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Abstract: Measurements of temperatures and flows and pressures are used to 
estimate the dry point of the product for the distillation column. The Problem is 
characterized by the model complication and the strong colinearity between the 
measurements. In this article, the distributed RBF neural network (DRBFN) and 
principal component analysis (PCA) are used to develop the soft sensor 
(PCA-DRBFN model), and PCA is also used for data compressing and validation. 
Another two models are used to compare the performance with the proposed soft 
sensor. 
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1. INTRODUCTION 
A major problem in the control of product quality in 
chemical process is the uneasy measuring of the 
quality variables on-line. Although related product 
quality parameters (such as product composition) 
can be obtained by laboratory analysis off-line, this 
brings large measurement delays. This paper 
addresses the development of a soft sensor model to 
achieve the estimation of the uneasy measured 
quality parameter. The application chosen here is 
the use of temperature, flow and pressure 
parameters to estimate the product dry point. 
 

There are many methods of developing soft sensor 
models and neural network is one of them being 

used widely because of its excellent properties 
(Bhat and McAvoy 1990). RBF neural network is 
the often-used net. 
 

Usually, it is necessary to collect large amount of 
process data in order to accurately developing the 
soft sensor model. In this case, using one network to 
build model will bring a problem of long learning 
time. Distributed RBF network (DRBFN), which 
learns all the initial data using multi-nets can deal 
with this problem properly. However, there is 
usually strong colinearity among the 
multi-dimension variables in chemical process, and 
this will lead to ill-condition model, long learning 
time and huge model structure. Principal 
components analysis (PCA) technology can 



compress the multidimensional collinear variables 
into lower dimension and guarantee the least loss of 
data information, so principal component regression 
(PCR) can be used to develop the estimation model 
and avoid the shortcoming from colinearity 
variables. However, PCR are only fit to linear 
regression, so this method will bring bad estimation 
result for the complicated nonlinear chemical 
process (such as distillation column).  
 

This article proposed a new soft sensor model 
using PCA and DRBFN technoledges. The 
proposed model is of the specialties of better 
estimation quality and simplified structure 
compared with the PCR and DRBFN model. 
Although it is based on a particular distillation 
column example, the treatment in this article is 
rather general. 
 

2. DRBFN SOFT SENSOR 
The objective is to obtain the best prediction ŷ of 
the primary variable (product dry point in our 
application) using all available information. The 
estimation model (soft sensor model) may be 
written 

)(ˆ Xfy =              (1) 

where, X includes all measured secondary 
variables. 
 

The structure of DRBFN soft sensor is shown in 
Figure 1 (Wang and Shao, 1998).  
 

In Figure 1, RBFi (i=1,2…n) is the sub RBF 
network. The fuzzy classifying unit is used to 
classify the initial learning data into n classes using 
Rival Penalized Compete Learning algorithm, and 
the RBFi net matches the data relation of the ith 
class. The combination of all the RBF subnet is 
realized by the membership degree 

],,,[ 21 nµµµµ L= . iµ  is achieved by the 
fuzzy classifying unit in Figure 1, it can be written 
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where, 
2

ii XXd −=  is the Eurlar distance 
between the input data X  and the initial sample 
data ),,2,1( NiXi L= , N and iN are the total 

number of the sample data and the number of ith 
class sample data respectively. 
 

The output of DRBFN can be expressed 
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Where, if is the output of ith RBF subnet, n  is 
the number of all the RBF subnets. 
 

The advantages of DRBFN soft sensor are that it 
can approximate any continuous nonlinear functions 
and avoid the long learning time from the large 
number of the sample data. However, if X is the 
multidimensional variable and has significant 
collinearity, the input of each RBF subnet will be of 
serious redundancy, and this will lead to 
ill-conditioned model, long learning time and 
complicated subnet structure.  

