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Abstract: There is a great incentive for developing systematic approaches that effectively 
identify strategies for planning oilfield complexes. This paper proposes an MILP that 
relies on a reformulation of the model proposed by Tsarbopoulou (UCL M.S. 
Dissertation, London, 2000). Moreover, a disaggregation technique is applied to the 
MILP. A master problem determines the assignment of platforms to wells and a planning 
subproblem calculates the timing for fixed assignments. Results show that the 
decomposition approach generates optimal solutions for instances of up to 145 wells and 
64 platforms in 10 discrete time periods that otherwise could not be solved with a full-
scale model.  Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
There is a great incentive for developing systematic 
approaches that effectively identify strategies for 
planning and designing oilfield complexes, due to the 
economic impact of the underlying decisions. On the 
other hand, the application of optimization 
techniques in problems that involve oilfield 
exploration represents a challenging and complex 
problem.  
 
The literature presents models and solution 
techniques for solving problems in the design and 
planning of infrastructure in oilfields. This problem 
has been initially presented in the literature by 
Devine and Lesso (1972) that developed an 
optimization model for the development of offshore 
oilfields. 
 
According to Van den Heever and Grossmann 
(2000), in the past decisions that concerned platform 
capacities, scheduling of perforations and production 
yields had been frequently made separately. 
Moreover, certain assumptions were made in order to 
reduce the required computational effort. Another 

approach was to assume a fixed perforation schedule 
and then to determine the production yield from an 
LP model. A third approach was to determine the 
perforation schedule for a fixed production yield 
from an LP and subsequently round the non integer 
solution to integer values or even to solve the MILP. 
 
Frair (1973) proposed independent models for 
calculating the number of production platforms, their 
capacities and the scheduling of well perforation. 
However, this approach has lead to infeasible or sub-
optimal decisions since these were not considered in 
an integrated model. 
 
Iyer et al. (1998) proposed a multiperiod MINLP for 
the planning and scheduling of investment and 
operation in offshore oilfields. The formulation 
incorporates the nonlinear behavior of the reservoirs, 
pressure constraints in the well surface and 
equipment constraints. The formulation presents a 
general objective function that optimizes a given 
economic indicator, such as NPV. A sequential 
decomposition technique is proposed to solve the 
problem that relies on the aggregation of time periods 
followed by successive disaggregating steps.  



     

In the case of the planning of infrastructure of 
petroleum fields, MINLP models have been avoided 
in favor of MILP or even LP models, because of the 
inherent difficulties of treating nonlinear constraints 
and in the latter case because of the combinatorial 
explosion that results from discrete decisions. 
 
Iyer and Grossmann (1998) proposed a 
decomposition algorithm that solves a design 
problem in reduced space of binary variables to 
determine the assignment of wells to platforms. The 
planning model is then solved for fixed values 
determined in the design subproblem. 
 
Tsarbopoulou (2000) proposed an MILP model for 
the optimization of the exploration of oil and gas in a 
petroleum platform. The proposed model relies on 
binary variables to determine the existence of a given 
platform and the potential connection between wells 
and platforms.  
 
This paper proposes a reformulation of the MILP of 
Tsarbopoulou (2000) model that relies on a smaller 
number of binary variables that requires a smaller 
computational effort. Moreover, a disaggregation 
technique proposed by Iyer and Grossmann (1998) is 
applied to the reformulated model that is composed 
of assignment and planning sub problems. The 
master problem determines the assignment of 
platforms to wells and the planning sub problem that 
calculates the timing for fixed assignments. 
 
 

2. PROBLEM DEFINITION 
 
An offshore oil field consists of J wells that contain 
oil and gas. Platforms are required to extract these 
substances from one or more oilfields. The planning  
problem involves the selection of the number and 
types of units, such as platforms and wells, as well as 
the decision of assigning platforms to wells in a 
given time horizon. 
 
