A FAULT ACCOMMODATION CONTROL FOR NONLINEAR PROCESSES
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Abstract: An active fault accommodation control law is developed for a class
of nonlinear processes to guarantee the closed-loop stability in the presence of
a fault, based on a neural network representation of the dynamics due to faults.
Applications of the proposed design indicate that the fault accommodation
control law is effective for a typical nonlinear fermentation process.
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1. INTRODUCTION

The study of fault diagnosis and fault-tolerant
control has attracted much attention recently (-8
due to the industrial demands for safety and
efficiency. For certain processes, it is important
not only to detect (and identify) but also to
accommodate any faults quickly. Fault-tolerant
controls have been developed to keep such
processes in control, in spite of the occurrence
of a fault. Based on the nature of its design, a
fault-tolerant control can be categorized into the
passive or active two types. A passive
fault-tolerant control uses the same control
scheme before and after fault, without specific
accommodating  parameters, typically by
introducing a conservative law. For an active
fault-tolerant control, a control reconfiguration
takes place, following the diagnosis of a fault, to
counteract any dynamic changes caused by this
fault.

Within the category of the passive
fault-tolerant controls, reliable control is widely
used. Results and scheme details can be found in
references [3-5]. Robust control design is often
adopted for reliable control to have the
guaranteed closed-loop stability and H,

performance. This type control is typically
conservative, without controller adjustment after
detection of a fault; the tolerance comes at the
cost to the control performance.

In an active fault-tolerant control, faults are
accommodated, typically by a reconfiguration of
the feedback control law. An excellent
overview on the subject has been given by
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Patton [6]. Faults are typically associated with
sensors and actuators failures; in
correspondence, respective accommodation
strategies can be so designed. For examples,
sensor fault accommodations for MIMO systems
have been discussed by Tortora [7]; actuator
fault accommodations are given by Michael [8].
Adaptive approaches have also been used in
fault tolerant controls. For examples, an
adaptive compensation method for actuator fault
with known plant dynamics has been formulated
by Boskovic [9]; and a nonlinear adaptive fault
accommodation controller has been designed by
Idan [10] to make use of redundancy.

In this paper, a new fault accommodation
control design is presented for a class of
uncertain nonlinear processes. The dynamic
changes due to faults are represented by a neural
network, based on which an adaptive corrective
control law is formulated to ensure the system
stability.

The remainder of the paper is organized as
follows. The problem statement and its
assumptions are given in section 2, followed by
the formulation of our controller and its relevant
proofs in section 3. An illustrative example is
given in section 4 to demonstrate the
effectiveness of the proposed method. Finally,
conclusions are drawn in section 5.

2. PROBLEM STATEMENTS
Consider a system described as:

X =8(0)+ AL () + G)[u+ Ag(0)]+ p~T)f(x) (1)
where x e R",u € R™ are the state and input of
the system, respectively, A{(x) and Ag(x)are
the model uncertainty in the normal operation,



f characterizes the changes in the dynamics

due to a failure. The normal system, in the
absence of any faults, is described by
X =g (X)+AL(x)+G(x)[u + Ag(x)] ()
The nonlinear fault function f is multiplied
by a switching function g(:-T),

p—=T)=diag (B(t-T),,(t=T),, B, -T))
(3)

_J0 if t<T o

where ﬂl-(t—T)—{1 iFoieT i=L2,n.

where T is the fault occurrence time. The
problem considered is as follows:

Fault accommodation (FA) problem: Given
system (1), design a controluy for the normal

system, and an additional control u, for fault

compensation, so that #=uy +u, as the new
control after the occurrence of a fault can
guarantee the resulted closed-loop nonlinear
system to be stable.

The following assumptions are used.
Assumption 1: There exists ; —“(y) and

Lyapunov function ¥ (x), such that
x> <V () < koo “)
-
a”") L)+ G (1)) <~k 2 (5)
<—kyV (x),
where k. k,,k;,and k, are  positive
constants.
Assumption 2: For system (1)
[ag )< £(x) (6)
)
[ﬂ] AL < po)
ox
where /€O 1s continuous,
& (x )[aV(x)J
Ox

&£(e)and p(e) are known and continuous.

