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Abstract: In this paper, we present a novel on-line approximation technique to find the 
parameters of a First-Order plus Time Delay (FOPTD) model of higher-order systems using 
fuzzy reasoning. Based on the information obtained from the model, the parameters of a PID 
controller can be adjusted on-line. The performance of this algorithm is verified by simulation 
studies. The simulated examples demonstrate the feasibility and adaptive property of the 
proposed algorithm. Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
Many systems are represented mathematically by high 
order dynamics. However, a lower-order model is 
sufficient for controller tuning (Ashworth, 1982).  It is 
widely accepted that for the purpose of controller design, a 
First Order Plus Time Delay (FOPTD) model can 
approximate such systems adequately and hence facilitate 
controller design. In general, the parameters of this model, 
namely system gain, apparent time constant and apparent 
time delay can be used to tune a PID controller. There are 
many techniques to determine the parameters of FOPTD  
(Ziegler, 1942, Smith, 1967, 1997, Sundaresan, 1978). 
However, most of them are off-line approximating 
methods, for which the parameters are obtained from 
process reaction curve. In such cases, it is difficult to 
apply these methods to describe adequately the time-
varying characteristic of the plant. 
 
In recent years, there has been an unprecedented increase 
in applications of the so-called Soft-computing 
methodologies in identification and control of dynamic 

systems (Bha, 1990, Czogala, 1981, Lu, 1997, Narendra, 
1990). Soft-computing methods are referred to techniques 
that employ fuzzy systems, neural networks and genetic 
algorithms either alone or in hybrid form. 
 
In particular, fuzzy logic theory (Zadeh, 1965) has been 
the focus of much research in the areas of control and 
identification. Its integration with model-based systems 
theory has produced a unique approach entailing the 
human knowledge and heuristic methods with rigourous 
mathematical methods for stability and convergence 
analysis and several successful applications in control and 
identification have been reported (Chen, 1998, Wang, 
1996). Whereas majority of earlier efforts was focused in 
fuzzy controllers, the emerging area of fuzzy identification 
has become very important in fuzzy system theory in the 
last decade (Sugeno, 1986, Babuska 1996). Fuzzy 
identification methods fall into three categories, linguistic 
fuzzy model (Wang, 1996), fuzzy relational modelling 
(Wang, 1997) and Takagi and Sugeno (TS) modeling 
(Sugeno, 1986). It is interesting to note that not much 
attention has been paid to reduced order modeling. This  



may be due to the fact that fuzzy logic systems are 
essentially model free approaches. This has motivated the 
authors to develop an on-line approximation method to 
determine the parameters of FOPTD using fuzzy systems. 
    
This paper presents a simple and new approach to the on 
line lower-order model identification for unknown 
processes using fuzzy system. The idea is to integrate a 
fuzzy system with a model generator with known 
structure. The parameters learning task is performed using 
the gradient descent algorithm (Wang, 1997).  

 
The rest of this paper is organized as follow: Section 2 is 
devoted to the idea of approximating a high-order system 
with a FOPTD model using fuzzy system. The proposed 
method combined with PID controller is derived in 
Section 3. In Section 4 simulations studies are presented.  
Finally, the paper is concluded in Section 5. 
 
2. LOWER ORDER APPROXIMATION OF HIGHER-

ORDER SYSTEMS WITH FUZZY SYSTEM 
 
2.1 The On-line Approximating Approach  
 
It is well known that high-order processes dynamic can be 
described with sufficient accuracy by a first order plus 
time delay model (Sundersan, 1978). Consider: 
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where K is the system gain, T is the dominant time 
constant, τ is the apparent dead time and Y(s) and U(s) are 
the Laplace transformed output and input signals 
respectively. The proposed approach is conceptually 
simple and is realized by cascading a fuzzy system and 
model generator in parallel with the process to be 
identified as shown in Figure 1. The input signal u(t) is 
applied to the high-order system, the fuzzy system, and 
the FOPTD model generator at the same time. The fuzzy 
system has three parameters, namely, the gain K, the time 
constant T, the dead time τ . These three parameters are 
fed to the first-order plus dead time model generator to get 
the output of the model. The error between the output of 
the plant and the output of the model is used to train the 
consequent part of the fuzzy system. The training process 
tends to force the output of the FOPTD model generator 
to approximate the output of the system. Thus, the inputs 
of the FOPTD model generator are the approximating 
parameters of the first-order representation of the high-
order system. The output of the FOPTD model is expected 
to match the output of the high-order system after the 
model converges. 
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Fig. 1 Block Diagram of the proposed method 

 
The transfer function of the FOPTD model generator is 
rewritten below: 
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2.2 The Fuzzy System Structure and Training Algorithm 
 
In this paper, we apply the fuzzy identification techniques 
to obtain the process model directly. The ith rule of the 
fuzzy model is of the following form: 
 