 

3. MATHEMATICAL MODEL 
 
The planning of infrastructure in offshore oilfields 
includes discrete and continuous decisions along the 
project lifetime, such as the selection of platforms 
and oilfields to invest as well as oil and gas 
production, respectively. 
 
Based on these considerations, the model that 
represents the infrastructure is a Mixed Integer 
Programming (MIP) problem. The objective is to 
maximize the net present value (NPV).  
 
3.1 Model Assumptions 
 
The following are the main assumptions for the 
proposed model: 
 
(A1) Only two substances are removed, which are oil 
and gas. 
(A2) The productivity index is assumed constant 
throughout the planning horizon.  

(A3) Whenever oil is removed from a reservoir, its 
pressure decreases linearly. 
(A4) All wells in the reservoir were connected and 
therefore the pressure in each well is constant in a 
given time period. 
(A5) There is no pressure loss along the pipelines 
between the wells and the platforms.  
(A6) A linear model represents the gas-to-oil rate. 
This value is 0.7 when no oil is removed and reaches 
the maximum value of 1.0 when all the oil is 
removed. 
(A7) The initial amounts of each substance are 
known for each well. 
(A8) The production limit for each substance is 
known along the planning horizon. 
(A9) The area of the field is known and it is divided 
into small rectangles. In the center of each rectangle 
it is possible to allocate a platform. 
(A10) The wells are randomly distributed in the field. 
(A12) The time horizon is discretized in intervals of 
equal length. 
(A13) Production costs and yields all substances are 
known for each time period. 
(A14) Interest and inflation rates are known and are 
constant along the planning horizon. 
 
3.2 Notation 
 
Indices: 
g gas 
i  platform 
j  well 
o  oil 
s  substance (gas or oil) 
t  time period  
 
Continuous variables: 
CON connection cost 
CUMst cumulative substance production up to 

year t 
DR overall drilling cost 
FMAXsjt maximum flow of substances from well at 

time period t 
Fsjt flow rate of substance s from well j during 

time period t 
GORt gas-to-oil ratio at time period t 
Pt pressure of all wells at time period t 
ZI objective function  
 
Binary Variables 
Mi existence of platform i 
xijt  connection of platform i to well j at time 

period t 
Xij connection of platform i to well j 
 
Parameters: 
APGt annual gas price at time period t 
APOt annual oil price at time period t 
COSTij connection cost 
Dt depreciation rate at time period t 
INVALsj initial value for substance s in well j 
Qst upper production limit for each 

component at time period t 
PCG  production costs for gas 
PCO  production costs for oil 



     

PIj productivity index for well j  
 
Problem MR corresponds to a reformulation model 
from the one proposed by Tsarbopoulou (2000) 
denoted as model MO. The main difference between 
both models relies on the representation of the 
decision variables. Tsarbopoulou (2000) considered 
an extra binary variable that assigns wells to 
platforms besides the one that relates wells to 
platforms at every time period (xijt). The 
reformulated model contains only the last set of 
variables, which is sufficient to model the discrete 
decisions of the problem. 
 
MR:  
Max Zi=GAS+OIL-DR-CON     (1) 
s.t. 

s,t s,t 1 s, j,t
j

CUM CUM F      s,t−= + ∀∑  (2) 

8
t o,tGOR 0.7 3.10 CUM    t−= + × ∀  (3) 

t o,tP 100 0.000008 CUM    t= − × ∀  (4) 

o, j,t j tFMAX PI P       j,t= × ∀  (5) 
6

g, j,t j o,tFMAX PI (60 2.6.10 CUM )  j,t−= − ∀  (6) 

s, j,t s, j,tF FMAX     s, j, t≤ ∀  (7) 

s, j,t s,t
j

F Q        s, t≤ ∀∑  (8) 

s, j,t s, j
t

F INVAL     s, j≤ ∀∑  (9) 

i i, j,t
i j t

DR (100M 10 x )10000= + ×∑ ∑∑  (10) 

i, j i, j,t
i j t

CON COST x= ×∑∑∑  (11) 

