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Abstract: A batch-to-batch iterative product quality optimisation control strategy for a batch
polymerisation reactor is proposed. Recurrent neural networks are used to model the dynamic
behaviour of product quality variables. Model-plant mismatches and unknown disturbances
are reflected in the model prediction errors. The repetitive nature of batch processes enables
this information being discovered from previous batches and used to improve the current
batch operation. Recurrent neural network predictions for the current batch are modified
using prediction errors in previous batches. Because modified model errors are gradually
reduced from batch to batch, the control trajectory gradually approaches to the optimal
control policy and tracking errors also converge. The proposed scheme is illustrated on a
simulated batch polymerisation reactor. Copyright © 2003 IFAC
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1. INTRODUCTION

Batch-to-batch optimisation of operating conditions
for improving product quality and/or process
efficiency has generated a challenging area of
research in batch processes. Batch-to-batch
optimisation exploits the repetitive nature of batch
processes to determine the optimal operating policy.
The general idea of batch-to-batch optimisation is to
use results from previous batches to find iteratively
the optimal control policies for subsequent batches,
while performing the smallest number of sub-optimal
runs (Srinivasan et al., 2001). Various strategies have
been proposed for batch-to-batch optimisation in the
literatures. Some strategies have been employed to
compensate for modelling error (Dong et al., 1996;
Crowley et al., 2001). Recently, iterative learning
control (ILC) using optimisation has been introduced
to directly update input trajectory. Campbell et al.
(2002) presented a brief survey of linear model based
run-to-run control algorithms for batch processes.
Lee and co-workers in several related articles (Lee et
al., 1999; Lee et al., 2000) proposed the Q-ILC
approach with quadratic criterion for temperature

control of batch processes. It combines ILC with
model predictive control. A linear time-varying
model was built to represent reactor temperature in
relation to feed and a pre-specified trajectory of the
temperature was tracked. It has been shown that
effective tracking control performance can be
achieved despite model errors and disturbances. This
approach demonstrates that based on a linear model
and pre-specified trajectory, temperature control of
batch processes can be carried out by an ILC type
approach.

However, this ILC type approach is difficult to be
used directly for product quality control of batch
processes. It is usually more difficult to set the
reference trajectories for product qualities Yd =
(yd(t)), t∈(0, tf), practically and reasonably than for
temperature. Even if such a reference trajectory can
be set, it is usually difficult to measure how well the
reference trajectory is tracked since many product
quality variables are difficult to be measured on-line.
Although the reference sequences of product
qualities during a whole batch may not be obtained,
the desired values of product qualities yd(tf) at the end



time of a batch are usually known. This makes it still
possible to improve the product qualities from batch
to batch. Furthermore, dynamics of product qualities
cannot be represented accurately using a linear model
since batch processes are operated in transient modes
and their dynamics are intrinsically non-linear. The
development of accurate mechanistic models of batch
processes is usually costly and time-consuming.
Alternatively, an empirical model, e.g. a recurrent
neural network (RNN) model, can be built using
process operation data to represent the non-linear
dynamic characteristics of a batch process. In this
study, RNN models are used to represent the non-
linear relationship between the control trajectory and
some product quality variables. The model
predictions are iteratively modified by using model
prediction errors in previous batches and
optimisation is carried out based on the modified
predictions.

The rest of this paper is structured as follows: Section
2 presents a batch-to-batch model-based iterative
optimisation strategy. A simulated batch methyl
methacrylate (MMA) polymerisation reactor is
presented in Section 3. Section 4 gives simulation
results of the proposed scheme on the MMA
polymerisation reactor. Finally Section 5 draws some
concluding remarks.

2. MODEL BASED BATCH-TO-BATCH
ITERATIVE OPTIMISATION

2.1 Batch process modelling using recurrent neural
networks
We consider a batch process where the run length (tf)
is fixed and divided into N equal intervals. Let us
define the input and product quality sequences as

Uk=[uk(0), uk(1),…, uk(N-1)]T  (1)

Yk=[yk(1), yk(2),…, yk(N)]T (2)

where k is the batch index, y∈Rn are product quality
variables, u∈Rm are the input (manipulted) variables
for controlling the product quality.

In this study, RNN models are used to model the
non-linear relationship between Uk and Yk. Given the
initial conditions (y0, u0) and the input sequence Uk,
RNN models can predict recursively the output (tf)
at the end of a batch. Thus the predictions from RNN
models are long range or multi-step-ahead
predictions. The networks are trained using the
Levenberg-Marquart optimisation algorithm to
minimise its long-range prediction errors. Therefore
RNN models can usually offer much better long-
range predictions than feed forward neural networks
(Tian et al., 2001).