Rule i: If x1 is Ai1 and …..and xn is Ain  then 

ip̂ is ci 

  
where nRx ∈ and Rpi ∈  are the input vector (process input 

u(t)) and output value (estimated model parameters) of the 
fuzzy system respectively, Aij ,i=1,2.,m, j=1…n, are the 
fuzzy sets. Given the input data x, by using a singleton 
fuzzifier, product fuzzy inference and weighted average 
defuzzifier, the output value of the fuzzy system is inferred 
as follows: 
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if we fix the µij (Membership value of x for Aij) and view 
the ci (Consequence of Rule i) as adjustable parameters, 
then equation (3) can be rewritten as: 
 

)()(ˆ xx ξϕT
ip =      (4) 

 
where T

m
T

mcc ))(,),(()(,),,( 11 xxx ξξξϕ LLLL == is a 

regression vector defined as 
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To train the above fuzzy system, a direct learning the 
gradient descent algorithm (Wang, 1997) is employed. 
The consequent parameters are adjusted in each iteration is 
derived below. The error function E is define as: 
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where y and ym are the output of the plant and the output at 
the FOPDT model at any time instant t. Within each time 
interval from t to t+1, the gradient descent algorithm is 
used to update the consequent parameters according to the 
following relationship: 

i
iii c

E
tctc

∂
∂

⋅−=+ η)()1(     (7) 

where ηi is the learning rate. Using the chain rule, one has 
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p̂ =[K T τ] is a 3 1 input vector of the FOPDT model (the 

output of vector of the fuzzy system) 
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To find the partial derivatives of the output ym(t) of the 
model generator (FOPTD) w.r.t. gain (K), dominant time 
constant (T) and apparent dead-time (τ), respectively, 
please refer to Appendix A1. 
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From equations (7) and (8), we can rewrite the update rule 
as follows: 
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where 1,2 and 3 is the indication of the FOPTD model 
parameter gain, time constant and time delay and η1  ,η2 

and η3  are the learning rate of each fuzzy sub-system 
respectively. Figure 2 show the membership function of 
each sub-system .We have used the value of a equal to 1 
in the following simulations. Therefore the fuzzy system 

consists of three fuzzy sub-systems as shown in Figure 2 
and the output value can be obtained from equation 16.  
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where T

mcc ),,( 33
13 LL=ϕ , T

mcc ),,( 22
12 LL=ϕ  and 

T
mcc ),,( 11

11 LL=ϕ  are the regression vector of each sub-

system as given in equation (5). The three fuzzy sub-
systems have similar structures. In this paper, 2 fuzzy 
rules are used for each fuzzy sub-system. 
 

 

                 
                    1 
 
 
 
  

     -a                  +a  

 
Fuzzy Sub- 

System I 

Fuzzy Sub- 
System II 

Fuzzy Sub- 
System III 

Input
u(t) 

p1 

p2 

p3 

^

^

^

 
 

Fig 2 Fuzzy Subsystems  
 
3.  ON LINE PID TUNING METHOD USING FUZZY 

SYSTEM 
 
In order to show the effectiveness of the proposed method, 
we combine the fuzzy algorithm with a standard PID 
controller to make an adaptive control algorithm. The 
control structure is shown in Figure 3. There are two parts 
in the control structure of the on line PID tuning method. 
The first part, which was described in the previous section, 
is the approximation of high order systems with FOPTD 
using fuzzy system, and the second part is the design of 
the PID controller. The parameters of the PID controller 
can be obtained from the corresponding parameters of the 
estimated FOPTD by fuzzy system. We have used the 
Ziegler-Nichols ultimate cycle tuning method (17) to 
compute the parameters of the PID controller: 
 
Kp = 0.6 Ku TI = 0.5 Tu,,  Td = 0.125Tu  (17)  
 
Here, Kp, Ti, Td, Ku and Tu are the proportional gain, 
integral time constant, derivative time constant, the 
ultimate gain and the ultimate period respectively. The 
ultimate gain and the ultimate period are calculated from 
the FOPDT model of the high order plant (Rad, 1997) It 
should be emphasized that other control algorithms could 
also be used. The PID controller is implemented in the 
following form: 
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where u(t),y(t),r(t),y(t)and yf(t) are the controller output, 
process output, set-point and filtered derivative, 



respectively. The implementation of the adaptive PID is as 
follows: 

1. Approximate the first-order with time delay model 
(FOPTD) parameters by fuzzy system. 

2. Determine the ultimate gain (Ku) and ultimate period 
(Tu) by the FOPTD model.  

3. Find the PID controller parameters Kp,Ti and Td  
from equation (11) and calculate u(t.)    

4. Find the FOPTD model output ym(t) from the FOPTD 
Model Generator. 

5. Calculate error between the (FOPTD) model output 
and the process output. 

6. Update ci(t) by using equation(13-15) (Gradient 
descent algorithm). 

7. Update the error between the set-point and the 
process output. Go to step (1) 
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4. SIMULATION RESULTS 
 