j,t j,t 1 i, j,t
i

A A x        j,t−= + ∀∑  (12) 

o, j,t j,tF FOMAX A       j,t≤ × ∀  (13) 

g, j,t j,tF FGMAX A       j,t≤ × ∀  (14) 

i, j,t
i t

x 1     j≤ ∀∑∑  (15) 

ijt i
t

x M i, j≤ ∀∑  (16) 

o, j,t t t
i j t

OIL F (APO PCO) D = × − × ∑∑∑  (17) 

g, j,t t t
i j t

GAS F (APG PCG) D = × − × ∑∑∑  (18) 

 
The objective function in eq. 1 is the expected net 
present value, which includes the revenues of oil and 
gas reduced by the drilling and connection costs. 
Equation 2 states that the cumulative production of 
each substance (oil/gas) is the same as the 
cumulative production in the previous time period 
increased by an amount equal to the flow from all 
wells at the present time. Equation 3 states that the 
gas-to-oil rate increases as oil is extracted. Equation 
4 states that the initial pressure of the reservoir is 100 
bar and that it decreases linearly with accumulated 
production. Equations 5 and 6 are related with the 
maximum flow of production of the oil and gas, 
respectively. Equation 7 states that the flows of each 
substance from each well should not exceed the 
maximum production limits. Equation 8 states that 
the flow any substance, from all the wells, should not 
exceed the upper production limits. Equation 9 states 

that the flow of all substances throughout the time 
horizon should not exceed their initial amounts. 
Equations 10 and 11 are related to the drilling and 
connection costs, respectively. The cost depends 
directly on the assignment of the well to the platform 
at time period t. Equation 12 states that a well is 
opened only once and remains open throughout the 
whole time period. Equations 13 and 14 state that the 
oil and gas flow should not exceed some specific 
limits. Equation 15 states that a well is connected to a 
platform once. Equation 16 states that a well is 
connected to a platform only if the same platform 
was allocated.  Equations 17 and 18 are related to the 
revenues from oil and gas sales, respectively. 
 
 

4. DISAGGREGATION APPROACH 
 
Iyer and Grossmann (1998) proposed a two-level 
decomposition approach for the planning of process 
networks. Van der Heever and Grossmann (2000) 
then applied this approach to an oilfield 
infrastructure-planning model. In this section, a 
similar approach is applied to the reformulated model 
MR. The disaggregated model is denoted as MD that 
is decomposed into two subproblems: the master 
subproblem that solves a model that assigns 
platforms to wells (problem AP) and the timing 
subproblem (problem TP). The latter relies on the 
assignments that are obtained in the master 
subproblem and decides on when to install the 
platforms. The decomposition algorithm as applied to 
model MR can be seen in Figure 1. The proposed 
technique is similar to the one proposed by Van der 
Heever and Grossmann (2000), which however have 
considered non convex nonlinearities in the sub-
problem and therefore could not guarantee global  
solutions. 

Fig. 1. Bilevel decomposition algorithm. 
 
The assignment problem (AP) is defined as follows: 
 
max   ZI GAS OIL DR CON= + − −  (1) 
s.t.  
constraints (1) to (9), (17) and (18) 

i i, j
i j

DR (100M 10 X )10000= +∑ ∑  (19) 

i, j i, j
i j t

CON COST X= ×∑∑∑  (20) 

j i, j
i

A X         j= ∀∑  (21) 

Yes 

No 

Master subproblem 
Solve (AP) to obtain an 

upper bound and Xi,j 

feasible stop 

Solve (TP) for fixed Xi,j 

feasible 
No Yes 

add integer 
 cut

Solution is a lower bound. 
If UB-LB<Tolerance, STOP

add design  
& integer cut



     

o, j,t jF FOMAX A         j,t≤ × ∀  (22) 

g, j,t jF FGMAX A         j,t≤ × ∀  (23) 

i, j
i

X 1     j≤ ∀∑  (24) 

ij iX M      i,j≤ ∀  (25) 
 