The RNN model predictions can have errors due to
model-plant mismatches and unknown disturbances.
To reduce these errors, the RNN model predictions
can be corrected by adding filtered model errors of
previous batch runs. Crowley  et al. (2001)
introduced a strategy where the model predictions are

corrected by adding the filtered model prediction
residuals obtained from only the immediate previous
run and showed that this can reduce batch-to-batch
variability. As the dynamics of product quality in
batch processes are usually very non-linear and
measurement noise always exists, information of all
previous runs should be used in updating model
predictions for the next run. In this study, the average
model errors of all previous runs are used to modify
RNN model predictions. The RNN model error êk(t)
is defined as

êk(t) = yk(t) - k(t)                    (3)
where yk(t) and k(t) are, respectively, the measured
and predicted values of product quality at time t of
the kth batch. The average model error 

kê (t) of all

previous runs is defined as
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By filtering this average model error, the modified
prediction 1

~
+ky (t) of a RNN model is defined as

1
~

+ky (t) = 1ˆ +ky (t) + α kê (t)   (5)

where α is an adjustable filter parameter.

2.2 Batch-to-batch iterative optimisation control
Given that the whole reference sequence Yd is
available, both Amann et al. (1996) and Lee et al.
(2000) have proposed a quadratic objective that
penalises the input change instead of the input. The
algorithm has an integral action with respect to the
batch index k and achieves the minimum achievable
error in the limit (Lee et al., 2000). For product
quality control of batch processes, only product
qualities at the end of a batch, yd(tf), are available to
set. Then only errors at the end of a batch, f

k 1
~

+E =

yd(tf)- 1
~

+ky (tf), are penalised in the objective function.

Considering the constraints on the input trajectory,
the batch-to-batch iterative optimisation problem for
product quality control can be formulated as

1

min
+k

J
U
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~
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2
R                (6)

s. t.       f
k 1

~
+E = yd(tf) - 1

~
+ky (tf) (7)

∆Uk+1=Uk+1 - Uk (8)

        k+1(t) =fRNN[ k+1(t-1), ..., uk+1(t-1), ...]     (9)

1
~

+ky (t) = 1ˆ +ky (t) + α kê (t) (10)

umin ≤ Uk+1 ≤ umax   (11)

where f
k 1

~
+E is the difference at the end of the (k+1)th

batch between the desired product qualities and the
modified RNN model predictions, fRNN[⋅] represents
the RNN model, umin and umax are low and high
bounds of the input trajectory, Q and R are weighting
matrices and they are selected of the following forms
in this study: Q=λq⋅In, and R=λr⋅IN.

A larger weight λr on the input change will lead to
more conservative adjustments and slower
convergence. The weight λq on the quality error term



should be appropriately selected in relation to the
weight λr so that the performance due to input
changes will not be degraded while the product
quality control is enforced. There are also other
variants of the objective function. For example, the
weight matrix R may be designed to be increaseing
with batches reflecting the improved confidence of
product quality prediction.

The modified prediction error εk+1(t) is calculated as

εk+1(t) = yk+1(t) - 1
~

+ky (t)  (12)

Considering Eq(5), Eq(12) can be rewritten as

εk+1(t) = êk+1(t) - α kê (t)  (13)

Eq(4) can be reformed as
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Then Eq(14) can be rewritten as
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Beacasue (k-1)/k <1, εk+1(t) will converge with
respect to the batch number k. Due to the reduced
prediction errors of the RNN model, the control
trajectory will gradually approach the optimal policy.
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Fig. 1. Batch-to-batch iterative optimisation

As shown in Fig. 1, the batch-to-batch model-based
iterative optimisation scheme is outlined as follows:
At the current batch k, the input trajectory Uk is
implemented and the outputs yk(t) are obtained by on-
line or off-line analysis of samples taken during the
batch. The RNN model predictions for the next batch
are modified by using prediction errors of all
previous runs. Based on the modified predictions

1
~

+ky (t), the quadratic optimisation problem specified

by Eq(6) to Eq(11) is solved and a new control policy
Uk+1 for the next batch is calculated. This procedure
is repeated from batch to batch. Because iterative
optimisation is done in the interval between two
adjacent batch runs, the outputs yk(t), t∈(1,N), could
be obtained after the completion of each run by off-
line analysis of samples taken during the batch.

3. A BATCH POLYMERISATION REACTOR

The simulated batch polymerisation reactor studied
here is based on a pilot scale polymerisation reactor
installed at the Department of Chemical Engineering,
Aristotle University of Thessaloniki, Greece. The

reaction is the free-radical solution polymerisation of
MMA with a water solvent and benzoyl peroxide
initiator. The reactor is provided with a stirrer for
thorough agitation of the reacting mixture. Heating
and cooling of the reacting mixture is achieved by
circulating water at an appropriate temperature
through the reactor jacket. The reactor temperature is
controlled by a cascade control system consisting of
a primary PID and two secondary PI controllers. A
detailed mathematical model covering reaction
kinetics and heat mass balances has been developed
for the bulk polymerisation of MMA. Based on this
model, a rigorous simulation program was developed
and validated on the pilot reactor. The simulation
programme is used to test modelling and control
strategies.

