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Abstract: A challenge facing the pharmaceutical and chemical industries is how to 
understand and identify differences in process behaviour where a product is manufactured 
at two different sites.  Three approaches based on multi-group principal component analysis 
are investigated and benchmarked against single site models. The multi-group approach is 
shown to remove differences between sites such as operational scale thereby enabling the 
analysis to focus on identifying differences in variation between the two sites that are not a 
consequence of process configurations. From the analysis it is observed that the multi-
group approach can assist in the understanding of manufacturing performance. Copyright © 
2003 IFAC 
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1. INTRODUCTION 
 
Manufacturing challenges facing the chemical and 
pharmaceutical industries include the need to reduce 
the time between product development and full-scale 
production, the achievement of right-first-time 
manufacture and the manufacture of consistently high 
quality product with minimal environmental impact. 
The second and third challenges are compounded by 
the need to transfer the manufacture of a product to 
different sites around the world in a robust manner.  A 
contribution to these challenges is to utilise the data 
collected from the process and to convert it into 
information and ultimately knowledge, thereby 
enabling an enhanced understanding of the process to 
be achieved. This approach has resulted in process 
performance monitoring and its associated techniques 
becoming an integral part of process operation.  
 
For many industrial processes, performance monitoring 
systems are developed for individual process units, as 
opposed to the complete process.  The complexity of 
this problem is compounded when the product is 
manufactured at two or more sites, where independent 
monitoring systems can be developed. A major 

disadvantage of this situation is that the sources of the 
differences in process operation and product variation, 
between the sites, cannot readily be identified.  
Previously it has been conjectured that process 
operation and scale differences are responsible for 
variability, and cannot be removed through modelling. 
In this paper the multi-group methodology of Lane et al. 
(2001) helps address this situation in terms of multi-site 
process performance monitoring.  It is shown that scale 
and processing differences can be removed thereby 
enabling the real differences between sites to be 
identified.  The paper focuses on empirical, i.e. data 
based, approaches. However alternative techniques are 
possible including the use of hybrid modelling, i.e. the 
conjunction of a reduced complexity mechanistic model 
and an empirical model (McPherson et al., 2001). 
 
One of the characteristics of batch operations is the 
variation in duration as a consequence of the process 
itself, down-stream processing, etc.  To apply the 
techniques described in the paper, it is necessary to 
perform batch length equalisation.  Multivariate 
Dynamic Time Warping (DTW) and the cutting of the 
batch process data to a minimum length are considered.   



     

A number of approaches are considered in the paper for 
the development of a multi-site monitoring scheme for 
a drug intermediate. The benchmark approach was 
based on the development of an individual model for 
each site. The data matrices comprising the common 
variables from the two sites were then combined and 
different scaling procedures applied.  The first resulted 
in the removal of the global mean and standard 
deviation of each variable (calculated from the data for 
the two sites) whilst for the second approach, the local 
mean and standard deviation for each individual 
variable for each site was removed. Finally a multi-
group model based on the pooled sample variance-
covariance matrix was developed using all the variables 
monitored at both sites. Fig. 1 provides an overview of 
the different approaches. 

 
Fig. 1. Summary of different monitoring approaches. 
 
 

2. PROCESS DESCRIPTION 
 
The process interrogated is a single stage within a 
multi-stage synthetic route for the production of an 
active pharmaceutical ingredient (API). The process is 
carried out at two manufacturing sites by a regulated 
batch procedure. The process data have been acquired 
at both sites from reactor probes that are linked to data 
historians and that have been subsequently extracted 
for analysis. The chemistry step involves an exothermic 
addition that is controlled by reactant addition rate and 
the reactor temperature and has a duration period of 
approximately 4 hours. Although different plant 
configurations have been employed at the two sites, 
similar process variables are monitored, alongside 
coincident quality control measures. The process data 
variables include reactant addition rate (maturity), 
reactor temperature, reactor pressure, agitation rate and 
vapour temperature. The quality variables include input 
and output material activity, process yield and various 

impurity levels.  Data from 57 batches from Site A and 
152 batches from Site B were included in the analysis. 
 
 

3. DATA PRE-PROCESSING 
 
The raw data collected were initially pre-screened for 
missing observations, outliers, small signal to noise 
ratios, etc. Once data anomalies were identified, an 
appropriate in-filling algorithm was applied such as 
data deletion or linear interpolation. The next stage was 
to examine the resulting time series plots of the 
individual variables to attain good process operation 
understanding.  It is essential that this stage is 
undertaken in collaboration with process personnel. 
 
