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ABSTRACT: This paper presents a novel soft sensor model for identifying the gasoline

endpoint of a crude unit. A hybrid model was developed, by combining in series a first

principle model with a neural network. A nonlinear observer based on the prior

knowledge of the process is designed to estimate the composition C of the upper unit.

The neural network is used to predict the gasoline endpoint with C and other process

parameters as its inputs. The error between real measurement and the network prediction

is fedback for the network correction. Industrial applications of the proposed model

indicate that the proposed model is accurate and adaptable. Copyright©2003IFAC
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1. INTRODUCTION

Soft sensing technique has been increasingly
used as an attractive and effective method for process
modeling (McAvoy, 1992) and for the replacement of
expensive and inefficient analytical instrumentation
(Santen A, et al, 1997). First principle modeling and
empirical modeling are the common two methods that
are used in the soft sensor modeling of a chemical
process. First principle model (FPM) is based on the
analysis of the mass, momentum, and energy balance
as well as empirical state equations. However, only
major characteristics and trends of the process can be
well described by the FPM. In developing such a
model, certain assumptions that may be strong have to
be made. Also, disturbances that are common in a
practical process are difficult to be modeled. These
can often lead to poor model precision. Empirical
models (EM) (T.Montin, 1998), on the other hand, are
computationally efficient. Data-driven models, such
as statistical analysis, neural network and fuzzy
deduction, can model a nonlinear process accurately

in the domain covered by the data, even if

unmeasured disturbances are present. But, they often
lack of good process interpretability for the dynamic
behaviors of the system.

In this paper, we propose a soft sensor model, by
combining a first principle model with a neural
network, to overcome the drawbacks of these two
approaches in their separate forms. Industrial
application to the gasoline endpoint prediction shows

that this model is more accurate and adaptable.

2. PROCESS DESCRIPTION

The crude distillation unit is a front operation
for a refinery. This unit performs the initial
distillation of crude oil into several fractions of
different boiling ranges. The products of the crude
distillation unit are either feedstock for other
processing units or a part of product blending pool.
The lighter fraction distillated from the upper
section of the crude unit (Fig.1.) can be used as
gasoline. End point is an important quality
indicator for the gasoline produced from the unit.

The operating economics of the crude unit



generally dictate that the units run as close as
possible to the product specifications (end point).
A soft sensor for the endpoint measurement needs
to be constructed due to the lack of an effective

online analytic instrument.
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Fig.1. Schema of the upper section of a crude distillation unit

3. SOFT SENSOR MODELING SCHEME

A hybrid model is developed to identify the
endpoint of gasoline for the crude unit, by combining,
in series, a FPM model that predicts the upper section
composition factor C and a multilayer neural network
that predicts the gasoline endpoint by taking the
composition C and a number process parameters as
the network input. The error between the real value
and the prediction is feedback to the network for

correction. The general structure is illustrated as Fig.2.

below.
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Fig.2. General structure of soft sensor model for gasoline endpoint

In the crude distillation operation, it is a
common knowledge that the composition of the top
inner section will affect the product quality.
Disturbances can change the cut points of the
fractions. There lacks an on-line measurement of the
upper inner composition, a nonlinear observer is
proposed to estimate it. We define that the
composition of the top inner section as C=L,/V,. C
increases, when the composition of the feed becomes
heavier. The condensed liquid phase increases, as the
inner reflux liquid phase L, increases, with an
For the

similar reasons, C decreases with a lighter feed. So,

unchanged upper unit vapor phase V,

C, as defined, can reflect the changes in the cut
fraction composition of the upper unit. For this

reason, C is referred as a composition factor.

4. ESTIMATIOR DESIGN FOR
COMPOSITION FACTOR C

The composition estimator, developed for the
crude distillation based on FPM, is derived from the
first principles of the material and energy equations.

The model equation for the process, based on the

separation process principles, is:
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The energy conservation of the upper unit results
in:
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By rearranging Eq. (1), the observation

(2)

equation for V, is given as:
7 k+1) =(1—-gd)Z,(k) g d.Hk)+ g (Gi(k) + R (K))
%2 (k) =2,(k)+gH(k)
H0=G,+G,0)
(3)
By rearranging Eq. (2), the observation

equation for V,is given as:
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Since the change of the retaining flow in the



tower tray is much faster than the change of the

temperature, the dynamic behavior of the
retaining flow can be neglected. By observing V;
and V,, we get the observation equations for the
liquid flow L, and the composition factor C of the

upper unit:

ElILl(k):Rl(k)+V2(k)_V1(k) (5)
OC (k) = L (k)/V, (k)

5. NEURAL NETWORK MODELS

Artificial Neural Network (ANN) is widely
used for its ability in modeling complex
nonlinear processes, with a minimal requirement
of the process knowledge. BP network is one of
the most widely used among numerous networks,
so it is adopted here to construct the soft sensor
model for the gasoline endpoint.

