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Abstract:  Robust model-predictive controllers use an estimate of model uncertainty in the 
on-line controller calculation and can be overly conservative for some uncertainty 
descriptions.  This paper discusses the various causes of conservative control with 
particular emphasis given to the concept of ‘closed-loop’ probabilistic predictions.  A 
multi-input-multi-output MPC is proposed in which an off-line, non-convex calculation is 
used to characterize the closed-loop uncertainty a priori.  This uncertainty information is 
incorporated into a convex, quadratic program resulting in a MPC formulation that can be 
efficiently solved on-line.  A distillation column case study demonstrates the benefits of 
the proposed robust MPC.  Copyright © 2003 IFAC 
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1. INTRODUCTION 
 

Model-predictive control (MPC) systems have found 
widespread success in the process industries.  The 
vast majority of these controllers rely upon nominal 
models, i.e. model uncertainty is not explicitly 
considered in the on-line controller calculation.  
Extensive simulation studies and tuning are often 
required to ensure that these nominal-MPC systems 
are appropriately robust (Qin and Badgwell, 1996).    
 
Since this situation is not desirable, techniques to 
create robust MPC systems have been investigated 
since the late 1980’s (see (Badgwell, 1997) for a 
review). Many of the initial robust MPC systems, 
such as min-max MPC (Zheng and Morari, 1993), 
achieved robust stability at the expense of dynamic 
performance.  There are several causes of overly 
conservative control in robust MPC: 
 

1) Min-max control strategy - Min-max 
controllers are inherently conservative, because 
they optimize the performance for only the 
worst-case plant/model mismatch (Bemporad 
and Morari, 1999). 

 
2) Time-varying descriptions of process 

uncertainty – Several robust MPC systems 
assume that the process is time-varying (Zheng 
and Morari, 1993).  However, in the process 
industries many of the processes can be 
assumed to be time-invariant within the 
prediction horizon.  A time-varying description 
will lead to control that is often too 

conservative if the actual process is time-
invariant. 

 
3) Open-loop predictions of future system 

behavior – An open-loop prediction is one in 
which the effect of future controller actions is 
not modeled.  An open-loop prediction often 
overestimates the uncertainty in future process 
outputs because it does not consider that future 
controller actions that will respond to 
plant/model mismatch.  This over-estimation of 
output uncertainty leads to conservative control 
when the system is near constraints (Mayne, 
2000; Kothare et al., 1996). 

 
The controller proposed in this paper addresses these 
issues by basing the MPC on a closed-loop, time-
invariant model of future system behavior.   The 
conservativeness inherent to min-max control is 
avoided by maintaining the nominal value of the 
process output near its setpoint while using 
probabilistic models to avoid output-constraint 
violations.  In addition, the proposed controller uses 
engineering knowledge of the structure of the process 
uncertainty to avoid overly conservative uncertainty 
descriptions.  As will be shown in case study, the 
resulting MPC is robust with respect to output-
constraints while avoiding excess conservativeness. 
 
In order to remain computationally feasible for on-
line use, the proposed controller is implemented in 
two stages.  In the first stage, the effect of 
plant/model mismatch on system behavior is 
captured in off-line studies involving non-convex 



 

optimizations.  In the second stage, an on-line, 
convex quadratic program uses the results calculated 
off-line to predict and to optimize the behavior of the 
uncertain, closed-loop system.  The proposed 
controller is intended for processes well modeled by 
multi-input-multi-output (MIMO) linear, time-
invariant (LTI) models with no input-constraints. 
 
The remainder of the paper is organized as follows.  
In Section 2, the rationale behind the various 
characteristics of the proposed controller will be 
discussed.  This section will outline the derivation of 
the proposed MPC.  Section 3 discusses a method for 
using Principal Component Analysis (PCA) to 
improve the uncertainty description of the closed-
loop system.  Finally, the performance of this new 
MPC system is explored via a distillation column 
case study in Section 4. 
 
