized in the controllable canonical form as
following equations.

=
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Cer(zl - Aer)_lBer + De, (14)
Ed(Z_l) = Ced(zl - Aed)_lBed 4 Deq (15)

where A;, B;, C; and D; (i = er or ed) are given
by the following matrices.

Ai = Ao+ kcAer +kiAco + kgAes

B;=[0 0 0 1)

Oer = Cero + kccerl + kioer2 + kdoer3
+kacer4 + kﬁcert') (16)

Ced = CedO + chedl + kiced2 + kdced3

D, =1

Deg=-1

where A; = Aer = Aeq, Bi = Ber = Beg and
where Aqg thru A.3, Cerg thru C.,.5 and C.49 thru
C.q3 are given by constant matrices.

According to papers [3], the ISE criterions which
are represented by Hs norm in (12) and (13) equal
to following matrix inequality,

beo (P71, k1) 0 0
o= 0 Pea(P™1 k1,74) 0
0 0 ¢er(P_17k2777‘)
=0 (17)

where '® > 0’ denotes that & is positive definite

matrix, and where

Pt plB,, P A,

beo(P~1 k1) = | BL,Pp~T 1 0
AT p~T 0 p!
(18)
and
Ya Ded Ced
$ea(P ki, va) = | Dy 10 (19)
ct, o P!
and
Yr Der Cer
¢er(P~ ko) = | DS 1 0 (20)
cr o p!

and where ky = [k, ki, kq] and ko := [k, ks, kg,
kq, kg] are the parameter vectors of the controller
and P is a 4 x 4 positive symmetric matrix.

Since the continuous system (1) is perturbed, the
four parameters ap, as, by and by in realized sys-
tems have perturbations. In order to treat these
perturbations of the control system, we assume
here that 4 parameters belong to a perturbation
set ), and the problem is formulated as



Minimize -, (21)

subject to g < A4 (21 —a)
k, € QD (21 —b)

a

az
® >~ 0 for all bo €N (21 —c¢)

b1

where 74 is a constant given in advance, Qp is a
given hyper-rectangle in R3, and Q denotes the
set of perturbations as following equation.

ai Q1min S ai S A1max
Q= az c R4 . 2min < 02 < A2maz
bO bOmin S bO S bOmax
bl blmin S bl S blmaw

(22)
Because any [a1, as, bg, bi]T in the set Q can
be described by linear combinations of 2% vertex
vectors, the matrix inequalitiy (21-c) can be de-
scribed by 24 BMIs. Although it is hard to solve
BMI problems, which are NP hard in general, we
can obtain the exact solution of BMI problem (21)
via branch and bound algorithms discussing in
Section 4 because it has only five parameters.

3. SWITCHING STRUCTURE BASED ON
ADAPTIVE CONTROL METHOD

In order to reduce the conservativeness of the
proposed controller, the switching structure for
PD compensator is designed based on the adap-
tive control method in this section. This switch-
ing structure includes a system estimator, the
switching criterion and a set of pre-specified PD
parameters.

First, we construct the estimator in Figl base on
recursive least square algorithms. To remove the
influence of the stochastic noise £(¢) from system
output y(t), consider the low pass filter H(z71)
which can effectively remove the high frequency
noise. H(z71) is given by:

u(t) = H(z"")y(t) (23)

Similarly, consider the effective low pass filter
R(z71) for the control input signal. This filter is
added for more accurate estimating, that is given
by the following equation.

w(t) = R(z™Hu(t) (24)

Here, consider the following discrete-time model:

A(z"Yo(t) = 27 Bz Yu(t) (25)

where

Az =1+ a27  + ag2?

