
     

 
 

 
 
 

 
 
 
 
 
 
 
 

 
MULTI-PCA MODELS FOR PROCESS MONITORING AND FAULT DIAGNOSIS 

 
 

Liling Ma, Yunbo Jiang, Fuli Wang 
 
 

P.O.Box 131 
The School of Information Science and Engineering, 

Northeastern University, Shenyang, 110004, P.R.China 
E-mail: maliling1974@yahoo.com.cn   

 
and 

 
Furong Gao 

 
Department of Chemical Engineering 

Hong Kong University of Science and Technology 
Clear Water Bay, Kowloon 

Hong Kong 
 

 
Abstract:  Multivariate statistical approaches have been proved effective for 
reducing the dimension of highly correlated process variables and subsequently 
simplifying the tasks of process monitoring and fault diagnosis. However, for the 
process with distinctive stages, a single statistical model is not sufficient or even 
incapable to map the substantive process information. In this paper, multi-PCA 
models are proposed for promptly detecting faults and improving the exactness of 
the diagnosis as well. The effectiveness of the approach is demonstrated on a 
complicated fermentation process. 
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1. INTRODUCTION 
 
With the ever-increasing demand of control precision, 
modern industrial plants become more and more 
complicated. As a result, the tasks of prompt 
detection of any abnormal process behaviour, which 
is caused by breakdowns or malfunctions of plant 
instruments or grievous working conditions, is more 
challenging nowadays. Traditional model-based 
approaches based on the assumption that the 
occurrence of any unexpected faults will change the 
physical parameters or states, are no longer 
applicable in most cases because of the difficulty to 
get the theoretical models from the control theory to 
setup any precise parameter estimators or state 
estimators (J.Zhang, et al, 1996). The knowledge-
based approach known as expert system demands a 
deep and comprehensive understanding of the whole 
process (J.Zhang, et al, 1996). To setup a reasonable 
rule set is rather difficult and time consuming. 

Fortunately, with the application of modern process 
computers, thousands of variables can be collected 
and processed within a few seconds. The 
distributions of and correlations among these 
variables encapsulate precious knowledge of the 
plant (Theodora Kourti, et al, 1996). Thus, by 
analyzing the variance of the historical operating data, 
the characters of the plants can be learnt through 
multivariate statistical techniques. In recent years, 
data based multivariate statistical techniques, such as 
principal component analysis (PCA) and projection 
to latent structure (PLS), have received much 
attentions for the simplicity and practicality. Their 
excellent abilities in extracting the chief information 
of the process and casting away the noises have been 
fully demonstrated on many applications. By 
projecting the highly correlated process data onto a 
lower dimensional variable space without discarding 
any useful process information, these methods can 



     

greatly simplify the task of process monitoring and 
make it easier for fault diagnosis as well 
(P.R.Goulding, et al ,2000). The main advantage of 
multivariate statistical approaches is that they are 
largely dependent on the historical operating data 
and need not have a comprehensive knowledge of the 
complicated process. 
 
However, when the plant works through several 
different phases during a batch process, the 
relationships of the variables will be quite different 
(Svante Wold, et al, 1996). In other words, the plant 
will exhibit different collinear behavior in each phase. 
From this point, a single PCA or PLS model is not 
sufficient to map the whole process information. 
When taking different stages into consideration, the 
multivariate statistic confidence bounds will be 
inappropriately set and are always larger than needed. 
Consequently, the probability of failure to report the 
abnormal sample will be greatly increased. 
 
The aim of this work is to overcome these annoying 
problems and thus improve the precision of the PCA 
models for prompt fault detection and diagnosis. A 
practical approach based on the sub-PCA models is 
proposed. Hyper-ellipsoid based clustering procedure 
is designed to categorize data. Then, supervised 
training approach of SOFM network is described for 
clustering faults features. This approach is fully 
demonstrated by the experiments on the fermentation 
process. The results show the feasibility and 
effectiveness of the proposed method. 
 
 

2. PROCESS MONITORING AND FAULT 
DIAGNOSIS SCHEME 

 
Principal components analysis was first proposed by 
Hotelling to analyze the correlated structures of the 
multi-variables. It has become one of the most 
popular multivariate statistical techniques and has 
received wide application in industrial processes. By 
projecting the original information onto a lower 
dimensional space, the principal components can 
summarize the chief information about the variance 
in the original data set (Parthasarathy Kesavan, et al, 
2000). Suppose X is the original data set which is 
composed by m variables and k principal 
components are enough for summarizing the main 
information, X can be decomposed as the following 
equation:  
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The number of proper principal components can be 
determined by the accumulated contributions of the 
principal components or cross validation. Process 
monitoring is based on the two statistics called 

2T and SPE  (E.B.Martin, et al, 1996), which 
conform to F-distribution and normal distribution 
respectively.  
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where Λ is the diagonal matrix composed of the first 
k eigenvalues of XX T .  
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R is the residual matrix; 
TPPXXXXR ××−=−= ˆ . 

