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Abstract: An adaptive extremum seeking controller is presented for the optimiza-
tion of the production rate of a continuous stirred tank bioreactor. This controller
is saturated outside a domain of interest and a reduced-order high-gain observer
is designed to estimate the substrate concentration of the bioreactor. Semiglobal
asymptotic stability is proved and recovery of the performance achieved under
state feedback is shown when the speed of the high gain observer is sufficiently
high. Simulation experiment is given to illustrate the proposed approach.
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1. INTRODUCTION

Adaptive extremum seeking control of nonlin-
ear systems has received the attention of many
researchers. The potential benefits of extremum
seeking techniques in the maximization of the pro-
duction rate in a continuous stirred tank bioreac-
tor has been demonstrated by (Wang et al., 1999)
and (Zhang et al., 2001). Practical implementa-
tion of the controller scheme designed in (Zhang
et al., 2001) requires the measurement of sub-
strate concentration and production rate. How-
ever, knowledge of the substrate concentration is
not always possible. The extension of these results
to the output feedback requires the construction
of an observer to estimate the unmeasured state
of the system from its output.
Owing to nonlinearity (Lee and Khalil, 1997), a
separation principle cannot be applied in the de-
sign of output feedback control as in linear control
theory, but a certain degree of separation can be
achieved by designing high-gain observers. High-
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gain observers, however, exhibit peaking in their
transient behavior (Esfandiari and Khalil, 1992).
Fortunately, this peaking phenomenon in certain
classes of systems.
In this work, an adaptive extremum-seeking out-
put feedback controller is designed by the applica-
tion of a similar separation principle. The design
is achieved in two steps. First, we saturate the
controller scheme and the right hand side of the
adaptation rules designed in (Zhang et al., 2001)
for the continuous stirred tank bioreactor. Second,
we use an high-gain observer to estimate the sub-
strate concentration, based on the measurement of
the production rate. Using Lyapunov theory, we
prove that the output feedback controller recovers
the performance achieved under state feedback
when the gain of the observer is large enough. The
rest of the paper is organized as follows. Section
2 presents some notation and the problem formu-
lation for the state feedback case. In Section 3,
the reduced order high gain observer is designed.
The performance recovery is shown in Section 4,



followed by simulation results in Section 5 and a
brief conclusion in Section 6.

2. STATE FEEDBACK CONTROL

We consider the following microbial growth mod-
els for a continuous stirred tank bioreactor (Zhang
et al., 2001)

ẏ =−uy +
θµs

2y − θky
2 + (s0 − s)uy

s(1 + θss)
(1)

ṡ=−θky + u(s0 − s) (2)

where the states s > 0 and y > 0 denote the
substrate concentration, and the production rate
of the reaction product, respectively. The input
of the system is the dilution rate u ≥ 0, and s0
denotes the concentration of the substrate in the
feed.
The constant parameter θk is known, while the
constant parameters θs, θµ are unknown. How-
ever, the vector θ = [θs θµ]T belongs to Ω, a

known compact convex subset of R2. Let Ω̂ be
a convex subset of R2 which contains Ω in its
interior.
The adaptive extremum seeking controller and the
adaptation rules for the parameters of the system
are designed in (Zhang et al., 2001) for the state
feedback case. The state feedback controller is

u=
1

(s0 − s)
(θky − a(t) + d− kzzs) (3)

where a(t) and zs corresponds to the dither signal
(to be designed later) and the error in the set-
point s∗, respectively

zs = s− s∗ + d, s∗ =
1

θ̂s

(

√

1 + s0θ̂s − 1
)

(4)

Let θ̂ denote the estimate of the true parameter
θ and let ŷ be the prediction of the state y by
using the estimated parameters θ̂s and θ̂µ. The
predicted state ŷ and d are generated by

˙̂y =−uy +
θ̂µs

2y − θky
2 + (s0 − s)uy

s(1 + θ̂ss)
+ kyey(5)

ḋ=−
˙̂
θsβ(θ̂s) + a(t) − d (6)

where ey = y − ŷ.
We suppose Ωs and Ωµ are convex hypercubes,
(see (Khalil, 1996)) Omegai = {θ | ai ≤ θi ≤ bi}
for i = s, µ. Let

Ωδ−i = {θ | ai − δi ≤ θi ≤ bi + δi} for i = s µ

where δs > 0 and δµ > 0 are chosen such that

Ωδ−s ⊂ Ω̂s and Ωδ−µ ⊂ Ω̂µ.