B(z™') = by + b1z7! (26)

Then, the following extended least squares esti-
mation is employed:

T(t — 1)p(t — 1)e(t)
1+ T (t— )I(t— Dt — 1)

0(t)=0(t — 1)+

eR! (27)
D(t)=T(t—1)
T =Dyt - )"t - DIt - 1) AT
1+9T(t— DI(t — 1)t — 1) 0
€ R4 (28)

e(t) = Av(t) =0Tt -1yt —1) eR  (29)

where &(t) denotes prediction errors. () and
(t — 1) are the unknown parameter vector and
the data vector of the form:

G(t) = [le,dz,i)o,i)l]T S R4 (30)

Pt —1):=[-Av(t—-1), —Av(t — 2),
Aw(t — 1), Aw(t — 2)]7 € R*(31)

By using (27) thru (31), The state of the system
can be estimated recursively.

Next, we consider the switching criterion based on
the estimated system condition. This paper deals
with the stationary gain of the system (25) as the
switching criterion. Let us define K.:

Koo = —— (32)

and let PD compensator C3(271) be switched
based on the following detection rule.

0V KR < Kie < K

1 052)(2_1) Kﬁf) < Ko < Kﬁi)
Ca(277) = . .

(=) K < Koo < KEHY
(33)

where Kg) (j=1---p+1) are given and where

Céq)(z_l) (g = 1---p) are PD compensators
defined for each sector.

Here we consider the design method of C{? (z71).

From (32) and (33), the gain range K¢ < K,. <
K§Z+1) is expressed as the set of [a1, as, by, b1]T
as follows.



aq Kgg)(l—I—CLl +CL2)
—(bo+b1) <0
A= 921 c R4 (bo !
bo —K{@™ (14 a; + ap)
bl +b0 + bl < 0

(34)

Then the design problem of the PD compen-

sator C4? (2~1) corresponding to the pre-specified

small-ranged system gain K§Z) < K. < KS(Z-H)

can be formulated as

Minimize 7, (35)
a1

subject to ®pp = 0 for all 22 cQNA
0
bi]  (35-a)

where ®pp is represented by the following matrix

beo (P71 k) 0
dpp = =0
0 (ber(P_lyk%’Vr)
(36)

In the above problem, PID parameters k., k; and
kq in parameter vecters of the controller k; and
k, are given since they are already obtained by
solving (21). Therefore, matrix inequality (36) can
be represented by LMI, where variables are P!,
ko and kg. The matrix inequality (35-a) can be
expressed by two inequalities in (34) and 2* LMIs
as well as the case of (21-c). Hence it is easy to
obtain the optimal solution of the problem (35)
because there exist polynomial algorithms based
on the interior point method [4].

By using the estimator and the switching crite-
rion as mentioned above, the most effective PD
compensator which satisfies the good tracking
property is selected out of the set of pre-specified
PD parameters corresponding to the small di-
vided perturbations. The switching algorithm for
the proposed PID controller with two-degrees-of-
freedom is summarized as follows.

[The switching algorithm for the PID con-
troller with two-degrees-of-freedom]

[Step 1] Design the PID controller and the PD
compensator by solving the BMI problem (21).
[Step 2] Design the set of PD parameters corre-
sponding to the small divied perturbations by
solving the LMI problem (35).

[Step 3] Estimate the system conditions using
(27) thru (31).

[Step 4] Calculate K. from (32).

[Step 5] Choose the most effective PD parame-
ter from the detection rule in (33).

[Step 6] Return to [Step 3].

4. BMI SOLUTION BY USING AN EXACT
ALGORITHM

This section provides an exact algorithm for solv-
ing problem (21) based on branch and bound
algorithms [5]. Branch and bound algorithms give
us the lower bound ¥y and the upper bound
Uy satisfying ¥y < infy, < ¥y and (Py —
U.)/Vr < e for any € > 0. The lower bounds
are obtained using the SDP relaxation [6,7].

Let us define the function ¥(-), ¥ (-) and ¥y (+)
as follows.