 

2. ROBUST MPC UNDER CLOSED-LOOP 
UNCERTAINTY 

 
 
2.1 Open-loop vs. Closed-loop Prediction 
 
In unconstrained model-predictive control, the 
following optimization is solved at each controller 
execution (Garcia and Morshedi, 1986).   
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Here n

spyy ℜ∈, , mu ℜ∈∆ , nxnW ℜ∈ and mxmQ ℜ∈ . 

The process setpoint is represented by ysp.  The 
matrices, W and Q, are positive definite matrices, 
typically with the tuning parameters, w and q, on 
their respective diagonals.  These tuning parameters 
are chosen to achieve the desired compromise 
between dynamic performance and robustness.  
Equation (1a) represents a deterministic model of the 
process with N̂  a vector of the predicted value of the 
process disturbances.  In this paper, a linear step-
weight model is used and the process is assumed to 
be open-loop stable or a pure integrator.     
 
The result of this optimization is a vector of input 
moves, ∆u, of which only the first is implemented.  
At the next controller execution, an updated estimate 
of the unmeasured disturbance, N̂ , is calculated, the 
output prediction is updated, and the procedure 
begins again. 
 
In an open-loop prediction of uncertainty, the entire 
vector of ∆u is assumed to be known in the 
prediction of future output uncertainty.  This is not 
an accurate description of a closed-loop, probabilistic 
system.  Through the controller, uncertainty in the 
future outputs leads to uncertainty in future inputs as 
the future control actions react to plant/model 
mismatch.  Because open-loop predictions neglect 
this characteristic of a closed-loop system, such 

predictions often overestimate the uncertainty in 
future process outputs and lead to robust MPC that 
are overly conservative. 
 
In order to perform the required closed-loop 
prediction, a robust MPC needs a model of the 
process and a model of the future controller actions.  
In general, the structure of the future control law 
need not be specified.  In this case, the robust MPC 
problem becomes a special case of the dynamic 
programming problem.  (See Rawlings (1994) for a 
complete discussion of the relationship between 
robust MPC and dynamic programming.) 
 
In this paper, the computational issues associated 
with dynamic programming problem are avoided by 
assuming that the future control actions are well 
modeled by the MPC shown in equation (1). 
 
 
2.2 Overview of Control Strategy 
 
Figure 1 illustrates the general control scheme 
proposed in this paper.   
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Conceptual Design for Robust MPC 
 
The controller block depicts the MPC using a closed-
loop model of the system to predict the future 
expected value and upper and lower uncertainty 
bounds for the inputs, u, and outputs, y.  These values 
are determined by an internal reference trajectory, r.  
The robust MPC does not directly calculate a vector 
of input moves as is done in nominal MPC.  Instead, 
it calculates the vector, r.  This internal reference 
trajectory is analogous to a setpoint and by changing 
this value the robust MPC predicts how a 
probabilistic closed-loop system will behave in 
response to a setpoint move. The internal reference 
trajectory is not a true system setpoint, but represents 
the desired movement in the future closed-loop 
system.  The term internal refers to the fact that it is a 
variable used internally by the controller. 
 
The proposed MPC will be implemented as an 
optimization of the following form. 
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Here Ay

cl(δ) and Au
 cl(δ) represent the closed-loop 

models of the system that relate r to y and u.  These 
matrices are functions of the model-mismatch, δ.  
The nominal inputs and outputs as predicted by a 
closed-loop model with no plant-model mismatch 
(i.e. δ=0) are calculated in equation (2a).  The upper 
and lower uncertainty bounds of y and u are 
represented by the vectors yy, and by uu , , 

respectively.  Equations (2b) and (2c) force these 
values to represent the uncertainty bounds for the 
worst-case mismatch, assuming δ∈∆ where ∆ 
represents the uncertainty set of δ.  Section 3 will 
discuss how this uncertainty set is defined.  Equation 
(2d) ensures that the nominal and uncertainty bounds 
for y do not violate the desired output constraints.  
The proposed controller assumes no input-
constraints. 
 
The rest of this section will discuss how the various 
aspects of this control strategy are implemented. 
 