Remark 1: From assumption 2, we have p(x) =0,

if 67 (x )(aV(x)j 0.

3. FAULT ACCOMMODATION
Firstly, let’s use a neural network to represent
fault function f(x) . Where, x 1is the input

vector to the neural network. It can be shown
that there exists an optimized matrix W such

that |f(x)-W'S(x)|<e is satisfied for any

given €¢>0 . S(x) is the sigmoid function.

W"S(x) can approximate f(x) to any degree of
accuracy, with bounded w", ”W*”ﬁM w - With
the above, system (1) can be rewritten as:
x = (x)+ AL (x) + G(x)[u+ Ag(x)]+ W*S(x) +e(x) (7)
where, ¢(x)=|f (x)—W*S(x)‘ <& 1s the estimation
error. If we denote W as the estimate of the
uncertain weight matrix w”* , then
= £(0)+ AL (x) + G(0)[u + Ag(x)] - S (x)
+WS(x)+ &(x)

(8)

where W =W -W" and it has the appropriate

dimension..
Theorem 1: Under assumptions 1 and 2, we can
design a controller in the form of the following:

U=uy+up 9)
uy =u’ +u’ +u°

where u“ is given by assumption 1, and let

E:{x| G(x )TW(") 0 }
X

GT(x) aV(x)
. O _g(x),  xeE 0
ub = GT()aV(x) ,  (10)
x
0 xek
Gr(x)aV(x)
——@‘p(x), xe¢E
¢ (x )fW(x) , (1D
x
0 xeE
GT G (x)®
(x)WS(x) (x) ! (12)
AL+ ||G(x)|| 11[1 +|G)| 1
Where ©eR™F and ©=[6,0,---,0]" . Then,

the state x is ultimately consistently bounded

by the set:
D= n . H
—{xeR v (x) <, sk0s1} ,
koo
(13)

with the following adaptive weight update law
24y 2057 (x) ] < My

W = a )
— W + 2k, ?0 ST(x) i) =My

*"|©"

—_

(14)

. 0
0= 3,0+ ko[ =2
ox

(15)
The parameters of A, A4, k,, k,, @, and u can



be determined as in the proof. The proof of the
above theorem is divided into the following two

steps: step 1, we prove that there exist a nominal

controller uy =u®+u’ +u¢

and a Lyapunov
function vy(x) for the normal system described
by x = £ (x) + AL (x) + G(x)[u + Ag(x)], such that the
closed-loop of the normal system is stable; step
2, we prove that the state x 1is ultimately
consistently bounded, using the control law
stated in the theorem.

Proof: step 1
Substituting the controller equations of

(9-12) into system (1) , we have:
=C(x)+AL(x)+ GO)[u* +u’ +u’ + Ag(x)]

Define a positive functionvo(x)zf(x), then

we have:

5y(x) = (?)f (C(0) + Gy +
(@)Tcu)(w + Ag(x) +
X

(@)T(Am) 4Gl
X

From Assumption 1, we have

6V( )r 5V(X)

) (£(x) + Glxu”) < —k, (16)
ox

——

From Assumption 2 and the structure

ofu’(x), we have

aV(x) ( )r

)G+ Ag(x) = (G (x)———) " (u” + Ag(x)) = 0

when xeE, and

(‘W ) G’ + ag)
, T ()
= G (x)——=
- (@)Tcu)(—iaf() £(x)+ Ag(x))
6" (0 )
" x )(aV )rle(r)+ (aV )7 Goag(a)
67 (x )(a”") £(x)+ aV(")) G()|ag(x)
<0,

when x¢E. Hence

c'W(x)

(=) GW” + Ag(x) <0 (17)

From Assumption 2 and structure ofu‘(x),

we have

ov (x)

=) (AL(x)+ ()

— A (x )+(GT() i ))

1

(6V(x)

aV(x)

<= AW < px) =0,

when xeE, and

oV (x)

(= ) (AL () + G(x)u)
X
GV(x)
G ()=
(a”x)) AL(x )+(6V(x)) G O p(x))
_— )aV(x>
X
<8V(x)) ACG)| - p(x)
<0,
When x¢E . Hence
oV
( a(x)) (AL()+Gu) <0 (18)
Thus, we obtain the results
oV ()|
o () <~y | (19)

From (19), the stability of the normal system is
proven.