In the network, the output is the gasoline
endpoint, the number of hidden layers is one and
the number of nodes in the hidden layer is I, the

number of nodes in the input layer is n, the input

signal is xlkk Nxfk (kk=1, 2, -+, np, np is the

total number of the samples) , the weight between
the input nodes and hidden nodes is W1(n, i), the
weight between hidden nodes and output nodes is
W2(i). They are determined by the net transfer
function ¢ and the training data sets. The
structure of this network is illustrated as in

Figure.3.
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Fig.3. Network structure (NN1)

After setting the structure and the initial
weights of the network, BP algorithm (Chen, 2000)
can be used to train NNI, using the sample data

of the inputs and outputs, to obtain the network

weights.

In the production, there always exist uncertain
disturbances and time-variance process factors that
can influence the network prediction accuracy. A
standard BP network is only suitable within a certain
range of operation conditions. To improve its
prediction, we need to make correction to the
network model. Correction includes real-time
dynamic correction and updating model periodically.
Updating model means that, when sufficient new
samples are accumulated, the system model is
re-constructed based on these new training samples.
Real-time dynamic correction refers to correct the
model according to the difference between the real
value and the model predictive value. In this paper,
we would use the dynamic correction for the soft
sensor modeling, by error-feedback correction.

The error correction structure is formed by
adding an error feedback element to the structure
of the BP network (NNI1). With the basic
structure of NN1 unchanged, an additional input

node and its relevant weights are added. The
added input node fl"", i.e. the correction input,

can be estimated by the error feedback. The new
network (NN2) contains the new weights, and the

weights of the previous network NNI1.
6. INDUSTRIAL EXAMPLE
6.1  BPNN Model

By analyzing the crude unit process, we can
determine the input variables that are relevant to the
gasoline endpoint. They are the pressure of the crude
unit x1, the top temperature of the crude unit x2, the
temperature of reflux x3, the outer reflux flow x4, the
distillation temperature of the first section x5, the
flow of the first section x6, the flow of the first
middle part x7, the pressure of input material x8, the
temperature of input material x9, and the
composition factor C of the upper section x10. The
output is gasoline endpoint.

In order to show the effect of introducing
composition factor C to the soft sensor model of

the gasoline endpoint, a model is also constructed



for comparison by deleting the composition factor
C and its the
the

related  weights  from
By

prediction results of these two models, with C and

above-developed model. comparing
without C, we can obviously see the effect of
estimating C.

The trained network has the following structure.
The number of hidden layer is 1, and in the hidden
layer, the number of nodes is 8. NN1 represents the

following nonlinear relationship:

y(k) = f(xl(k),x2(k),---,x10(k)) (6)

Where, f(0] indicates the nonlinear function and

k is sampling moment.

6.2 Results And Analysis

Comparison of learning results 170 pairs of
samples are used, after pretreatment of error
testing, filtering and normalization, to train three
different soft sensor models as described above

(see table 1)

Table 1 the contrast of the results of three models after learning
average Mini- maximum le| lel<1 I<le[<2 le[>2
Mum
Real value ('C) 185.8 178 193 total 170
without C 186.0 179.5 192.3 no. 141 21 8
Com-putat
ion No Correction 185.9 178.8 192.99 no. 159 10 1
value

Corrected 185.85 178.5 192.6 no. 169 1 0

without C 1.15 CC) g without C 2.145 (C)

Absolute No Correction 0.881 (C) 'g No correction 1.223 (C)

average error ko]
Corrected 0.159 CC) Corrected 0.064 (C)
Comparison of validation results 50 pairs of value of the gasoline endpoint, dotted-line stands

samples are used to test the three trained models

for the model prediction. The abscissa stands for

(see Table 2). The deviation of model prediction sample number and the vertical coordinate
with C and error correction is less than 1°C. In indicates gasoline endpoint (C).
Figures 4, and 5, solid lines stands for the real
Table 2 the contrast of the results of industrial validation
average Mini-mu | Maxi-mu le| lel<1 1<le|<2 le[>2
m m
Real value (°C) 185.7 178 190 total 50
Without C 185.8 178.5 192.0 no. 35 6
computatl |\ correction | 185.5 179.0 189.8 no. 39 7 4
on value
Corrected 185.7 178.6 190.0 no. 49 0
Without C 1.61 (C) - Without C 4.78 (C)
2
Absolute No correction 1.241 (°C) k5] No correction 2.583 (C)
average error q>)
Corrected 0.165 (C) ~ Corrected 0.077 CC)
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Fig.4. Industrial validation results with C and Error correction

From Tables 1 and 2 and Figures 4 and 5, it
is obvious that the average error and standard
deviation of the soft sensor model with C is far
smaller than those of the model without C. It is
also shown that the modeling with correction has
much better precision than the one without
correction. The generalization performance of the
model with error correction is also better than

that of the model without the correction.
7 CONCLUSIONS

A modeling method has been proposed by
combining a first principle model with a neural
network to form a hybrid model. A soft sensor model
with composition C and error correction has been
presented for the endpoint prediction for a crude
distillation with superior performance to the models

without error correction or composition C estimation.
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