 
2.3 Closed-loop Predictions 
 
The MPC shown in equation (1) is a natural choice 
for the model of future controller actions.  The 
Karush-Kuhn-Tucker (KKT) conditions for this 
unconstrained MPC are linear and can be written as: 
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Here the matrix, A, represents a step-weight model of 
the plant.  The linear process model is given by: 
 

NuAy ˆ+∆=  (4) 

 
To create a closed-loop model, equations (3) and (4) 
are written for each time step within the prediction 
horizon.  This linear set of equations can be 
combined to derive the closed-loop models, Ay

cl and 
Au

cl, shown in equations (2a) through (2c). 
 
Conceptually, these closed-loop models could be 
used to determine the predicted uncertainty limits of 
the future process inputs and outputs (equation (2b) 
and (2c)).  For example, the upper bound in the 
uncertainty of y for a given r vector could be 
calculated as: 
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Here 1k is a matrix that selects the k th element in the 
vector .y  This maximization would find the amount 
of model-mismatch, δ, that results in the largest 
possible y at a given time period, k, in the future. 
 
If this optimization could be calculated on-line, the 
robust MPC could use the calculated uncertainty 
limit to determine how best to maintain the system at 
set point while avoiding output-constraints.  
However, the situation is complicated by the fact that 
Ay

cl(δ) and Au
cl(δ) are highly non-linear functions of 

the amount of plant/model mismatch, δ.  Therefore, 
the optimization shown in equation (5) is non-convex 
and impractical for on-line implementation.  As will 
be described in the next section, this situation can be 
avoided if this non-convex minimization is 
performed off-line a priori.   
 
 
2.4 Off-line Optimization 
 
The goal of the non-convex optimization is to 
determine the relationship between the predicted r 
and the closed-loop uncertainty limits in y and u.  
These relationships must be summarized so that an 
on-line, convex optimization can make decisions 
based on this information.   
 
Given an estimate of the model uncertainty, the off-
line optimization solves the non-convex optimization 
problems similar to the one shown in equation (5) 
and uses the resulting δ to calculate the ‘worst-case’ 
Ay

cl(δ) and Au
cl(δ).  Since local optima may be found, 

several starting points must be used and any results 
must be checked against Monte-Carlo simulations.   
 
For a MIMO system, the effect of a given δ on future 
system uncertainty is a function of the direction of r 
and the directionality of the process.  Therefore, the 
‘worst-case’ Ay

cl(δ) and Au
cl(δ) can be different for 

different r-directions.  Since an infinite number of r- 
directions exist for any MIMO system, the proposed 
method uses a representative sampling to estimate 
this set.  For example, for the 2x2 system considered 
in this paper, 60-different r-directions were 
considered, each six ‘degrees’ from another, if one 
visualizes the set of all possible r-directions as a unit-
circle in rl/r2 space. 
 
2.5 On-Line Optimization 
 
Naturally, the desired direction of the internal 
reference trajectory, r, is not known beforehand.  
Therefore, the on-line optimization must be able to 
determine the ‘worst-case’ Ay

cl(δ) and Au
cl(δ) for any 

possible r-direction.   
 
The information given in the sampled Ay

cl(δ) and 
Au

cl(δ) matrices can be included in the constraints of 



 

a convex optimization using the following technique.  
Assuming a single step change in r at time k=0, the 
minimization shown in equation (6) can be used to 
find the largest uncertainty bound for y at given time, 
regardless of the direction of r. 
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Here Ay

cl(δ)m relates r to the largest uncertainty 
bound of y for a given r-direction.  The constraints 
given in (6a) account for m different directions of r.  
Each direction could result in a different Ay

cl(δ)m.  
For a system with 60 different sampled r-directions, 
m could be as large as 60.  However, this is usually 
not the case, because the Ay

cl(δ)m are identical for 
many r-directions.  For example, it is very unlikely 
that the worst-case plant/model mismatch will be 
different for a change in r of [0 1] and a change of 
[0.03 0.99].  In case study discussed in Section 4, 
fewer than 20 different Ay

cl(δ)m captured the 
uncertainty limits for all of the tested r-directions. 
 