The parameter adaptation rule for θ̂i with i =
s, µ, is taken as

˙̂
θi =



































Γi if ai ≤ θ̂i ≤ bi or

if θ̂i > bi and Γi ≤ 0 or

if θ̂i < ai and Γi ≥ 0

(1 − ci(θ̂i))Γi if θ̂i > bi and Γi > 0 or

if θ̂i < ai and Γi < 0

(7)

for θ̂i > bi and Γi > 0

ci(θ̂i) =
( θ̂i − bi

δi

)

sign(Γi) (8)

and for θ̂i < ai and Γi < 0

ci(θ̂i) =
( θ̂i − ai

δi

)

sign(Γi) (9)

Equation (7) is a smooth projection algorithm
(Pomet and Praly, 1992).

The nominal value for
˙̂
θi is Γi where

Γs =
γsφsyey

(1 + θ̂ss)
, Γµ =

γµφµyey

(1 + θ̂ss)
(10)

with φs = −u(s0 − s)− θ̂µs
2 + θky and φµ = (1 +

θ̂ss)s. It can be seen from equations (8) and (9)

that 0 ≤ ci(θ̂i) ≤ 1 and ci(θ̂i) = 0 for
˙̂
θi = Γi.

Equations (1)-(10) represent the system under

state feedback. Let the vector ψ = [s y d ŷ θ̂s θ̂µ]T

represent the trajectories of the closed loop sys-
tem. Then considering χ = [zs θ̃s θ̃µ ey]T , we
have

χ̇=











żs

˙̃
θs

˙̃
θµ

ėy











=











ṡ− ṡ∗ + ḋ

−
˙̂
θs

−
˙̂
θµ

ẏ − ˙̂y











=









f1(ψ)
f2(ψ)
f3(ψ)
f4(ψ)









(11)

For simplicity, we can define

fr(ψ) = [f1(ψ) f2(ψ) f3(ψ) f4(ψ)]T

and express equation (11) as

χ̇= fr(ψ) (12)

For the system (12) we consider the following
Lyapunov function

V (χ, t) =
1

2

[

z2
s +

θ̃2s
γs

+
θ̃2µ
γµ

+ (1 + θss)e
2
y

]

(13)

The rate of change of the Lyapunov function (13)
is

V̇ =
∂V

∂χ
fr(ψ) +

∂V

∂s
ṡ ≤ −U3(χ) (14)

where U3(χ) = kzz
2
s + ky0e

2
y.



Remark 1. The functions f1(ψ), f2(ψ), f3(ψ), and
f4(ψ) are locally Lipschitz in their arguments over
the domain of interest.

Remark 2. Assuming that the persistency of exci-
tation condition developed in (Zhang et al., 2001)
is met, the origin (z = 0, θ̃s = 0, θ̃µ = 0, ey = 0)
is an equilibrium point of the closed loop system.
The asymptotic stability of the origin for the state
feedback system (12) was proved in (Zhang et

al., 2001).