Batch process data collected on a number of batches is 
typically arranged in a three-way matrix, batch (I) x 
variables (J) x time (K). After equalisation of batch 
lengths, multi-way principal component analysis 
(MPCA) (Nomikos and MacGregor, 1994) was applied. 
The data matrix is first unfolded to give a two-
dimensional array as shown in Fig. 2 and PCA is 
applied to the unfolded data matrix.   

Fig. 2.  Schematic representation of the unfolding of a 
three-way matrix. 

 
To apply the bi-linear technique of multi-way principal 
component analysis illustrated in Fig. 2 batch lengths 
are required to be of equal duration. Two methods 
proposed to standardise batch length are cutting to a 
minimum length and multivariate Dynamic Time 
Warping (DTW) (Gollmer and Posten, 1996; Kassidas 
et al., 1998). DTW is a method that matches features in 
a data pattern, or profile, to a reference profile. An 
optimal batch profile is first identified and the other 
batches are aligned against this reference batch. Fig. 3 
illustrates the resulting synchronisation for the variables, 
reactor temperature and pressure for all batches at site 
A.  Of particular note is the extraction of the underlying 
structure in the pressure variable that was masked prior 
to the application of DTW. 
 
The second step was to remove data during periods of 
operation that were not deemed to be important in the 
subsequent analysis.  For this specific application, the 
most important period with respect to product quality, 
is during the reactant addition period and hence this 
period defined the time period over which the data was 
analysed.   
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Fig. 3.  Synchronisation of the time trajectories by 

DTW for reactor temperature and pressure for all 
batches at site A.   

 
 

4. STATISTICAL DATA ANALYSIS 
 
Both process and quality data were investigated but the 
results reported are for the process data only. A total of 
five process variables are monitored at site A and four 
at site B with three variables common to the two sites. 
 
4.1 Individual PCA Model 
 
Having pre-screened and equalised the duration of the 
batch data, the next step was to build individual multi-
way PCA models for each site. By extracting the 
principal component score vectors, batch behaviour 
could be investigated.  The leverage plot for the 
individual batches for the first two principal 
components, Fig. 4, clearly illustrates the impact of 
batch 15. 
 
 
 
 
 
 
 
 
 

 
Fig. 4.  Leverage for scores of principal component 1 

and principal component 2.  
 
By interrogating the data, it was observed that there had 
been an agitator failure during this batch run. 
Consequently to develop an appropriate monitoring 
model, it was necessary to remove batch 15 from the 
data matrix. From Fig. 4 it is not apparent that any 
other batches will have a major impact on the analysis, 
thus multi-way PCA was applied to the remaining 56 
batches, Fig. 5. Ten principal components were 
retained in the subsequent analysis explaining 68% of 
the underlying variability. From Fig. 5 it can be 
observed that the scatter of the batches is random with 
a number lying out with the action limits. These 

batches were interrogated and issues relating to the data 
acquisition system were identified. 
 
 
 
 
 
 
 
 
 
 
Fig. 5.  Bivariate scores plot of principal component 1 

and 2 after removal of batch 15. 
 
From the loadings plot, process behaviour over time for 
different variables can be examined. Fig. 6 and 7 show 
the univariate loadings plot for principal component 1 
and principal component 3, respectively. The dotted 
line is used to differentiate between the five variables 
through a batch run (reactor temperature, pressure, level, 
agitator speed and reactant addition rate). Variable 
three is observed to have a high loading throughout the 
duration of the batch for principal component one.  It is 
interesting to observe from the loadings how the 
influence of variable changes over batch duration. This 
is particularly evident from principal component 3, Fig. 
7. 
 
 
 
 
 
 
 
 
 
Fig. 6.  Univariate loadings plot of principal component 

1 for 5 process variables. 
 
 
 
 
 
 
 
 
 
 
Fig. 7.  Univariate loadings plot of principal component 

3 for 5 process variables. 
 
The same analysis was undertaken for site B. From 
examination of the leverage plot (not shown) two 
batches, 34 and 47, were identified as having high 
leverage.  After the removal of these batches, a 
randomly scattered scores plot was obtained (Fig. 8). 
Retention of 10 principal components in this case 
resulted in 86% of the underlying variation in the data 
being explained.  Examining the contribution plot of 
batch 127 (Fig. 9) for principal component one and the 
time series plots of the process variables it was noted 
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that there was an abnormal reactant addition rate for 
this batch. This information can be used by process 
personnel who can either take corrective action or else 
ensure that subsequent batches are not affected by a 
similar problem. 
 