)( TPPIX ×−×=                                (4) 
As has been discussed in Section 1，multi-PCA 
models are necessary for the process with distinctive 
stages to improve the promptness of fault detection 
and to ease the following fault diagnosis as well. To 
perform the task of the process monitoring using 
multi-PCA models, the data sampled from which 
phase should be identified first, that is, the fitness of 
the data to each cluster should be determined. Then 
the data are projected onto the related single PCA 
model or the combination of several PCA models and 
corresponding control limits are set to monitor the 
performance of the process. The diagram of the 
whole procedure is illustrated in Figure 1. This 
scheme is composed of three steps. At first, sampled 
data is classified based on hyper ellipsoid clustering 
technique. Then, analysing the assorted result, 
process monitoring is realized. If the fault is detected 
in this phase, the last fault diagnosis will be 
accomplished by SOFM network with these samples. 

Fig1. The sketch map of the fault diagnosis 
 
 

3. DESIGN OF MULTI-PCA MODELS 
 
The core of building multi-PCA models is how to 
classify sampling data currently. A proper clustering 
technique is fundamental for reasonable decision-
making. Former researches have investigated various 
clustering techniques ranging from simple identical 
sphere windows with fixed centres to intelligent 
approaches using neural networks, such as RBFN 
and SOFMN. In practical, the distribution of each 
group is not necessary of the same size, so the 
identical sphere windows will not work in most cases. 
Though clustering techniques using NN are powerful 
at processing nonlinear information and some have 
excellent self-learning ability in determining the 
numbers of the clusters, to assign the proper neurons 
and to train the weights of the NN are rather tough 
work. For example, when training the RBFN, to 
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select the centres of the radial basis functions of 
hidden neurons and to determine their widths are 
indeed demanding jobs (Gao Daqi, et al, 2001). 
Further more, the more the input variables, the more 
complicated of the NN structure; clustering the 
newly sampled data would be time-consuming 
because of the over-burden computing procedure. 
 
K-means clustering approach is a well-developed 
technique. Currently the trial-and-error method is 
adopted to determine the number of the clusters. 
However, it is based on the Euclid distance and the 
data of the same cluster are confined within a hyper-
sphere. Since the variance of each variable is not 
necessary of the same size, the bounds of the clusters 
should be hyper-ellipsoid rather than hyper-sphere. 
The traditional K-means clustering approach based 
on the hyper-sphere bound, improper classification 
of the data often happens (Johnston, et al, 1994). 
 
To reduce the probability of the misclassification, a 
set of clustering rules are suggested in this paper. 
First, suppose the number of the clusters is known 
according to the knowledge of the character of the 
process, use K-means clustering algorithm to grossly 
divide the data set into several clusters. (If the 
number of the clusters is not known, adopt the trial-
and-error method to determine the number of the 
clusters.) Then analyze the variance of each cluster 
and adjust its bound. The following procedures are 
detailed as follows: 
 
Find out the direction, along which the variance is 
the largest, and then the next. Those directions are 
orthogonal to each other. Project the original data 
onto each direction and find the centre of the 
projection. In fact, the first direction contains the 
largest amount of the information of the process and 
the main information of the process can be expressed 
by the first few projections. The information 
contained in the last few projections can often be 
explained as noise. When there are many variables 
and the variances along the last few directions are 
small, those projections can be neglected. The whole 
process is similar to the procedure of subtracting 
principal components. The bounds of the clusters are 
hyper-ellipsoids whose axes are overlapped with the 
principal variance directions. The size of the hyper-
ellipsoid can be determined according to statistical 
confidence level. 
 
After finding out the directions, the fitness µ of the 
data X to each cluster is measured by following 
equation: 
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 where 2T is Hotelling’s statistic: 
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where Λ  is the diagonal matrix composed of the first 

k eigenvalues of XX T . kT is the first k principal 

components, kRT ×∈ 12 . 2T obeys F distribution. 

Define  αS based on αF as follows: 
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where n is the size of the cluster, k is the dimension 
of the original data or the number of the principal 
components and α is the confidential level , here, 

0.95α = . 1=µ represents the hyper-elliptic bound. 
If 1<µ , it means the data is in the inner of the 
bound. Any samples falling into the clustering bound 
can be regarded as the same type. Then reclassify the 
data set and adjust the chief variance directions and 
centres, repeat the former steps until the 
classification of each data will not change. 
 