3. OUTPUT FEEDBACK CONTROL

We consider the case where only y is measurable,
the substrate concentration s is not available for
feedback control. By the locally observability con-
dition (Marino and Tomei, 1995), the system is
observable for y > 0. To implement the state
feedback adaptive controller (3), we need to es-
timate the unmeasured state s. The estimation
of the states y and s are given by ŷobs and ŝobs.
We use the reduced-order high-gain observer x̂ =
[ŷobs ŝobs]

T

˙̂yobs =−uy +
θ̂µŝ

2
obsy − θky

2 + (s0 − ŝobs)uy

ŝobs(1 + θ̂sŝobs)

+
αy

ε
ỹ (15)

˙̂sobs =−θky + u(s0 − ŝobs) +
αs

ε2
ỹ (16)

where ỹ, s̃ are defined as ỹ = y− ŷobs and s̃ = s−
ŝobs and αs, αy, ε are positive constants.
For the output feedback, the dynamics for the pro-
duction rate is represented by (1) and the dynam-
ics of the substrate concentration is represented by
(2). The controller for the output feedback system
is

u=
1

(s0 − ŝobs)
(θky − a(t) + d− kzzs) (17)

In order to avoid the singularity that may hap-
pen in the controller when the estimation of the
substrate concentration increases, we bound the
state ŝobs below and above by the positive bounds
ŝobs−min and 0.99s0 respectively.
To overcome the peaking phenomenon associated
with the high gain observer, we saturate the con-
troller and the rate of change of ŷ, d, θ̂s, and θ̂µ

outside the domain of interest. The rate of change
of ŷ and d are

ḋ=−
˙̂
θsβ(θ̂s) + a(t) − d (18)

˙̂y =−uy +
θ̂µŝ

2
obsy − θky

2 + (s0 − ŝobs)uy

ŝobs(1 + θ̂sŝobs)

+kyey (19)

The parameter adaptation rule for the output
feedback case is the same as that for the state
feedback case. However, the nominal updating

laws for
˙̂
θs and

˙̂
θµ are

Γs =
γsφsyey

(1 + θ̂sŝobs)
,Γµ =

γµφµyey

(1 + θ̂µŝobs)
(20)

with

φs =−u(s0 − ŝobs) − θ̂µŝ
2
obs + θky (21)

φµ = (1 + θ̂sŝobs)ŝobs (22)

The error dynamics for the observer are

˙̃e=

[

˙̃y
˙̃s

]

=





−
αy

ε
F1

−
αs

ε2
−u





[

ỹ
s̃

]

+

[

1
0

]

G (23)

where F1 = y

(1+θss)(1+θ̂sŝobs)
θµ and G is de-

fined as G = y

(1+θss)(1+θ̂sŝobs)
[θµθ̂sŝobss+ θ̃µŝobs −

θ̂µθsŝobss] + −θky2+(s0−s)uy

s(1+θss) − −θky2+(s0−ŝobs)uy

ŝobs(1+θ̂sŝobs)
.

We scale the observer dynamics as ỹ = ξ1 and
s̃ = ξ2

ε
. Replacing equation (23) by its scaled

equivalent, we get

εξ̇ =A(t)ξ + εBG (24)

where ξ = [ξ1 ξ2]
T , A(t) =

[

−αy F1

−αs −uε

]

and

B = [1 0]T .

4. PERFORMANCE RECOVERY

In this section, we follow the procedure used
in (Atassi and Khalil, 1999) and (Khalil, 1996)
to show semi-global asymptotic stability of the
origin.
1. BOUNDEDNESS

Considering the equations (1), (2), (18), (19) and
the parameter updating laws (7) with nominal
updating laws (20), the rate of change of the
vector χ for the output feedback becomes

χ̇=











żs

˙̃
θs

˙̃
θµ

ėy











=











ṡ− ṡ∗ + ḋ

−
˙̂
θs

−
˙̂
θµ

ẏ − ˙̂y











= fr(ψ,D(ε))(25)

and also

ṡ= hr(ψ,D(ε)) (26)