The solution of AP provides values for Xi,j. If this 
variable is fixed ( i, jX ), a feasible solution for TP is a 
feasible solution for MR and generates a lower 
bound for this problem, where TP is defined as 
follows: 
 
Problem TP 
max   ZI GAS OIL DR CON= + − −                       (1) 
s.t. constraints  (2) to (18)   

i, j,t i, jx X                i,j,t≤ ∀  (26) 

j,t jA A                  j, t≤ ∀  (27) 
  
Similarly to Iyer and Grossmann (1998), constraints 
26 and 27 select a subset of assignments for the 
planning problem. 
 
The following are the constraints used in the 
algorithm to avoid subsets and supersets that would 
result in suboptimal solutions: 
 

r r
n1,n2 i, j 1 0

r rn1 Z n2 Z1 1

X X Z    i,j Z ,r=1...R
∈ ∈

+ ≤ ∀ ∈∑ ∑  (28) 

r
n1,n2 i, j 1

r rn1 Z n2 Z0 0

X X 1   i,j Z , r=1...R
∈ ∈

+ ≥ ∀ ∈∑ ∑      (29) 

r r
i, j i, j r

i M j M i N j Nr r r r

X X M 1
∈ ∈ ∈ ∈

− ≤ −∑ ∑ ∑ ∑  (30) 

 
where  
 

{ }r
i, jrM i / X 1 for configuration in iteration r= =  

{ }r
i, jrN i / X 0 for configuration in iteration r= =  

{ }r
1 i, jZ i, j / X 1= =  

{ }r
0 i, jZ i, j / X 0= =  

 
Similarly to Iyer and Grossmann (1998), equation 28 
states that if in any solution all the x variables in any 
set r

1Z  are 1, then all remaining variables must be 
zero in order to prevent a superset of r

1Z  from 
entering the solution of AP. Equation 29 shows cuts 
for precluding subsets of r

1Z . Equation 30 has the 
effect of establishing the basis for deriving integer 
cuts on supersets and subsets of the configurations 
predicted by the assignment problem. 
 
 

5. RESULTS 
 
In this section, problems are solved to illustrate the 
performance of the model and of the solution 
strategy. The problems were modeled using GAMS 
(Brooke et al. (1998) and solved in the full space 
using the CPLEX solver (ILOG, 1999). 

The reformulated model (MR) presented better 
computational performance with respect to the 
original model (MO) proposed by Tsarbopoulou 
(2000), as shown in Table 1 that presents he CPU 
times obtained for a problem with 16 platforms as a 
function of the number of wells (NW). Interestingly, 
the integrality gap is the same for both models and 
increases with problems size. 
 
Note from Table 1 that none of the models is able to 
solve problems for more than 40 wells, despite a 
relatively small integrality gap verified for the 
smaller instances. Nevertheless, when MR is subject 
to the disaggregation strategy proposed in the 
previous section (denoted as MD), the computational 
gain is remarkable. The CPU times obtained for a 
problem with 16 platforms as a function of NW are 
compared to those from MO and MR in Figure 2. 
 
Figures 3 and 4 illustrate the computational time for 
MD for different numbers of wells and for platforms, 
ranging from16 to 64. 
 
Table 1 – Computational performance of the models  

 
CPU time (s) gap NW 

MO MR (%) 
05 0.8 0. 7 0.58 
10 2.7 1.6 0.55 
15 8.5 4.0 0.67 
20 54.6 43.8 0.90 
25 117.0 40.2 1.13 
30 6.1 3.9 1.29 
35 10.7 6.4 1.35 
40 * * - 

* No solution obtained after 18,000 CPU s. 
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Fig. 2. CPU times for the proposed models 
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Fig. 3. Computational performance for MD in large 

instances 
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Fig. 4. Computational performance for MD in large 
instances 
 
Table 2 presents the sizes of problems MO and MR, 
such as the number of equations (SE), number of 
continuous variables (SV) and number of discrete 
variables (DV) for several numbers of wells (NW) 
and 16 platforms. 
 
