
     

 
 

 
 
 

 
 
 
 
 
 
 
 

A FAULT DIAGNOSIS METHOD FOR FERMENTATION PROCESS 
 

Liling Ma, Fuli Wang, Yunbo Jiang, 
 

P.O.Box 131 
The School of Information Science and Engineering 

Northeastern University, Shenyang, 110004 
P.R.China 

E-mail: maliling1974@yahoo.com.cn  Fax:(86-24) 23890912 
 

and 
 

Furong Gao 
 

Department of Chemical Engineering 
Hong Kong University of Science and Technology 

Clear Water Bay, Kowloon, Hong Kong 
 
 

Abstract: Process fault diagnosis requires the on-line information on process state 
variables that are often inaccessible in real-time for the processes like a fermentation 
process. A composite model is proposed, combining a kinetic model of the first 
principles and a neural network model that models the kinetic model parameters 
changes, to estimate on line the states. This composite model can retain and enhance 
the process knowledge, at the same time, avoid the complexity of modeling the 
entire process by kinetics. The estimated process states from the composite model 
are then fed to a wavelet network for fault detection and diagnosis. The proposed 
system is successfully applied to a glutamic acid fermentation process, 
demonstrating the feasibility and effectiveness of the proposed system. 
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1. INTRODUCTION 
 
Fault detection and diagnosis have become important 
tools to ensure quality, safety, and efficiency for 
many process industries. The detection and diagnosis 
reply on the analysis and identification of differences 
of features (or patterns) of the process, reflected by 
the process states. Measurement of proper process 
status, typically represented by as the process states, 
is a prerequisite for the success of a proper fault 
detection and diagnosis. For a fermentation process, 
however, there lacks proper sensors for on-line real-
time measurement of key state variables. In such 
cases, methods have to be developed to estimate key 
process states for process diagnosis. 
 
Generally, two types of models have been developed 
for state estimation: first-principle based model and 
black-box based model such as a neural network. For 

fermentation process, many kinetic models have been 
developed, based on the principles of physics, 
chemistry, and biology, to reflect the generation and 
growing courses of the process (Liu et al., 1997). 
One of challenge in this type of models is to obtain 
proper parameters used in the model, many of which 
are in fact changing with time and process conditions. 
For example, in the growing stage of a fermentation 
process, process perturbations can lead to significant 
changes in the kinetic model parameters. However, 
modeling of these changes in the model parameters 
can be a challenging task. For this reason, model 
parameters are often assumed to be “constants” in 
many cases. This, obviously, can result in deviations 
of the estimated states from their true values, leading 
to improper diagnosis. The black-box modeling 
approach can map an input-output relation, without 
using any process knowledge. Neural networks are 
often used to model this input-output type of black-



     

box relations (Zhao et al., 1999; Maki et al., 1997). 
Artificial neural networks (ANNs) have also been 
used for fault diagnosis for fermentation process 
(Zhang et al., 2001; Wang et al., 1997; Abhinandan 
et al., 2002). A black-box model relies on process 
input-output information only; this type of models 
typically can not be extended beyond to the cases 
where the operating conditions are not covered by 
the training data.  Compared to a kinetic model, a 
black-box model can only promote limited 
enhancement of process knowledge.  
 
This paper proposes a composite modeling strategy 
that combines a kinetic model with a neural network 
model to estimate on-line process states, the 
estimated states are fed to a wavelet network for 
fault detection and diagnosis. The kinetic model used 
can represent the true process mechanism, retaining 
and enhancing the process knowledge. While the 
complex modeling of the changes of the kinetic 
model parameters with the process conditions is 
carried with an RBF neural network. The wavelet 
network is developed to analyze and recognize fault 
patterns, based on on-line estimation of the process 
states from the composite model. Finally, the 
proposed system, consisting of the composite model 
for the state estimation and the wavelet network for 
the diagnosis, is applied to a glutamic acid 
fermentation process, to demonstrate the 
effectiveness of the proposed method.  
 
 

2. THE DESIGN OF COMPOSITE MODEL 
 
To illustrate the method proposed in this work, a 
fermentation process is used with the following 
kinetic model. 
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where )(1 tx , )(2 tx , and )(3 tx , representing the 
concentrations of biomass, substrate, product 
respectively, can not be measured on-line for process 
diagnosis. µ is the growth rate of biomass, mx is the 

maximum biomass concentration, b is the maximum 
production rate of the  acid, sK  is the saturation 
constant of substrate, GY is the yield coefficient of 
biomass, pY is the yield coefficient of product, m is 

the maintenance coefficient of the biomass. pY and 
µ  change with the degree and the conditions of the 
fermentation of the process. 
 