The initial conditions for equation (25) are χ(0) =
(zs(0), θ̃s(0), θ̃µ(0), ey(0)) = (zs0, θ̃s0, θ̃µ0, ey0) ∈
U. Related to the set U there is U′ which is the
set of initial conditions for the states ψ. In other



words, ψ(0) = (s(0), y(0), d(0), ŷ(0), θ̂s(0), θ̂µ(0)) ∈
U′. The initial states for the estimated parameters
are x̂(0) = (ŷobs(0), ŝobs(0)) = x̂0 ∈ Q.
The system (24), (25) and (26) is a standard
singularly perturbed one. It can be noticed that
ξ = 0 is the unique solution of (24) when ε = 0. If
we substitute ε = 0 in (25) we get the closed-loop
system under state feedback, equation (12). Then,
the reduced system is given by

χ̇= fr(ψ, 0) (27)

The boundary-layer system obtained by applying
to (24) the change of time variable τ = t/ε then
setting ε = 0, is given by

dξ

dτ
=A(t)ξ (28)

We denote (χ(t, ε), ξ(t, ε)) the trajectory of sys-
tem (24) and (25) starting from (χ(0), ξ(0)). The
recovery of the boundedness of trajectories is sum-
marized in the following theorem.

Theorem 3. Let Remark 1 and Remark 2 hold,
then there exists ε∗1 > 0 such that, for every
0 < ε ≤ ε∗1, the trajectories (χ, ξ) of system (25)
and (24), starting in U × Q are bounded for all
t ≥ 0.

PROOF. The origin of (12) is asymptotically
stable with a region of attraction R. Based on
equations (13), and (14) there are three positive
functions U1(χ), U2(χ) and U3(χ), all defined and
continuous on R such that

U1(χ) ≤ V (χ, t)≤U2(χ) (29)

lim
χ→∂R

U1(χ) =∞ (30)

V̇ =
∂V

∂χ
fr(ψ) +

∂V

∂s
ṡ≤−U3(χ) (31)

where U3(χ) is defined above. The functions U1(χ)
and U2(χ) are

U1(χ) = ku1

[

z2
s +

θ̃2s
γs

+
θ̃2µ
γµ

+ e2y

]

U2(χ) = ku2

[

z2
s +

θ̃2s
γs

+
θ̃2µ
γµ

+ (1 + θss0)e
2
y

]

with 0 < ku1 < 1/2 and 1/2 < ku2. Equations
(29), (30) and (31) are satisfied for all χ ∈ R.
The properness of V (χ, t) in R guarantees that
with any finite c > maxχ∈U, s∈U′V (χ, t), the set
Σ = {χ ∈ R : V (χ, t) ≤ c} is a compact subset of
R and U is in the interior of Σ. Similarly, we can
prove that there exists a compact set Σ′ which is
a subset of R and U′ is in the interior of Σ′.

For the boundary layer system we define the
Lyapunov function

W (ξ) = ξTP0ξ (32)

where P0 = PT
0 is the positive definite solution

of the Lyapunov equation P0A(t) + A(t)TP0 =
−Q(t). The matrix Q(t) is symmetric and positive
definite. This function satisfies

λmin(P0)‖ξ‖
2 ≤W (ξ) ≤ λmax(P0)‖ξ‖

2 (33)

∂W

∂τ
= −ξQ(t)ξ ≤−λmin(Q(t))‖ξ‖2 (34)

Let Λ = Σ × {W (ξ) ≤ ρε2}. Due to Remarks 1-2
we have, for all χ ∈ Σ, all ψ ∈ Σ′ and all ξ ∈ R2

‖fr(ψ,D(ε)ξ)‖ ≤ k1 (35)

‖G(ψ,D(ε)ξ)‖ ≤ k2 (36)

‖hr(ψ,D(ε)ξ)‖ ≤ k3 (37)

where k1, k2 and k3 are positive constants inde-
pendent of ε. Moreover, for any 0 < ε̃ < 1, there
is L1, independent of ε, such that, for all (χ, ξ) ∈ Λ
and every 0 < ε ≤ ε̃, we have

‖fr(ψ,D(ε)ξ) − fr(ψ, 0)‖ ≤ L1‖ξ‖ (38)