Within the prediction horizon, the desired direction 
of r may change several times.  Equation (6) can be 
used to calculate the upper uncertainty bound on y at 
a given time for a single change in r.  In order to 
calculate the uncertainty bounds for y for a sequence 
of r-moves, this type of equation must be repeated 
for each change in the direction of r and the resulting 
partial uncertainty bounds must be added to give the 
actual uncertainty bounds.  For a system with an 
input and output horizon of two, these equations 
would have the following form: 
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Here r(0) represents the change in r at time, t=0, 
and 0y is a vector representing the upper uncertainty 
bound for y due to the change in r(0).  The true upper 
limit on the uncertainty of y must be greater than the 
sum of 0y and 1y as is shown in the final inequality 
constraint. 
 

With these linear inequalities, equation (2) can be 
rewritten as a convex quadratic program. 
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All output constraints are ‘softened’ to avoid 
feasibility and stability issues (Zafiriou, 1990).  This 
quadratic program is solved at each controller 
execution.  The first input move is then applied in a 
rolling-horizon fashion. 
 
Implementation issues:  This optimization is convex, 
but the size of the problem can create some 
computational issues.  For the 2x2 case study 
discussed in Section 4, the problem has 1134 
decision variables and 3317 inequality constraints.   
 
The size of this QP poses a problem for active set 
method such as the quadprog program found in 
Matlab (Coleman et al., 1999).  Fortunately, recent 
progress in the field of interior-point (IP) methods 
provides a solution.  While the theoretical worst-case 
number of iterations for IP methods is bounded by 
O(n3) (Lobo et al., 1998), these methods have been 
shown to be much more efficient in practice 
(Andersen and Ye, 1999).  Using Andersen’s 
MOSEK interior-point algorithm, the average 
solution time for our quadratic program averaged 
only 1.35 seconds on a Pentium IV, 1.8 GHz. 
 
As the number of inputs, outputs, and length of the 
prediction horizon grows, the set of equations 
represented by constraint (8a) will reach a point 
where even interior-point methods will require 
excessive computing time.  Future work will explore 
how the dimensionality of this problem can be 
reduced. 
 
 

3. CLOSED-LOOP UNCERTIANTY 
DESCRIPTION 

 
The performance of the robust MPC described above 
depends strongly on the uncertainty description used 
by the controller.  A poor description of the system 
uncertainty may lead to conservative control. 
 
For example, consider a typical non-linear, binary 
distillation column from Marlin (2000).  This process 
can be modeled by the following linear system, 
where XD and XB represent the distillate and bottoms 
compositions of the light key.  These variables are 



 

controlled by the reflux rate, FR, and the amount 
vaporized in the reboiler, FV. 
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Assume that this linear model is used to represent a 
non-linear distillation column in which the feed rate, 
Ff, is unmeasured and not constant.  Changes in the 
feed rate will affect the model parameters and 
uncertainty in the feed rate leads to uncertainty in 
these parameters.  The feed rate has a nominal value 
of 10 kmol/min and varies very slowly (with respect 
to the closed-loop settling time) between 8.5 and 11 
kmol/min.  Table 1 summarizes the coefficients of 
the linear model fit at various feed rates with a 
sampling rate of 2 min-1. 
 
Table 1: Effect of Feed Rate Changes on Model 
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One possible uncertainty description for this process 
is a set of equation such as: 
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However, these box-type uncertainty descriptions are 
inappropriate.  No linear controller will be able to 
stabilize all of the plants described by equations (10) 
because the systems do not meet the integral 
stabilizability test of Grosdidier et al. (1985).   
 
Even if integral stabilizability is not an issue for a 
given system, the box-type description is 
unsatisfactory because it ignores the steady-state and 
dynamic relationships set by the physics of the 
system.  For example, a process uncertainty that 
affects the process dead-time often also affects the 
process time-constant and gain.  Likewise, there 
usually exists a relationship between steady-state 
gains of a MIMO system. 
 