The optimisation control problem for this batch
polymerisation reactor is to find the optimal
temperature profile through minimising a
performance index at a given final time. The
performance index to be minimised is given below

PI  (T) =  ||yd(tf) - y(tf)||
2                   (16)

where y =[X, Mn, Mw]T, X is the monomer
conversion, Mn is the dimensionless number-average
molecular weight (MN) and Mn=MN/MNref, MNref is
set to 3.0×105 (g/mol), Mw is the dimensionless
weight-average molecular weight (MW) and Mw =
MW/MWref, MNref is set to 9.0×105(g/mol), T is the
dimensionless temperature profile and T = (Tr -
Tmin)/(Trmax-Tmin) with Tr being the unscaled
temperature, Tmin is 310K and Trmax is 360K,  yd(tf) is
the desird value at the batch end which is set to [1.0,
1.0, 1.0]T, and tf is the final batch time which is set to
120 minutes in this study. The polymer property
constraint is on Mn:

0.95 ≤ Mn ≤ 1.05     (17)

Also the temperature profile is bounded by

0 ≤ T ≤ 1         (18)

4. SIMULATION RESULTS AND DISCUSSIONS

RNN models are developed to model X, Mn and Mw.
In this study, 31 different sets of temperature profiles
have been randomly chosen within a reasonable
range to generate 31 runs of simulation data. As the
batch duration is 120 minutes and the sampling time
is 4 minutes, each set of data contains 30 samples.
All data are scaled to dimensionless values. Normally
distributed random noises with zero means were
added to all the simulation data to represent the
effects of measurement noises. The standard
deviations of the noises are 0.012, 0.009 and 0.01 for
the dimensionless X, Mn and Mw respectively. The
entire data set was divided into 3 parts, 25 batches of
data were used for training, 5 batches of data for
validation, and the remaining 1 batch for testing.

In the recurrent neural networks, hidden neurons use
the sigmoidal activation function whilst output layer
neurones use linear activation function. The network



weights were initialised as random numbers
uniformly distributed over the range (-0.1, 0.1). The
training algorithm is based on the Levenberg-
Marquart algorithm. Network structures were
determined through cross-validation. It was tested
that introducing monomer conversion X as one of the
inputs of the other two neural networks was
necessary. Different networks were trained on the
training data and the network with the least sum of
squared errors (SSE) on the validation data was
chosen as the best network. The generalisation
performance was then assessed on the unseen testing
data set. The best representations of the three RNN
models selected through cross-validation are
summarised as follows

X̂ (t) = f1[ X̂ (t-1), X̂ (t-2),T(t-1),T(t-2),T(t3)]   (19)

nM̂ (t) = f2[ nM̂ (t-1), nM̂ (t-2),T(t-1),T(t-2),T(t-3),

     X̂ (t-1), X̂ (t-2)]      (20)

wM̂ (t) = f3[ wM̂ (t-1), wM̂ (t-2),T(t-1),T(t-2),

                  X̂ (t-1), X̂ (t-2)]     (21)

where X̂ , nM̂  and wM̂  are, respectively, the model
predictions of X, Mn and Mw. The numbers of hidden
neurons for the above three networks were
determined through cross-validation as 8, 12 and 10
respectively. The SSE of the above models, Eq(19) to
Eq(21), on the validation data set are 0.0978, 0.1935
and 0.2033 respectively. Fig. 2 shows the long-range
predictions of these RNN models on the unseen
testing data set. It is clear that the RNN models have
captured the dynamic trends of the product quailities
in the data quite well, though some prediction errors
still exist.

To investigate the performance of the proposed
control strategy, three cases were studied: Case 1 –
optimisation based upon the mechanistic model; Case
2 – RNN model-based optimisation; and Case 3 –
RNN model based batch-to-batch iterative
optimisationp. In Case 1 and Case 2, the optimisation
problem is specified by Eq(16) to Eq(18) based on
the mechanistic model and the RNN models
respectively, whereas in Case 3 it is specified by
Eq(6) to Eq(11). All these non-linear optimisation
problems were solved by the sequential quadratic
programming method with the termination tolerance
on objective function being set to 10-6. Model errors
in Case 2 are used as the initial condition for the
model prediction modification in Case 3. Here the
batch length was divided into N=10 equal intervals.
The parameters in the optimisation problem in Case 3
were chosen as follows: α = 0.25, λq =3, and λr=10.
Batch processes always exhibit batch-to-batch
variations due to unknown disturbances such as
reactive impurities and reactor fouling (Zhang et al.,
1999). In this study, the initial initiator weight was
set to the nominal value 2.5g for the first 15 batches
and then drops to 2.1g starting at the 16th batch to
simulate the effect of reactive impurities.
Consequently, the simulated reactive impurities act
as a batchwise persisting disturbance.
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Fig. 2. Long-range predictions of RNN models for
(a) X, (b) Mn, and (c) Mw
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Fig. 3. Temperature profile of the 15th batch in Case 3
compared with those in Case 1 and Case 2