 
 
 
 
 
 
 
 
Fig. 8.  Bivariate scores plot of principal component 1 

and 2 after removal of batch 34 and 47. 
 
 
 
 
 
 
 
 
 
 
Fig. 9.  Contribution plot for batch 127.  
 
4.2 Combined PCA Model - Removal of Global Mean 
 
The first combined model was constructed by applying 
multi-way PCA to the standardised data matrix based 
on the batch process data from the two sites. Only 
identical variables were selected to be included for 
analysis (reactor temperature, pressure and reactant 
addition rate). Examining Hotelling’s T2,   three non-
conforming batches were identified, batch 15 at site A 
and batches 17 and 125 at site B (not shown).  It is 
interesting to observe that the batches from site B 
differed to those identified in the individual site 
analysis, demonstrating the potential limitation of this 
approach in terms of it providing conflicting 
information to the previous analysis. Following the 
removal of these batches, multi-way principal 
component analysis was applied to the remaining data, 
Fig. 10.  
 
 
 
 
 
 
 
 
 
Fig. 10.  Bivariate scores plot of principal component 1 

and 2 after removal of batch 15 at site A and batch 
17 and 125 at site B. Site A, ‘o’, Site B, ‘x’. 

 
From the figure, two clusters can be observed. More 
specifically, principal component 1 identifies the 
variation about the global mean for the two sites (Fig. 

11) and thus both “within” and “between” group 
variation is captured.   
 
 
 
 
 
 
 
 
 
Fig. 11.  Variation for one variable. 
 
The lower order components do not exhibit this 
behaviour and display a more random scatter. Fig. 12 
shows the bivariate scores plot of principal component 
3 and principal component 4.  A total of 77% of the 
variation was explained by the ten retained principal 
components. 
 
 
 
 
 
 
 
 
 
 
Fig. 12.  Bivariate scores plot of principal component 3 

and principal component 4. 
 
 
 
 
 
 
 
 
 
Fig. 13.  Differential contribution plot between the two 

clusters.  
 
Fig. 13 shows the differential contribution plot for the 
first principal component. The differential contribution 
plot calculates the difference between the contribution 
for a group of points from site A and a group of points 
from site B. From the resulting representation, it was 
observed that the differences were mainly related to the 
reactant addition rate. The rates and the total amounts 
of addition differ between the two sites due to 
operational differences, i.e. different reactor sizes and 
configurations. Thus it was conjectured that by 
removing the scale effect, a single model could 
realistically be developed for the two sites. 
 
4.3 Combined PCA Model -Removal of the Local Mean 
 
A second combined multi-way PCA model was built 
from the same data sets as in Section 4.2. However, the 
data was standardised specifically for each site. By 
standardising the data matrix in this way, the variation 
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of each variable from its mean value relative to the 
individual site, Fig. 14, is considered.  
 
 
 
 
 
 
 
 
 
 
Fig. 14.  Local variation for one variable. 
 
From the bivariate scores plot of principal component 1 
and principal component 2, batch 15 at site A and batch 
34 and 47 at site B were again observed to have a 
strong influence on the process representation.  
Removing these batches, the subsequent analysis 
resulted in 75% of the underlying variation being 
explained following the inclusion of ten principal 
components.  
 
 
 
 
 
 
 
 
 
Fig. 15.  Bivariate scores plot of principal component 1 

and 2 after removal of batch 15 at site A and batch 
34 and 47 at site B. 

 
Examining the loadings plot, it can be observed that the 
key variable in terms of defining the main source of 
variation associated with principal component one is 
that of the reactant addition rate.  
 
 
 
 
 
 
 
 
 
Fig. 15.  Univariate Loadings plot of principal 

component 1. 
 