Fermentation is a complex process, any 
contamination, improper medium formulation, and 
improper addition of the trace element can upset the 
normal production, leading to process faults. In 

correspondence, the process states, which are 
represented by the concentrations of biomass, 
substrate, product, will change differently from a 
normal product to reflect the process abnormality. 
The kinetic model parameters, such as pY  and µ ,  
will change as well. To predict process states 
correctly, these kinetic model parameters need to be 
updated. It is a very complex task to model the 
changes of the kinetic parameters, based on the first-
principles. A RBF neural network is proposed to 
correlate the parameter changes with the process 
conditions, resulting in a composite model for the 
state estimation. The over-all scheme for the 
fermentation process diagnosis is illustrated as Figure 
1. 
 
Although the kinetic parameters pY and µ  can not 
be measured directly either, they may be related to 
some measurable process variables, such as pH, 
dissolved oxygen (DO), and temperature (T). In other 
words, these kinetic parameters may be predicted 
from these directly measurable variables, if their 
relations to these variables can be established. Using 
the history data collected off-line, this kind of 
relations may be modelled via a neural network 
between the measurable variables and the kinetic 
parameters assayed. The neural network can be used 
online to estimate the kinetic parameters, after it is 
well-trained offline.  
 

kinetic model

RBF neural
network

Wavelet
network

,Yp

DO,PH,T

X(t)

X(t+1) results

composite model

µ

1−∆

 
Fig. 1 Schematic of fault diagnosis strategy 
 
 
Radial basis function (RBF) network, a feed forward 
network, is adopted for such a propose, as it has good 
ability of approximation and modeling (Wang , 1997; 
Chen, 1991). A nonlinear mapping can be realized 
between the input and the output of a nonlinear 
process as following: 
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where nRX ∈ is the vector of input, )(⋅φ is radial 

basis function of RR →+ , iW is the weights of 
network, ic is the center of data, and n is the number 
of the center. We choose )(⋅φ as Gauss function. 
Here, RBF is used to supply the estimated values of 
kinetic parameters for the kinetic model. 
 



     

The RBF network is trained with history data 
consisting of  pH, DO, T, the assayed values, etc. 
After the training, the mapping relationship has built. 
The composite model, composing of the trained RBF 
network for estimating the kinetic parameter changes  
and the kinetic model for estimating the states, can 
be used to provide state information on-line to the 
wavelet network for fault diagnosis as described 
below. 
 
 

3. FAULT DIAGNOSIS 
 
Wavelet analysis has found many applications, due 
its strength in analyzing transient behaviours and 
signal compression. It is selected here to recognize 
the patterns of the faults associated with the 
fermentation process. An evolving wavelet network 
(Huang et al., 2002) is chosen to capture the 
relationships of process states to the corresponding 
fault types.   
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Fig. 2 Wavelet networks 
 
 
The proposed wavelet networks for the fault 
diagnosis has a three-layer structure with a wavelet 
layer (input layer), weighting layer (intermediate 
layer), and summing layer (output layer). Each layer 
has one or more nodes. Figure 2 gives a schematic 
representation of the three-layer wavelet networks. 
The input data vector x , as shown in Figure 2, is the 
input nodes of the networks, expressed as: 

T
nxxxx ],,[ 21 L=  ,                    (3) 

where the input variables are the outputs of the 
composite model designed above. The activation 
functions of the wavelet nodes in the wavelet layer 
are derived from a mother wavelet )(xψ . Then, the 
function of )(xψ  can become the mother wavelet 
with dilation of d and translation of t  

Ztdtxx dd
td ∈−= ,,)2(2)( 2/
, ψψ     (4) 

where Z indicates the integers. Via the operation of 
dilation and translation, the wavelets of (4) possess 
superior localization performance in both time and 
frequency. Since the Laplacian of the Gaussian 
function family meets the isotropic admissibility 
condition, the function of 2)2/1()( xxex −−=ψ  is 
selected as the mother wavelet herein. Therefore, the 

activation function of the jth wavelet node 
Jj ,,2,1 L= has the following form: 
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Each output of the weighting nodes in the weighting 
layer is multiplied by an appropriate weight value 
determined by the weighting node. In Figure 2, the 
weights jkw , that connect the jth weighting node and 
the kth output node, are indicated by the weighting 
vectors ],,,,[ 21 jKjkjjj wwwww LL= for 

Jj ,2,1 L=  and Kk ,,2,1 L= , and K is the 
number of the output nodes. The weighted sum of the 
output of J weighting nodes in the weighting layer 
produces the final output of the summing layer 
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where )(xyk is the kth final computed output value 
of the networks. Note that the output )(xyk in (6) 
contains, implicitly, the adjustable parameters of the 
networks: the connection weights )( jkw and the 

parameters, dilation )( jd , and translation )( jt in each 
wavelet node.  
 