Q)= inf Y, (37)
Ya < Fa, k1, ka]T € Q, "
® > 0 for all [a1, az,bo,b1]T € Q
Ur(Q)= inf Yry (38
@ 74 < Aa ki ke]T € Q, n (38)
® - 0 for all [a1,a2,b0,b1]T € Q
\IJU(Q7k>{7k;) = i]flf~ rs
Yd < Yd»
®* > 0 for all [a1, a2, by, b1]T € Q
(39)

where & is the SDP relaxation of ® obtained using
the method in the papers [7,8],

kil _
K = arg

and ®* is obtained by substituting [k}, k3]7 into
® in (17). Then ¥ (Q) < ¥(Q) < ¥y (Q) holds
for any Q. We can obtain ¥} and ¥y, such that
U, < infv, < ¥y holds for any & using the
following algorithm.

inf Yy
o va < Aa ki k)T €Q,
® > 0 for all [al,az,bo,bﬂT cN

[Branch and Bound Algorithm]

[Step 1] Set £k +« 0,Q0 « Qp,S0 +
{Qo}, Lo < ¥(Qo),Us +v (Qo)-

[Step 2] Select @ from Sy such that L, =
Ur(Q)- Sk+1 < Sk \ {Q}- B
[Step 3] Split @ along its longest edge into Q)

and Qs.

[Step 4] For i = 1,2

Sk+1 ¢ Sk+1 U{Qi}

[Step 5] Uk+1 < min \IIU(Q)
QESk+1

[Step 6] Pruning: Sk11 < Sk+1\{Q : ¥.(Q) >
Uk41}-

Step 7] L in ¥ .

[Step 7] Lit1 ¢ olin L(Q)

[Step 8] If (Uy — Li)/Lr < e then end else
k + k+1 and goto [Step 2].

if q/L(Ql) < Uk then

5. NUMERICAL EXAMPLE

In order to investigate the behavior of the pro-
posed control scheme, numerical simulation exam-
ples are illustrated in this section.



Let us consider the continuous-time model given
by the following equation.

Ko _
Ls where

(40)

From (3) and (4), the system parameters of the
descrete-time model which are transformed by
using sampling time period Ty = 1 are obtained
as follows:

A(z_l) =14az ' +asz?

B(z7Y) = by + bzt (41)
where
—1.4335 < a7 < —1.3959
0.4531 < ap < 0.4724 (42)

—0.0528 < by < —0.0362
0.0751 < b; <0.1100

By solving the BMI problem (21), parameters of
the PID controller and the PD compensator are
designed as follows:

ke =2.7525 ko, =0.4496 ~, =15.4295
k; =0.3818 kg =0.7565 4 = 162.6861 (43)
kq =4.3374

We designed the pre-specified PD compensators
by solving the LMI problems (35), and they are
obtained as follows:

—0.4009 — 1.9002A
1.0 < K,, <125
(v = 6.5864)
—0.7843 — 2.0138A
125 < K,, <15
(v = 5.9511)

Cy(z7Y) = (44)

The system parameters of the control object are
given as Ky = 1.0 and T' = 11.5 in the period from
O[step] to 400[step], and Ko = 1.4 and T = 12.0
in the period from 401[step] to 1000[step]. The
reference signal is given as r(t) = 1 in the period
from O[step] to 200[step], r(t) = 2 in the period
from 201[step] to 700[step] and r(t) = 2.5 in
the period 701[step] to 1000[step]. The stochastic
noise £(t) is given as a normal distribution with
N(0,0.001%). Fig.2 shows the result. We can see
that the influence by the stochastic noise can
be reduced, and that the system can track the
reference signal well.

6. CONCLUSIONS

In this paper, a BMI based design scheme for
switched PID controllers with two-degrees-of-
freedom has been proposed. According to the

0 200 400 600 800 1000
t[step]

Fig. 2. Control result using the proposed PID
control scheme.

proposed scheme, two design specification based
on Hs norm are formulated in BMIs, and PID
parameters can be exactly obtained by solving the
BMI problems via branch and bound algorithms.
In order to reduce the conservativeness of the
control system, the proposed PD compensators
have switching structure based on adaptive con-
trol method. Numerical examples have shown the
effectiveness of the proposed method.
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