Fuzzy Classifying Unit
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X   
Fig.1. Soft Sensor Structure Based on the DRBF 
network 
 

3. PCA-DRBFN SOFT SENSOR 
3.1 DATA COMPRESSION AND VALIDATION 

PCA is an extremely powerful method for data 
compression, and has been successfully used to a 
wide variety of different applications. It is at its best 
when applied to problems featuring both high 
dimensionality and a large degree of collinearity. 
PCA breaks data matrices )( mN ×X down into a 
series of abstract latent variables or principal 
components. Its model is given by 

EETPX T +=+= ∑
=

l

i

T
ll pt

1
      (5) 

where, =T lNlttt ×],[ 21 L  is the score vectors, 
=P lmlppp ×],[ 21 L is the loading vectors and 

E  is the residuals of the X blocks. In this paper, 
the PCA approach is adopted to compression the 



original process data. Based on the above PCA 
method, the PCR model can be given by 

XKY PCR=ˆ  

and      TTT
PCRK PTTTY 1)( −=  

where, YY ˆand are the measurement and 
prediction of the primary variable respectively. 
 

In Figure 2, the PCA demapping unit is used to 
regress the original variables X̂ by the score vectors 
and loading vectors. This model can be expressed as 

TTPX =ˆ             (6) 

The squared prediction error (SPE) for jx is 
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where, ],[ 21
j

m
jjj xxx L=x  is the sample value 

of the jth sample period, and m is the dimension of 
original variables. If one sensor fails which breaks 
the normal correlation, the SPE will increase 
significantly. Jackson and Mudholkar developed a 
test for SPE known as the Q-statistic. This test 
suggests the existence of an failure sensor when 

αQSPE >              (8) 

where 

0

1

2
1

002

1

2
02

1
)1(

1
2 hhhhC

Q










 −
++=

θ
θ

θ
θ

θ α
α (9) 

3,2,1)(
1

== ∑
+=

i
m

lj

i
ji λθ        (10) 

2
2

31
0 3

2
1

θ
θθ

−=h          (11) 

and αC  is the confidence limit for the 
α−1 percentile in a normally distributed. 

Defines the SPE contribution iβ  as 

miSPESPEii L2,1/ ==β    (12) 

The data j
ix  is fault when 

δβ >i              (13) 

where, δ is a given value. From (6), we have 

TT XPPTPX ==ˆ        (14) 

and 
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The validation of fault data j
ix can be expressed as 

i
jj
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In this paper, the above PCA method will be used to 
realize the data compression and validation. 
 

3.2 PCA-DRBFN SOFT SENSOR 
The structure of the soft sensor model based on 
PCA-DRBFN is shown in Figure 2, where, 
X and Ŷ are the secondary variable vector and 

primary variable vector respectively. 
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Fig. 2. Soft Sensor Structure Based on the 
PCA-DRBFN 
 

In Figure 2, the Data compression and validation 
unit is used to compress the original higher 
dimensional secondary variables X  into principal 
component variablesT , and to validate the fault 
process data so that the process information used by 
soft sensor is compact and available. The 
relationship of T  and X can be expressed by 
equation 5. In PCA-DRBFN model, the input of 
each subnet is T instead of X. By this means, the 
input of each subnet will be decreased from m to l 
(m>>l) if the secondary variables are collinear. So 
the RBF subnet structure of PCA-DRBFN can be 
significantly simplified by PCA method, and the 
learning speed of the net can also be improved. 



 

The output of the PCA-DRBFN can be written as 
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where, iµ and if are designed in Section 2.  

 

4. DRY POINT PREDICTION SIMULATION 
In this paper, a benzene-distilled process is adopted 
as a simulation sample to test the validation of the 
proposed model. This column consists of 35 trays 
and its diameter is 1.6m. A reboiler is used to heat 
the raw material. A water-cooled condenser is 
placed in the top of the column and a small 
accumulator tank is used to deposit the condensate. 
The structure of distillation column is shown in 
Figure 3, and the main process variables have been 
marked on the sides.  
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Fig.3. The Flow Chart of the Distillation Column of 
the Benzene 

Tabel 1. Secondary variables 
Index  Name of the variables 

1 P1 tower top pressure (atm) 
2 T1 tower top temperature(℃) 
3 T2 tray 28 temperature(℃) 
4 T3 tray 4 temperature(℃) 
5 T4 tower bottom temperature(℃) 
6 P2 steam pressure (atm) 
7 T5 steam temperature(℃) 
8 Q1 inlet flux(m3/hour) 
9 Q2 reflux(m3/hour) 

 
The top product of this column is pure benzene. The 
dry point, which is achieved by sample analysis 
offline with a long measuring delay, is used to 
evaluate the quality of the product. The soft sensor 
based on the PCA-DRBFN is used to obtain the 
prediction of product dry point. 