Table 3 presents the corresponding sizes of problem 
MD, for several values of the number of wells. At 
each iteration, SV and DV are maintained, whereas 
there is an average increase de 20% in the number of 
equations from iteration 1 to 2, due to cut generation. 
 
It can be seen from Table 3 that the reduction in the 
number of discrete values (DV) in MD is not 
significant with respect to MR. However the 
introduction of constraints (26) greatly reduces the 
search space and therefore the computational effort. 
 
 

Table 2 – Dimensions of MO and MR 
 

MO MR NW SE SV DV SE SV DV 
05 1506 1351 1056 510 1111 816 
10 2931 2481 1936 955 2161 1616 
15 4356 3611 2816 1400 3211 2416 
20 5781 4741 3696 1845 4261 3216 
25 7206 5871 4576 2290 5311 4016 
30 8631 7001 5456 2735 6361 4816 
35 10056 8131 6336 3180 7411 5616 

 
 

Table 3 – Size of problem MD 
 

1st iteration NW Sub 
problem SE SV DV 

AP 465 346 101 5 
TP 1285 1111 866 
AP 865 631 186 10 
TP 2505 2161 1716 
AP 1265 916 271 15 
TP 3725 3211 2566 
AP 1665 1201 356 20 
TP 4945 4261 3416 
AP 2065 1486 441 25 
TP 6057 5311 4266 
AP 2465 1771 526 30 
TP 7277 6361 5116 
AP 2865 2056 611 35 
TP 8551 7411 5966 

6. CASE STUDY 
 
In this section we present in detail a case study as the 
one presented by Tsarbopoulou (2000) that provides 
a comparison between MO developed by the author 
and the proposed model MD. For this case 16 
platforms and 30 wells are considered for a horizon 
of 10 years. In this problem, a rectangular oilfield of 
10,000 ft by 15,000 ft was assumed. The interest rate 
was set to 15% and annual inflation rate to 3%. 
Upper production limits of oil and gas in each well 
are 1,250,000 and 875,000, respectively.  
 
Data regarding productivity indexes (PI), initial 
amount of substances (oil and gas), the coordinates in 
the field, and depth (DP) in each well are given in 
Table 4. Cost and depreciation correlations, that 
depend on the well depth, as well as gas and oil 
prices are given in Tsarbopoulou (2000). 
 
The optimal values obtained with MO, MR and MD 
are the same and reach 1.6464*109. However, as can 
be noted from Table 1 and Figure 2, there is a 
reduction of approximately 60% in CPU time for 
MD. Only 3 subproblems are required for MD. 
 
The well-platform assignments obtained for all 
iterations of MD are given in Table 5. Note that the 
sequence for the decision variable is (well, platform, 
time period). 
 
 
 

Table 4 - Data for each well 
 

INVAL  
(105 ft3/year) j X 

(ft) 
Y 

(ft) 
DP 
(ft) 

PI 
3ft

yr.bar
 
 
 