The advantages of the clustering technique based on 
hyper-elliptic bound are illustrated by a simple two-
dimensional clustering problem in Figure1. Figure1a) 
demonstrates the clustering results by pure K-means 
and Figure1b) shows the clustering results based on 
elliptic bound. From the distribution of the samples, 
sample 125 is far away from the other samples in 
cluster B and it is more reasonably be classified as 
singularity as sample 117 and 115 etc. Sample 85 
should be classified to cluster B though its Euclid 
distance from the centre of B is farther than that from 
the centre of A. From the above, the clustering based 
on the hyper-elliptic bound can overcome the 
shortcoming of the traditional K-means clustering 
approach. 
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Fig 2 Comparison of the two clustering techniques 
 
Thus, using the clustering method proposed above, 
multi-PCA models for process monitoring and fault 
diagnosis are built as follows: 
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Where k presents the kth sub-PCA model. These sub 
models make up the multi-PCA models. 
 
 
4. PROCESS MONITORING USING MULTI-PCA 

MODEL 
 
When a new sample comes during process 
monitoring, the data samples from which phase 
should be identified first, that is, the fitness of the 
data to each sub-PCA model should be determined. 
Then the data are projected onto the related single 
PCA model or the combination of several PCA 
models and corresponding control limits are set to 
monitor the performance of the process. 
 
The smaller the 2T  to the cluster, the better of the 
fitness to that cluster. Certainly, most of the data 
sampled during each phase can be clearly classified. 
However, since the process is continuous, the 
transitory data are likely to contain both characters of 
the neighbor clusters. When the cluster bounds are 
rigidly set, some transitory data will be likely 
classified as singularities. On the other hand, the 
probability of misclassification will be increased. To 
solve this problem, fuzzy-clustering rules are 
proposed (Yang Yinghua, et al 2002). Two bounds of 
a cluster are suggested and their sizes are determined 
by two radius, namely, kernel radius and class radius. 
Here, we can also set two hyper-elliptic clustering 
bounds based on different confidence levels: 
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The fitness of the samples to each cluster can be 
computed by the following rules: 
1) If 2T  statistic of the new sample falls into one of 

the kernel bounds, that is, 11 2

90.0
≤×T

S
, the fitness 

of the sample to the cluster can be assigned to 1; 

2) If 2
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×< and 11 2
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S
, and 2T is 

beyond any other class bound, the fitness of the 
sample to the cluster can also be assigned to 1. 
3) If 2T falls into the overlapped area of several class 
bounds, suppose the new 2T  statistic falls into m 
clusters, define 
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obviously 1,...,1 <mLL , the smaller the kL , the 
closer of the new sample to the kernel of the cluster. 
The fitness of the new sample to each related cluster 
can be defined as follows: 

∑
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4) If 2T  statistic falls into neither class bounds, it 
can be regarded as a singularity. 

 

If the new sample is regarded as totally subjected to 
one classification, the procedure of the monitoring is 
the same as that based on a single PCA models. 
When the new comer falls into the common region of 
several regions, the fitness to each cluster is 
computed according to equation (12) first. Then 
adjust the directions of the principal components 
based on its fitness to each clusters (Yang Yinghua, 
et al 2002): 
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directions of each sub-PCA models. The principal 
components can be achieved by projecting the 
original data on subspace explained by P. The SPE 
control limit is computed as follows: 
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5. FAULT DIADNOSIS USING SOFM NETWORK 

 
When a fault is detected by previous step, SOFM is 
used to diagnose the fault, dealing with the current 
sample data as inputs. SOFM neural network was 
originally developed by a Finland scientist Kohonen. 
It is similar to the memory mode of the human beings. 
Different to other kinds of neural network, the 
information of one pattern is not memorized by one 
cell in SOFM neural network, but by a set of neurons 
in certain region. The excited region in the network is 
like a Mexican Hat, with the central neuron cell 
being most excited when stimulated by the 
corresponding pattern. The excitement of the neuron 
nearby reduces and the neurons outside this region 
are restrained. Further more, the distribution of the 
weight vectors reflect the statistical characters of the 
input mode. When reminiscing, pattern classification 
is mainly based on the most excited neuron. 

 
The chief advantage of the SOFM is its self-learning 
ability. It can automatically categorize the input 
mode without supervision. When the former 
knowledge of the clusters is not sufficient, SOFMNN 
is adept at extracting the character of each cluster 
through self-organized learning. The structure of the 
network is composed of two layers, input layer and 
output layer. The output layer is a competing layer in 
the form of two-dimensional array. The structure of 
the network is shown in Figure 3. 
 