The training algorithm for the wavelet network is as 
follows. The assayed data with the normal as well 
fault process operations are presented as the training 
data to the network as described above. Any output 
of value 1 indicates the occurrence of the fault 
specified by its fault type.  The wavelet parameters of 
dilation, translation, and weighting values of the 
networks are determined by the evolutionary 
algorithm of Fogel (1994), a global-optimal approach.   
 
 

4. APPLICATION EXAMPLE 
 

The proposed diagnosis system consisting of a 
wavelet network for diagnosis and a composite 
model of on-line state estimation is put into tests with 
a glutamic acid fermentation process (Zhao, et al., 
1999). The kinetic model of the process is described 
as Equation (1), where the process states of )(1 tx , 

)(2 tx , and )(3 tx are concentrations (g / l ) of biomass, 
glutamic acid, and glucose, respectively. They can 
not be measured on-line in real-time. 

)/1( 11 mm xxx −= µµ , here, 1767.0 −= hmµ is the 
maximum specific growth rate, )/(43.6 lgxm = is 

the maximum biomass concentration. 1358.0 −= hb , 
)/(04.12 lgKs = , 436.0=GY , 645.0=PY , and 

1105.0 −= hm . 
 

The sampling time is 45 minutes. The designed RBF 
network has the structure of 6-4-2. The wavelet 
network has three inputs and six outputs describing 
different process operation status (faults), the details 
of the wavelet outputs are described in Table 1. 
These outputs indicate the different fault types of the 



     

process. During the operation, any output besides y1 
with a value greater than 0.5, the corresponding 
process fault is assumed to have occurred.  

 
 

Table 1 Definition of the output of wavelet network 
 

output Fault type 

y1 normal 

y2 poor growth 

y3 thallus degradation 

y4 abnormal consumption of 
substrate 

y5 concentration abnormity 

y6 contamination 
 
 

The system is put into tests with a normal process 
operation. Figure 3 compares the estimates of the 
states by the composite model with the actual values 
obtained from the assayed data. Figure 4 is another 
comparison of the process states obtained by the on-
line composite model with the assayed data for a 
poor growth operation case. In both cases, the on-line 
composite model can estimate the state variables 
well, demonstrating the application potentials of the 
proposed composite state estimation scheme. The 
fault diagnosis ability of the proposed system is also 
tested with these two cases. For the normal operation, 
the only output with a value greater than 0.5 is y1, 
indicating a normal operation. For the poor growth 
case, the only wavelet output with a value greater 
than 0.5 is y2, indicate the correct fault type. The 
time variations of the two operation cases are plotted 
in a single graph as Figure 5, to save the space. A 
comparison of the diagnoses of these two cases 
indicates that the proposed system can detect and 
make a proper diagnosis of the faults in the 
fermentation process.  
 
 

5 CONCLUTION 
 
A composite model combining of a neural-network 
model and a kinetic model has been proposed to 
provide on-line estimation of process states. Based 
on the estimation of the process states, a wavelet 
model has been developed for process fault detection 
and diagnosis. The use of the proposed composite 
models can avoid the complexity introduced by 
building a pure kinetic model for the process. At the 
same time, unlike a black-box model, the proposed 
composite model can retain the key process features 
as reflected by the process kinetics, this can enhance 
process understanding.  The estimates of the process 
states from the composite model are fed to a wavelet 
network for process fault detection and diagnosis. 
This allows an on-line diagnosis possible, without 
the need of measuring on-line inaccessible state 
variables. The applications of the proposed system to 
a glutamic acid fermentation process indicate that the 
system can successfully recognize and discriminate 
faults of the process. 
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Fig. 3. Comparison of state estimates and assayed 
values for a normal operation.  
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Fig. 4. Comparison of state estimates with the 

assayed values for a faulty operation. 
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Fig. 5. The output of the diagnosis wavelet network 
for a normal operation (y1) and a faulty operation 
(y2). 

 

 
 