‖hr(ψ,D(ε)ξ) − hr(ψ, 0)‖ ≤ L2‖ξ‖ (39)

Proceeding as in (Atassi and Khalil, 1999), we
show that there exists 0 ≤ ε ≤ ε∗1 such that
the trajectory (χ(t, ε), ξ(t, ε)) enters Λ during the
interval [0, T (ε)] and remains there for all t ≥ T (ε)
where

T (ε) =
ε

σ1
ln

( σ2

ρε4

)

≤ T0. (40)

Thus the trajectory is bounded for all t ≥ T (ε).
On the other hand, for t ∈ [0, T (ε)], the trajectory
(χ(t, ε), ξ(t, ε)) is bounded.
2. ULTIMATE BOUNDEDNESS

Next, we show that the trajectories of system (25)
and (24), starting in U×Q, come arbitrarily close
to the origin as time progresses. This is summa-
rized in the following theorem.

Theorem 4. Under the conditions of Theorem 1,
given any η > 0, there exists ε∗2 = ε∗2(η) > 0 and
T1 = T1(η) such that, for every 0 < ε ≤ ε∗2, we
have

‖χ(t, ε)‖ + ‖ξ(t, ε)‖ ≤ η, ∀ t ≥ T1. (41)

PROOF. Due to space restrictions we omit the
proof which proceeds as in (Atassi and Khalil,
1999).
3. TRAJECTORY CONVERGENCE



Let χr(t) be the solution of (27) starting from
χ(0). In this section we follow the procedure used
in (Atassi and Khalil, 1999) to prove that χ(t, ε)
converges to χr(t) as ε→ 0 uniformly in t, for all
t ≥ 0. As in (Atassi and Khalil, 1999), we divide
the interval [0,∞] into three intervals [0, T (ε)],
[T (ε), T2] and [T2,∞], and based on Theorem 1

and Theorem 2, we show ‖χ(t, ε) − χr(t)‖ ≤ η for
each interval.
4. ASYMPTOTIC STABILITY

We define F T
2 =

[

ΦT (ŝobs,y,θ̂)y

(1+θss)(1+θ̂sŝobs)

]

where where

ΦT = [φs φµ], θ̃ = [θ̃s θ̃µ] and F3 is a function
ψ. From equations (1) and (19),

ėy =−kyey + FT
2eθ̃ + (F2 − F2e)

T θ̃ + F3s̃ (42)

The subscript e indicates that the function is
evaluated at steady state. From the projection
algorithms (7) with the nominal updating laws
(20) we define new state variables

∂(FT
2eθ̃)

∂t
=−FT

2eReNeey − FT
2e(RN −ReNe)ey +

(∂F2e

∂t

)T

θ̃ (43)

with R = y

(1+θ̂sŝobs)
and N =

[

γsφs(1 − cs(θ̂))

γµφµ(1 − cµ(θ̂))

]

Re-arranging equations (42) and (43) in a matrix
form, we get

ẇ=C(t)w + E(t) + F6s̃ (44)

where w = [ey FT
2eθ̃]

T , C(t) =

[

−ky 1

−FT
2eReNe 0

]

,

E(t) =





(F2 − F2e)
T θ̃

−FT
2e(RN −ReNe)ey +

(∂F2e

∂t

)T

θ̃





and F6 = [1 0]TF3 Equation (44) is a linear
time variant system. It can be noticed that when
time→ ∞, E(t) → 0. Matrix C(t) is Hurwitz if
and only if F T

2eReNe > 0.
In equation (24), the function G can be written
as G = F4θ̃+ F5s̃, where F4 and F5 are functions
of ψ. Then equation (24) becomes

ξ̇ =
1

ε
A(t)ξ +BF4θ̃ +BF5s̃ (45)