The training algorithm can be found in many 
literatures. The adjustment of the connection weights 
is based on the following equation: 
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where kN  is the neighbor field, )(kη  is the 

learning factor. kN begins with a large area and 
contains all the neurons from the origin, and then 
shrinks to only contain one to two neurons from the 
centre (C.W.Chan, et al, 2001): 
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The learning speed also reduces with the increase of 
k. It can be adjusted according to the following 
equation: 
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Fig 3. The structure of SOFM network 
 
 
6. CASE STUDY ON FERMENTATION PROCESS 

 
The fermentation plant for producing glutamic-acid 
is introduced to evaluate the approach proposed in 
this paper. It experiences three distinct phases, 
namely, the growing phase, fermenting phases and 
perishing phase. The acidity and the amount of 
dissolved oxygen have different characters in three 
phases. In the growing phase, the acidity increase 
slowly with the production of glutamic-acid. The 
demand for dissolved oxygen increase too. In the 
following fermenting phase, with a large number of 
glutamic-acid being produced, the PH value decrease 
quickly and the demand for dissolved oxygen 
increase markedly. When the production peak passes 
away, the acidity falls slightly. So in this experience, 
the PH value and the amount of the dissolved oxygen 
as well as their tendencies are used for pattern 
classifications(Xu Ling, et al, 1999). Three hyper-
ellipsoids are defined for classification on the 
historical normal operating data. In this experiment, 
the class hyper-elliptic bound is set based on 0.99 
confidence level and the kernel bound based on 0.90 
confidence level. The distribution of the historical 
normal operating data and the clustering bounds for 
each clusters are illustrated in Figure4. 

 
Based on the classification, three PCA models are 
developed for monitoring. Seven variables are used 
while analyzing the fermenting process. They are PH 
value, dissolved oxygen density (DO), the changing 
rate of DO, temperature of the fermenting 
environment, the inflow of the atmosphere, the 
position of the outlet valve and the pressure of the 

fermenting environment. Figure 5 and Figure 6 show 
the performance of the PCA models when 
monitoring a normal process and detecting the 
occurrence of the fault1 and fault2 using single PCA 
model and multi-PCA models respectively. Fault1 
represents the failure of outlet valve. The solid line in 
the figures represents the control limits based on 0.99 
confidence level and the dash based on 0.90 
confidence level. The plus signs represent the 
abnormal samples identified during clustering. The 
diamond signs represent the samples falling into the 
overlapped regions of the clusters’ class bounds. 
 

 
Fig. 4 Clustering illustration of fermentation plant 
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Fig.5 Process monitoring using single PCA model 

 
When the pressure inside the fermentation is out of 
control, there is a contamination. As a result, the PH 
value will be affected too. Fault2 simulated a sensor 
failure, that is, the PH instrument doesn’t work. 
When the faults occur, the correlated structure of the 
data will be changed, the two 2T and SPE  statistics 
will be out of control theoretically. However, since 
the fermentation plant contains three distinct phases, 
whose correlated variable structures are quite 
different, the bound of the control is difficult to be 
adjusted. It is obviously that the SPE control limit is 
lager than needed during the fermenting phases and 
perishing phases, which leads to the failure to report 
the Fault2 illustrated in the C1 sub-chart. The 
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2T control limit is also inappropriately set for the 
growing phase. From Figure6, the precision of the 
monitoring models is greatly improved when using 
multi-PCA models and consequently the promptness 
of detecting faults is improved too. 
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Fig.6 Process monitoring using multi-PCA models 
 
Figure 7 shows the results of fault classification. 
Choose a 8 × 8 array of neurons to compose a 
competing layer and select the tendency of the PH 
value and DO, temperature, pressure etc. as the input 
of the SOFM network. After training, three regions 
of neurons are stimulated corresponding to three 
pattern inputs. When the Fault1 is detected and the 
current sampled data is input to the SOFM network, 
the 18th neuron or the neurons nearby will be the 
most excited according to the reminiscence. The 
Fault2 data will stimulate the neurons with the centre 
of 13th neuron. The results of Figure 7 show that the 
corresponding faults can be diagnosed exactly. 

Fig.7 Illustration of faults classification on 
SOFMN’s competing layer 
 
 

6. CONCLUSIONS 
 
Multivariate statistical approaches have received 
widely application for the processes rich in 

measurement data. However, for those the data 
structures are quite different in different stages, 
setting proper control limits is difficult. In this paper, 
multi-PCA models are suggested. Process monitoring 
is based on the combinations of related sub-PCA 
models and the weigh of each sub-PCA model is 
assigned according to the weighted clustering 
technique. Fault classification is realized by SOFM 
network. The feature of the fault can be stored in the 
weights of the network through self-organize 
learning. The effectiveness of the proposed approach 
is demonstrated by the experiment on fermentation 
process. 
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