Proof: step 2:
Define a Lyapunov function for system 1 of the
following form:

v 7.0)=k, vo(x)+%tr{Vl~/TWN/}+%52 (20)
with 8 =0-¢ ,then the derivatives of 7 is
V= k()%{f(x) + A (x) + G(x)[u® + ub +uf + Ag(x)]}

vy o
+k a—g(x)u ~ko aOWS()

+ka—°WS(x)+ ko Zﬂg(x)+tr{WTVl7}+ 00

ox X
(21)
Using (14), we obtain

P = kytip + ko 22 G e + ko 20 (x)
Ox Ox
6\10 T~ ~ .
+ky a—e(x)—ﬂIWtr{W W}+ 00
X

where 7, is the indicator function of W, and
it satisfies

Uiz My,
o e
As oy Ti7f= 2l ", then




P = koo + kg 22 GO + ky 20 (v)
Ox ox
oV, B =1~ B
+k06—;)8(x)—?ﬂ'{WTW}+7(1_IW) (23)
N 2

w*| +66

7Ly +L |
By substituting u«’ ( 2,4) into (23), from
Assumption 1, the derivatives of V satisfies
[eel Prs()
A +G
Jou]_ ool
o | yn+ 60| ]

6v0
Ox

sty +

Mo

V < —kohs| =] -
X

+ kg

6v0

that

+k0 |s ]+9~é—§tr{VI~/TVI~/}

+§<1-1W>n{w}—§fw||w||2

B
+ (24)

o o’

5> <1, (24) can be rewritten as
1+ G|

o lpistof1+5

avo

ov :
14 £—k0k36—° +k
X

ovo I
ox | 4

ov,
Ox

6v0

OV |

(=)

+k, —0

ko 10— ko2

+k 5+§9—§tr{VIN/TW~/}

f@Jth'WLEJMW"
(25)

B
+=1
2 w

Let k5 = ];1 +l€2 +/;3 , (25) is transformed into:

2 2
— — |0v
2 —kok, 0]

V< —kok, 2
0™ ax

o, W(l . j+k iy
ox A ox

g Tige Ko B
2 2 2 2

B sl B 2 B
+J15MWW}2MmMj%

1
o1+ —
[ /11]

+ kosl—

(26)

Choosing
kos kg

\/2/€2ﬁ—sk0 ’ \/2/‘0/;271 —ko

B>—, 71 >— (28)
k

A2

A2 ,@27)

2

2
. — |0vy 6\/0 — [0v,
V < —kok, =2 —koks —[k, =2
0 1‘8x 0 L ox
/; ﬂ ov, ﬁ 2
-2 2B+ B
—ov |, koky 7y v,
kok, |—2])? —24/—2271gI=0
koK, 6x) 2 ox
0
+ 2o L +F, 6”0
_hgr_Nger npe
2 2 2

—gtr{ﬁ/ TVT/}+§(1 ~ Iy )tr{VT/TVT/}

Loyl
(29)
If ]i—zgkosl is satisfied, then (29) can be
kl
changed into
. - 8v0 2
V < ko, |22 ”W”

; ﬁ(l_zw)tr{ﬁfw}_%a Pl

+(1_1W)§M5V (30)
Since
o wiw ifwl <M
ﬁ@_JWyAwaﬁ: prii i) gl <My
0 ifw|=my,
(3D
we obtain
Bl—1,, r§7 "W < pu2 (32)
Moreover, because
(-1, 2 M3 <L}
(33)
(30) can be transformed into the following form
V< —hoks [l =B +Eaa + it
+£MV2V _ﬁgz + A2
2 2 2
(34)

By using (5), we have
koky k

V<Rt (x) HWH D0 vapMy 4T
k, 2
(35)
therefore V<—-aV +u,
Wlth a = mln{kiq 5ﬂa}/l} >
pu=2pM>% +7—2lg (36)

Integrating both sides of (36) yields



V(t)gﬁ{v(o)_ﬁ}—w, W20 37)

Due to (37), it can be deduced that x, W(x),H(x)
are bounded consistently. From (20), we have

kgvo(x) <V (38)
Therefore,
vo(x)< L+L{V(O)—ﬁ}e“’, V> 0. (39)
koa kg a

The above completes the proof that x is
ultimately consistently bounded by the set D .
4. ILLUSTRATION EXAMPLE

This section takes a fermentation process as a
nonlinear process example to show that the
control design of section 3 can result in a stable
closed-loop to ensure the system states to
converge to zero in the presence of a fault.