The results of the product qualities at the batch end
and the performance indices (PI ) in all three cases
are shown in Table 1. It should be noticed that PI  in
Case 3 was obtained according to Eq(16) after the
optimal temperature policy in Case 3 was applied to
the simulated reactor. Due to RNN model-plant
mismatches, the PI  in Case 2, 0.0493, is 45.8%
worse than that in Case 1. In Case 3, after 15 batches
with iterative optimisation, the PI  is decreased to
0.0382, only 13.0% higher (worse) than that in Case
1. Fig. 3 compares the temperature profile of the 15th

batch in Case 3 with the results in Case 1 and Case 2.

(a)

(b)

(c)



Fig. 4 shows convergence of temperature profiles of
the 1st, 3rd, 11th and 15th batches in Case 3. Under the
proposed batch-to-batch iterative optimisation
scheme, because model predictions were modified by
the results of previous batches and model errors were
gradually reduced, the reactor temperature profile
also converge to the optimal one.

Table 1. The product qualities and PI  in all three
cases (without impurities)

Case 1 Case 2 Case 3 (15th  batch)
X(tf) 0.8389 0.8321 0.8334

Mn(tf) 0.9527 0.8902 0.9168
Mw(tf) 0.9248 0.9046 0.9403

PI 0.0338 0.0493 0.0382
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Fig. 4. Temperature profiles in Case 3
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Fig. 5. Trajectories of product qualities on the
simulated process: (a) X, (b) Mn, and (c) Mw

Fig. 5 shows the trajectories of X, Mn and Mw in
three cases after the corresponding optimal
temperature policies were applied to the simulated
polymerisation reactor. It can be seen that with
iterative optimisation control, the product qualities in
Case 3 are improved compared to those in Case 2.
Fig. 6 shows the convergence of tracking errors ek

f =
yd(tf)-yk(tf) of the product quality variables after the
first 15 batches in Case 3. It can be seen that tracking
errors have converged after about 11 batches.
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Fig. 6. Convergence of tracking errors ek
f for the first

15 batches in Case 3
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Fig. 7. Trajectories of product qualities under
reactive impurities: (a) X, (b) Mn, and (c) Mw
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If there are disturbances in a batch process, the
optimal control profile calculated in the previous
batch may not result in the expected product quality.
When the initial initiator weight drops to 2.1g from
its nominal value 2.5g, the PI  in Case 1 and Case 2
become worse if the control policies calculated under
the norminal condition are still employed. As shown
in Table 2, the PI  in Case 1 increases to 0.0702 and
the PI  in Case 2 increases to 0.0917. However, under
the batch-to-batch iterative optimisation scheme, the
PI  in Case 3 can be brought down to 0.0467. Fig. 7
shows the trajectories of product quality variables
under reactive impurities.

Due to the presence of reactive impurities, the
temperature trajectory obtained in the 15th batch of
Case 3 was no longer optimal and prediction errors of
RNN increased. As shown in Fig. 8, the tracking
errors ek

f significantly increased in the 16th batch.
This issue has been successfully addressed by the
model-based iterative optimisation scheme. It can be
seen that ek

f has converged after about 10 batches.
The results in Case 3 demonstrate that, although there
are some model-plant mismatches and unknown
disturbances, the performance index can be gradually
improved under the iterative optimisation scheme.

Table 2. The product qualities and PI  in all three
cases (with unknown impurities)

Case 1 Case 2 Case 3 (30th batch)

X(tf) 0.8335 0.8580 0.8481
Mn(tf) 1.1354 1.1675 1.1010
Mw(tf) 1.1553 1.2086 1.1161

PI 0.0702 0.0917 0.0467
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Fig. 8. Convergence of tracking errors ek
f for the last

15 batches in Case 3

5. CONCLUSIONS

A model-based batch-to-batch iterative product
quality optimisation control scheme for batch
processes is proposed in this paper. Recurrent neural
network models are built to represent the operation of
a batch process and the model predictions are
modified using prediction errors of previous batches.

A quadratic objective function is introduced to the
optimisation problem of product quality control.
Using batch-to-batch iterative optimisation, it has
been demonstrated that model errors are gradually
reduced from batch to batch and the control policy
converges to the optimal policy. The proposed
scheme is illustrated on a simulated batch MMA
polymerisation reactor.
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