 
3.1 PCA Uncertainty Description 
 
These structured uncertainty relationships can be 
captured using the Principal Component Analysis 
(PCA) technique.  PCA is a multivariate statistical 
method that summarizes the variation within a data 
set, X, in the fewest possible dimensions, d (Wold, 

1987).  A score vector, t, a loading vector, p, and a 
residual matrix, ε, summarize the data as shown in 
equation (11), where Xmean is the column-wise mean 
of the data. 
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If the information in Table 1 is summarized using 
PCA where each row of the data matrix represents a 
different flow rate and each column one of the 12 
model coefficients, the majority of the variability can 
be summarized using a single t-variable.  This 
illustrates the fact that there is one main source of 
variability within the data set (i.e. the column feed 
rate.)  Using this PCA description, the uncertainty in 
the process can be summarized as: 
 

X = tp’+Xmean,        1313 ≤≤− t  (12) 

 
Here p is a 12x1 constant loading vector and the 
inequality represents a component-wise 95%-
confidence interval for t.  The uncertainty in this 
example is summarized in a single score space, but 
higher dimensional descriptions are possible.  In such 
cases, the inequality constraint shown in equation 
(12) expands to a multi-dimensional ellipsoid. 
 
This PCA description of uncertainty has several 
advantages.  The dimensionality of the non-convex 
optimization discussed in section 2.4 is greatly 
reduced.  In addition, the loading and score vectors 
can be helpful in deciding which sources of 
uncertainty are important and which can be 
eliminated from the model. 
 
 

4. CASE STUDY 
 
The following case study illustrates the ability of the 
proposed MPC to robustly avoid output-constraint 
violations while maintaining acceptable dynamic 
performance.  The distillation column discussed 
above is to be controlled by the proposed robust 
MPC found in equations (8).  The case studies 
assume that uncertainty is caused by plant/model 
mismatch only and no disturbances are affecting the 
plant.  This assumption can be relaxed by applying 
the techniques discussed in Warren (2003).  
 
Figure 2 below shows the performance of the 
unconstrained system responding to a setpoint 
change of [1 0] mole percent at time, t=1, from an 
initial condition of [98 2].   The nominal plant model 
is given by Ff of 10 kmol/min in Table 1 and the 
MPC shown in equation (1) is used in the closed-
loop model with the following tuning parameters; 
n=20, m=5, w=[1 1], q=[0.02 0.02].  
 
The thick solid lines in Figure 2 represent the 
uncertainty limits of the inputs and outputs predicted 
from time, t=0, using equations similar to equation 
(7).  The dashed lines in Figure 1 represent the 
closed-loop response of the distillation column at 



 

feed rates of 7, 8, 9, 11, 12, 13, and 14 kmol/min.  
Even though some of these feed flow rates fall 
outside of the original range for which the robust 
MPC was designed, the predicted uncertainty bounds 
are quite accurate.  Notice that the closed-loop 
uncertainty predictions accurately predict that the 
uncertainty in y will approach zero due to the integral 
action of the controller and the fact that the closed-
loop system is stable.   
 

 
Fig. 2.  Closed-Loop Uncertainty Prediction  
 
The proposed robust MPC is able to use these 
uncertainty predictions to avoid output-constraints.  
For example, consider the case where the bottoms 
composition must remain below 2.5 mole percent 
light key.  Figure 3 compares the performance of 
proposed robust MPC to that of a nominal MPC with 
softened output-constraints.   In this example, the 
process model used by the controllers is given by Ff 
of 10 kmol/min in Table 1 while the true process is 
operating at Ff  of 8.5 kmol/min.  The robust system 
successfully avoids the output constraint without 
becoming overly conservative. 
 

 
Fig 3. Comparison of Robust and Nominal MPC 
 
 

5. CONCLUSIONS 
 
This paper has discussed the importance of using an 
accurate closed-loop description of system 
uncertainty in robust MPC.  A robust MPC system 
based on a closed-loop system description has been 
proposed and shown to outperform nominal MPC 
systems when plant/model mismatch is present. 
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