  
Oil Gas 

1 5336 1183 6.27 1840 8.5 5.95 
2 6136 4283 5.26 2000 11.0 7.70 
3 6338 6640 5.34 1760 12.0 8.40 
4 12911 1082 5.61 1920 9.5 6.65 
5 4528 8700 5.92 1980 10.0 7.00 
6 10862 8990 5.16 1680 10.5 7.35 
7 9683 4679 5.42 1620 8.0 5.60 
8 2716 2677 5.11 1629 9.0 6.30 
9 8808 4510 5.82 1740 10.0 7.00 
10 6007 5702 5.66 1940 11.5 8.05 
11 2999 6058 5.00 1840 8.5 5.95 
12 13090 2313 6.22 2000 11.0 7.70 
13 13855 5889 6.25 1760 12.0 8.40 
14 7713 6440 4.90 1920 9.5 6.65 
15 4369 2773 5.59 1980 10.0 7.00 
16 10260 8099 5.26 1680 10.5 7.35 
17 11416 4973 6.03 1620 8.0 5.60 
18 6648 3866 5.17 1629 9.0 6.30 
19 9834 3451 5.57 1740 10.0 7.00 
20 8006 3679 5.73 1940 11.5 8.05 
21 12096 2913 4.88 1840 8.5 5.95 
22 7000 7869 4.58 2000 11.0 7.70 
23 3477 1774 5.78 1760 12.0 8.40 
24 9153 3104 6.08 1920 9.5 6.65 
25 617 1034 4.76 1980 10.0 7.00 
26 1071 3328 5.06 1680 10.5 7.35 
27 4095 1249 5.06 1620 8.0 5.60 
28 7440 9979 5.98 1629 9.0 6.30 
29 7155 9232 6.29 1740 10.0 7.00 
30 1095 7980 6.36 1940 11.5 8.05 



     

Table 5 – Assignments for each iteration of MD 
 

r=1 r=2 
AP - Xi,j

(1)  TP - xi,j,t (1) AP - Xi,j (2) 
2, 3 2, 3, 1 2, 3 
2, 6 2, 6, 1 2, 6 
2, 7 2, 7, 1 2, 7 

2, 11 2, 11, 1 2, 11 
2, 14 2, 14, 1 2, 14 
2, 23 2, 23, 1 2, 23 
3, 12 3, 12, 1 3, 12 
3, 13 3, 13, 1 3, 13 
3, 15 3, 15, 1 3, 15 
3, 19 3, 19, 1 3, 19 
4, 4 4, 4, 1 4, 4 

4, 10 4, 10, 1 4, 10 
9, 1 9, 1, 1 9, 1 
9, 8 9, 8, 1 9, 8 

9, 22 9, 22 ,1 9, 22 
9, 24 9, 24, 1 9, 24 
9, 29 9, 29, 1 9, 29 
9, 30 9, 30, 1 9, 30 
10, 2 10, 2, 1 10, 2 
10, 5 10, 5, 1 10, 5 
10, 9 10, 9, 1 10, 20 

10, 20 10, 20, 1 11, 9 
11, 25 11, 25, 1 11, 25 
11, 28 11, 28, 1 11, 28 
13, 18 13, 18, 1 13, 18 
13, 27 13, 27, 1 13, 27 
15, 17 15, 17, 1 15, 17 
15, 21 15, 21, 1 15, 21 

 
Note that constraints 28 to 30 do not allow the 
repetition of assignments neither the generation of 
sub and supersets. In this sense there is no significant 
change in the allocation obtained in AP in 
consecutive iterations. The only modification is the 
allocation of well 9 to platform 11 in iteration 2 in 
place of the assignment of well 20 to platform 10. 
 
The cumulative productions of oil and gas as well as 
GOR, as functions of time are shown in Figures 5 
and 6, respectively. Note that the cumulative flow 
rate of oil as well as the gas to oil ratio increase 
linearly with time up to time period 8. Afterwards, 
there is a reduction in this value due to the upper 
bound on the GOR that is set to one.  
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Fig. 5. Cumulative substance production up to year t 
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Fig. 6. Gas-to-oil ratio at year t 

 
7. CONCLUSIONS 

 
This paper presented a reformulated MILP for the 
planning of the oilfield infrastructure that presents a 
significant reduction in the number of discrete 
variables for the same relaxation gap with respect to 
the model developed by Tsarbopoulou (2000). 
Moreover, a decomposition approach that relies on 
the disaggregation of the assignment and timing 
decisions in analogy to the one proposed by Iyer and 
Grossmann (1998) has been presented. Results show 
that computational performance is greatly improved, 
whereas global optimality is guaranteed. Problems of 
64 platforms and 145 wells are efficiently solved for 
a 10-year horizon.  
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