The fermentation process is assumed to
operate at a constant volume ¥V , with the
dynamics of biomass X , substrate S, and toxin
concentration C, , described by the follows:

d—X:,quDX (40)
dt

ﬁz,DS,yi 41)
dt s
% —gx'*_pc, (42)

Where, the dilution rate, D, and the yield
coefficient, y,, are given by

F
D= ) ys = L )
Vv My+ u
and the nonlinear inhibited specific growth rate
. S K,
18 p= gl

K, +S+S8*/K;" K, +C?
The parameters of y,q,u,, K, K;, K,,M are given

in Table 1 for the process.
Table 1: Fermentation model parameters

Volume vV 200[1]
Constant y 0.417
Constant M 0.0196
Toxin production constant q 0.0296[1/h(g/1)*?
Maximum specific growth rate y7. 0.0135[1/h]
Monod constant K 0.05[g/1]
Substrate inhibition constant K; 2150[1%/g%]
Toxin inhibition constant f 5.5[g*/1%]

Defining the state asx=[X S C]’, and
the inputu = F/V , the equations (40-42) become:

a
dt
uX -X
a =|-(M+u/y)X|+| =S |u (43)
dt 13
dC qX -G
&Ly
dt
Using the data in Table 1, we can find:
0.5x -X

Cx)=|-14x |, G(x)=| -8
0.6x]3 e

€1X1X22x2 02)6]2 COS 91
Let Ag(x)=|2x3¢™sin6, |, AL(x)=| xisin6,
63X1€X] 93)612

ax ds ﬂ}
dt dt dt |’

0, €(-2,2) and 05,605 (-1, 1) are the
uncertainty parameters. In this example, a radial
basis function (RBF) network is chosen to
represent the dynamic changes after the fault
occurrence, with 10 hidden nodes and 10 centers
that are distributed uniformly in region [-1,1].
Choose &(x) = 2|x|2e"“ ,
Then the control input is:
u® =-04x2"> +0.9x,

ub _ {— 2|x|26‘x‘

where x = col(x;,x5,x3) = {

px) = 2x12 , Vo = xlx= ||x||2 .

xy #0and xy #0 and x3 #0

0 otherwise
2
2x
c —ﬁ x1¢0andx2¢0andx3¢0
wo=9 (xf x5 +x3)
0 otherwise

the unknown fault function is assumed to be
2cosx;
f(x)=|3cosx, |, this results in:

COS X3

G'(x)

PG @S @) | {0 }
0.005 0.005

the weight adaptive law:

b

W = 2k 2057 () |
ox

6 = 000250+ 1|2 , and
ox

the setp—{xeR" ;vo(x)slki,o.ssko s1}
0

We choose k, =0.6 , the fault is introduced

atT =1s, the control results are shown in Figures
1-6.

Figures 1, 3, and 5 depict the control
responses of the three states without using of the
proposed accommodation strategy. Obviously,
the states diverge from the set-point after the
occurrence of the fault at T=1. Converse to the
above, the results of wusing the proposed
accommodation control law show that all states
converge despite of the fault, as shown in
Figures 2,4, and 6. This suggest that the
proposed control is effective.

5. CONCLUSION

An active fault-accommodation control law has
been developed to ensure the closed-loop stability
for a class of nonlinear systems, using a neural
network approach. The application of the proposed
design has been shown to be effective for a
fermentation process.
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Fig.1: Control response of state x,(¢)
without fault accommodation.
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Fig.2: Control response of state x;(¢) with
the proposed fault accommodation.
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Fig.3: Control response of state x,(¢)
Without the fault accommodation
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Fig.4: Control response of state x,(¢f) with the
Proposed fault accommodation
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Fig.5: Control response of state x3(¢)
without the fault accommodation
3
21
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Fig.6: Control response of state x;3(¢) with
the proposed fault accommodation.