4.4 Multi-group PCA Model 
 
An extension to traditional multi-way PCA, multi-
group multi-way PCA, was then investigated for the 
simultaneous monitoring of different manufacturing 
sites. Multi-group modelling is based on the 
assumption that a common eigenvector subspace exists 
for the sample variance-covariance matrix of individual 
sites. Through the pooled sample variance-covariance 
matrix, the principal component loadings are calculated. 
The pooled sample variance-covariance matrix (S), 

which forms the basis of the multi-group model is 
defined as a weighted sum of the g individual variance-
covariance matrices gs,,s,s …21 :  
 

1 1 2 2( 1) ( 1) ... ( 1)
( )

g gn s n s n s
S

N g
− + − + + −

=
−

 (1)

 
for i = 1, …, g. N is the total number of observations 
(batches), g is the number of groups and ni is the 
number of observations within group i. Consider the 
data set for site A, containing variables 1 to 5 and data 
set for site B comprising variables 1, 2, 3 and 6 in 
which variables 1, 2 and 3 are identical. The individual 
variance-covariance matrices for site A and B are given 
in Table 1 and the pooled variance-covariance matrix is 
defined in Table 2.  
 
Table 1  Variance-covariance matrix for site A and B. 

 
Variance-covariance matrix for Site A 

Variable 1 2 3 4 5 
1 A11 A12 A13 A14 A15 
2 A12 A22 A23 A24 A25 
3 A13 A23 A33 A34 A35 
4 A14 A24 A34 A44 A45 
5 A15 A25 A34 A45 A55 

 
Variance-covariance matrix for Site B 

Variable 1 2 3 6 
1 B11 B12 B13 B16 
2 B12 B22 B23 B26 
3 B13 B23 B33 B36 
6 B16 B26 B36 B66 

 
Table 2  Pooled variance-covariance matrix. 

 
Pooled variance-covariance matrix  

Variable 1 2 3 4 5 6 
1 C11 C12 C13 C14 C15 C16 
2 C12 C22 C23 C24 C25 C26 
3 C13 C23 C33 C34 C35 C36 
4 C14 C24 C34 C44 C45 C46 
5 C15 C25 C35 C45 C55 C56 
6 C16 C26 C36 C46 C56 C66 

 
where 
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Multi-group PCA was then applied to the pooled 
variance-covariance matrix. Batch 15 from site A and 
batch 34 and 47 from site B were removed from the 
analysis as they have a major influence on the model. 
Reapplying multi-group multi-way PCA resulted in 
63% of the variation being explained by ten principal 
components, Fig. 16.  
 
 
 
 
 
 
 
 
 
Fig. 16.  Bivariate scores plot of principal component 1 

and 2 of multi-group model after removal of batch 
15 at site A and batch 34 and 47 at site B. 

 
From the loadings plot, Fig. 17, variable three, reactant 
addition rate, was identified as the most important 
variable in terms of defining the main source of 
variation for principal component one.  This variable 
was one of the three common to the two sites along 
with variable one and two, reactor temperature and 
pressure.  Variable four and five related to those 
monitored only at site A, level and agitator speed, and 
variable six related to vapour temperature that was only 
monitored at site B. 
 
 
 
 
 
 
 
 
 
 
Fig. 17.  Univariate loadings plot of principal 

component 1. 
 
The advantage of being able to develop a single model 
for two, or more, sites is that it enables an enhanced 
understanding of the subtle differences in performance 
between the two manufacturing processes.  In addition 
it can help facilitate the transfer of a process to a new 
site by providing a baseline monitoring model with the 
model being updated as new batches are manufactured. 
The scores plot clearly detects those batches which 
move outside the statistical control region for the two 
sites on one chart and the corresponding scores 
contribution plots identifies the combination of 
variables responsible for the out of control signal. Thus, 
the application has demonstrated that the multi-group 
model has acceptable detection and diagnostic 
properties though the overall sensitivity may be 
affected compared with those of the corresponding 
individual plant models.  
 
 

5. CONCLUSION 
 
The capabilities of multi-group models, to model 
different process configurations on two sites, based on 
the pooled sample variance-covariance matrix has been 
demonstrated by its application to data from a drug 
intermediate batch process. Pre-screening of the data 
was initially performed to remove any abnormal 
variability. Batch length equalisation was achieved 
through the application of multivariate DTW to the 
process data. The DTW batch data was further reduced 
to ensure that the analysis focused on the main area of 
interest. Multi-way principal component analysis was 
then applied to the pre-processed data. The first 
approach used analysed the data from each plant 
individually. Two combined models where the data was 
scaled differently were also studied. The multi-group 
models developed not only eliminates between cluster 
variations but also allows the process monitoring of two 
different plants by a single model.  This development 
provides a powerful monitoring tool for understanding 
and hence minimising the differences in product quality 
and process operation across different manufacturing 
plants.  In addition based on the proposed approach, it 
is possible to utilise the approach to assist in the 
transfer of a process to a new site.  
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