For the system (44) and (45), we define a new
Lyapunov function

VT = V
1

2

w +W
1

2 (46)

where Vw = wTM0w, and W corresponds to
the Lyapunov function for the boundary layer
system,equation (32). The constant matrix M0

is positive definite and symmetric. We select the
matrix L(t), a positive definite and symmetric

matrix such that C(t)TM0 + M0C(t) = −L(t).
It can be verified that the rate of change of the
Lyapunov function VT is

V̇ ≤−K3‖w‖ −K4‖ξ‖ +K2‖2E(t)TM0‖(47)

where K3 and K4 are positive bounds for the
states over the domain of interest. Let K5 =
min(K3,K4), and let

K6 = K5(max(
√

λmax(M0),
√

λmax(P0)))

then equation (47) becomes

V̇T ≤ −K6VT +K2‖2E(t)TM0‖ (48)

Integration of equation (48), yields

VT (t)≤ VT (t0)e
−K6(t−t0) + (49)

∫ t

t0

e−K6(t−τ)K2‖2E(τ)TM0‖dτ

When time→ ∞, E(τ) → 0. Then inequality (49)
vanishes as time→ ∞. This means that VT =
V

1

2 +W
1

2 → 0 or

‖w‖= ‖[ey FT
2eθ̃]

T ‖ → 0 (50)

‖ξ‖=D(ε)−1‖[ỹ s̃]T ‖ → 0 (51)

where D(ε) is a two dimensional diagonal matrix
with the first element D(ε)11 = 1 and the second
element D(ε)22 = 1/ε.

Remark 5. Equation (50) implies that ey → 0 and

FT
2eθ̃ → 0 when time→ ∞. Under a Persistence of

Excitation condition for the output feedback case,
θ̃ = 0 when time → ∞.

Remark 6. It can be easily proved from equations
(50), and (51), that zs under output feedback
approaches zs under state feedback as time → ∞.
From the asymptotic stability of the origin under
state feedback, zs → 0 as time → ∞. As a result,
zs under output feedback converges to zero as time
→ ∞.

From equations (50), (51) and Remarks 7 and
8, the origin of (χ(t, ε), ξ(t, ε)) is asymptotically
stable.

5. SIMULATION RESULTS

A simulation study is performed using the experi-
mental conditions provided in (Wang et al., 1999).
The following parameters and initial states are
used in the simulation experiment.
ε = 0.01, αs = 1, αy = 50, Ks = 0.2, µm = 1,
k1 = 2, k2 = 1, s0 = 10, s(0) = 1, y(0) = 0.3,

ŝobs(0) = 5, ŷobs(0) = 0.1, ŷ(0) = 1.5, θ̂µ(0) = 3,



θ̂s(0) = 5.5.
The dither signal is chosen as a(t) = 0.01(sin(0.01t)+
sin(0.05t)). Figure 1 represents the simulation
result of the substrate concentration (s), the esti-
mation of the substrate concentration (ŝobs), the
production rate (y) and the estimation of the
production rate (ŷobs). Figure 2 shows that both

θ̂s and θ̂µ converge to their true value θs = θµ = 5.
From Figure 3, the trajectories under output feed-
back recover the trajectories under state feedback
for the high gain observer with sufficiently large
gain (ε = 0.01). Furthermore, the maximum value
for the production rate y = 3.77 is achieved
under output and state feedback which confirms
the effectiveness of the adaptive extremum seeking
scheme.

6. CONCLUSION

An adaptive output-feedback extremum-seeking
control was developed for a class of stirred tank
bioreactors governed by Monod growth kinetics.
The controller allows the stabilization of the sys-
tem to its unknown optimal production rate.
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Fig. 1. Substrate concentration s(“..”) and its
estimate ŝobs(“–”), production rate y and its
estimate ŷobs (“- -”)
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Fig. 2. Parameter θµ(“- -”) and its estimate

θ̂µ(“–”), parameter θs(“- -”) and its estimate

θ̂s(“..”)
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Fig. 3. y under state feedback (“–”) and y un-
der output feedback (“- -”), s under output
feedback(“- .”) and s under state feedback (“-
-”)