 

The variables that affect the dry point of the product 
are listed in table 1. The soft sensor model of the 
dry point y  can be expressed as 

),,,,,,,,( 215243211 QQTPTTTTPfy =  (18) 

 
4.1 MODEL PREDICTION 

Two hundred data points were collected from a 
distillation process. The variable to be predicted is 
the product dry point sampled by laboratory 
analysis. The data were collected so as to achieve 
the soft sensor based on the process information. In 
the simulation, 150 data points are used for building 
the PCA-DRBFN soft sensor and 50 points are used 
to test the generalization property of the model. 
After the principal component analysis for the 150 
data, the contribution percent of each PC is shown 
in Table 2. 
 
From Table 2, the former 4 PCs’ cumulative 
contribution is 87.23%, so these 4 PCs can describe 
the information of process and filter the redundancy 
(Dunteman, 1989). The variables dimension is 
decreased from 9 to 4 after PCA. It means the net 
structure will be simplified significantly and the 
learning time of each RBFi will also be decreased. 
After principal component analysis, let the 
compressed data input into the distributed RBF to 
obtain the soft sensor model. At the same time, we 
use the same initial sample data to develop the 
DRBF network soft sensor and PCR soft sensor. 
 

50 test data are used to test the above two soft 
sensor. Figure 4 shows prediction results of the 
PCA-DRBFN soft sensor. It shows that the 
proposed soft sensor model can achieve the 
prediction value of the product dry point with a 
considerable precision. The estimation errors of the 
above three models are showed in Figure 5. 
 
From Figure 5, we can see that the estimation 
quality of the DRBFN and the PCA-DRBFN is 
similar, but the estimation result of the PCR is 
deteriorated because of the higher nonlinearity of 
the process. Although the estimation quality of the 
DRBFN and the PCA-DRBFN is similar, the 
structure size of them is different. The biggest 
subnet size of DRBFN is 9×21×1(that means it has 
9 nodes in input layer, 21 nodes in hider layer and 1 
node in output layer), the smallest one is 9×15×1, 
and the biggest subnet size of PCA-DRBFN is 



4×11×1, the smallest one is 4×7×1, so the structure 
of PCA-DRBFN is simplified. By simulation, we 

also find that the learning time of PCA-DRBFN is 
shorter than that of DRBFN. 

Table 2 PC contribution percent 
Principal Component 

 
t1 t2 t3 t4 t5 t6 t7 t8 t9 

Latent root 2.71 2.40 1.58 0.66 0.45 0.26 0.19 0.13 0.05
Contribution percent (%) 32.2 28.5 18.7 7.83 5.33 3.08 2.24 1.54 0.58
Cumulative Contribution 

percent (%) 
32.2 60.7 79.4 87.23 92.56 95.64 97.88 99.42 100 
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Fig.4. The Prediction of the Dry Point Based on the 
PCA-DRBF Soft Sensor 
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Fig.5. The Estimation Error of the Soft Sensor 
Model 

 

4.2 DATA VALIDATION 
Two hundred data points were collected with a bias 
fault introduced in the inlet flux so as to test the 
property of the data validation model. Based on the 
obtained PCA model, the SPE value of the testing 
data can be calculated on-line. Figure 6 shows the 
SPE of the data is out of the control limit after 90th 
sample, and Figure 7 shows the SPE contribution of 
the 95th sample point. From Figure 7, inlet flux 

1Q  need to be reconstructed, and the SPE after 
data validation is shown in Figure 8. The result 
shows SPE returns to the normal range after the 
faulty data being reconstructed. 
 

5. CONCLUSIONS 
In this paper, a method of building a soft sensor 
model is proposed, and PCA method is used to 
compress the higher dimensional secondary 
variables, so that the soft sensor has a compact 
model structure. The simulation shows that the 
proposed soft sensor based on PCA-DRBFN can 
predict the uneasy measured quality variable 
accurately. 

Fig.6 SPE test for faulty data 
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Fig.8 SPE test after data reconstruction 
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