To show the adaptive behaviour of the algorithm, let us 
consider three processes as:  
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The first process is a second order with time delay system, 
the second process is a non-minimum phase system and 
the third process is a fourth order time delay system. First, 
adaptive control of Process I was simulated for t =120s 
after which the system was changed from Process I to 
Process II. For t =320s the system was switched from 
process II to process III. Furthermore, it should be noted 
that the gain in systems 1,2 and 3,2 are different (1.5 and 
1.0). It is known that some adaptive controllers cannot 
cope with change in steady-state gain of the controlled 
system. However, as it is seen in Figure 5, the proposed 
method can successfully track the system change. Figure 4 
shows the overall performance of the proposed algorithm. 
In the simulation, the set-point was selected to be a square 

wave with amplitude 0.6 and a period of 80s. A Gaussian 
noise with mean zero and variance of 0.001 was injected 
at the output of the system. We employed a fourth order 
Runge Kutta numerical integration algorithm for all time 
responses and the integration interval was selected to be 
0.1s. The fuzzy system also used the same time interval 
for updating its parameters. The simulation proceeded as 
follows: the PID controller was initialized with Kp = 1, Ti 
=1000, Td = 0.0. The consequent values of fuzzy system 
were initialised with c1=1.0, c2=1.8, c3=3.5. The learning 
rates were chosen as η1=0.25, η2=0.8 and η3=0.8 
respectively. Figure 4 shows the overall performance of 
the three controlled systems. In this figure, the set point 
and the output, the controller signal and the estimated 
parameters of gain, apparent time delay and the dominant 
time constant are shown in top, middle and bottom curves 
respectively. In all these system changes, the fuzzy system 
converged and the estimated parameters of the FOPDT 
also converged to their steady state values. The proposed 
method is shown to provide stable and robust control 
under various conditions. Tables 1, 2 and 3 show the 
parameters of FOPTD model approximated by several 
other methods such as Smith's (Smith, 1967), minimized 
error (Sundersan, 1978), and the corresponding ultimate 
gain and the ultimate period for processes I, II and III 
respectively. It should be noted that the parameters from 
all other methods except the proposed one were obtained 
off-line, from open loop excitation with unit step and were 
noise free. Furthermore, the values quoted for the 
proposed algorithm is based on the last measurement 
before each system change and not the average value. 

Table 1  
Process I FOPTD Model Parameters 

 K T ττ Ku Tu 
Smith Method[11] 1.5 1.65 3.00 1.06 8.38 
Minimized-error[12] 1.5 1.46 3.11 0.98 8.44 
Proposed method  1.5 1.33 3.19 0.936 8.48 
Process I - - - 1.036 8.438 

 
Table 2 

Process II FOPTD Model Parameters  
 K T ττ Ku Tu 
Smith Method[11] 1.0 1.89 2.43 1.93 7.22 
Minimized-error[12] 1.0 1.67 2.55 1.74 7.35 
Proposed method  1.0 1.39 2.45 1.64 6.91 
Process II - - - 1.54 6.83 

 
Table 3  

Process III FOPTD Model Parameters 
 K T ττ Ku Tu 
Smith Method[11] 1.5 2.49 4.86 1.03 13.39 
Minimized-error[12] 1.5 2.057 5.1 0.923 13.49 
Proposed method  1.5 2.66 4.75 1.07 13.33 
Process III - - - 0.987 13.48 
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5. CONCLUSIONS 

 
In this paper, a new on-line FOPTD modelling method is 
proposed which is designed using fuzzy system theory. 
The proposed method is different from other fuzzy 
identification methods since it is integrated with a model 
generator to determine the parameters of FOPTD. The 
outputs of the fuzzy system are the three parameters of the 
FOPTD model. Combining with a PID controller, an on-
line adaptive control using fuzzy system is designed and 
tested. The simplicity of the scheme for model-based 
control provides a new approach for implementing fuzzy 
applications for a variety of industrial control problems. 
Results presented clearly demonstrate the adaptive 
property of the proposed method.  
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Assuming that all initial states are zeros and D=0, the 
output equation becomes: 
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where θ is the model time delay and h(t, p) =L-1[Gm(s)] is 
the impulse function of Gm(s). The vector is defined as p = 
[a1 a2 …an b0 b1 …bm ]. The partial derivatives of the model 
output with respect to the time delay and the model 
parameters are as follows. 
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For first order with time delay model 
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For second order with time delay model
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The control signal u(t) is filtered by the filter function in 
eq. (A9-A11) to find the partial derivatives of ym(t) with 
respect to various model parameters. 


