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Abstract: Multi-way principal component analysis (MPCA) has been successfully 
applied to the monitoring of batch and semi-batch processes in most chemical 
industry. A new approach is presented to overcome the method MPCA’s need for 
estimating or filling in the unknown part of the process variable trajectory deviations 
from the current time until the end. The approach is based on the Multi-block PCA 
method and processes the data in a sequential and adaptive manner. The adaptive 
rate is easily controlled by a parameter that represents the similarity between current 
and past data. The method is evaluated on industrial fermentation process data and is 
compared to the traditional MPCA. The method may have significant benefit when 
monitoring multi-stage batch process where the latent vector structure can change at 
several points during the batch. Copyright © 2003 IFAC 
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1. INTRODUCTION 
 

Batch and semi-batch process play an important role 
in the chemical industry due to their low volume and 
high value products. In most of these processes 
product quality variables are only measured after the 
end of each batch, often hours later in a quality 
control laboratory. This makes it difficult to control 
the product quality or to monitor the progress of 
these batch processes. MacGregor (Kosanovich et al., 
1994, Nomikos et al ,1994, Stefan Rännar, 1998), 
have presented very powerful process analysis, 
monitoring and diagnostic procedures which utilize 
these process variables trajectory data. These 
procedures, based on multi-way PCA (MPCA) 
method (Wold et al, 1982, 1994a), are now being 
widely adopted by the batch chemical industry.  

 
The methods have proven to be very efficient for 
analysis historical data from past production and 
diagnosing operating problems. But when monitoring 
a new batch, the MPCA model, which assumes the 
complete history of the batch data, cannot be used 
directly. At any point during the batch, data on the 
deviations of the variables from its average 
trajectories for the remainder of the batch is not yet 
available. MacGregor and Nomikos (Nomikos et al, 
1995) have proposed several approaches to handle 
this problem that have worked quite well in practice. 

However, it would be nice to have MPCA 
monitoring approaches that do not depend on having 
to fill in these missing data. 

 
In this paper, we present a modification of the 
monitoring method that does not require estimates of 
the data for the uncompleted portion of the batch. 
The approach is based on a multi-block PCA 
algorithm that processes the data in a series manner. 
When monitoring future batches, one need only store 
the loading matrices for the local model at each point 
in time and the score vector from past. This 
step-by-step adaptive approach only requires fewer 
latent variable dimensions and appears to work as 
well as the existing methods. Application in 
monitoring an industrial fermentation process reveals 
that the proposed method gives more objective 
appraisal for new batch and may offer potential 
advantages in situation where the batch has several 
stages. 

 
 

2. MULTI-WAY PRINCIPAL COMPONENT 
ANALYSIS 

 
Multi-way principal component analysis (MPCA) 
(Nomikos et al, 1994) is an extension of 
conventional PCA to handle data in 
three-dimensional arrays. These data, which are 



collected from batch processes, are organized into an 
array X of three-dimension (I*J*K), where, I is the 
number of batches, J is the number of variables, and 
K is the number of time samples over the duration of 
the batch. As illustrated in Fig.1, the array X can be 
unfolded in such a way as to put each of its vertical 
slices (I*J) contain the observed variables for all 
batches at a given time interval side by side to the 
right. The result, a wide and short two-dimensional 
matrix has dimensions (I*JK). MPCA is equivalent 
to performing ordinary PCA on unfolded X and it 
explains the variation of variables about their mean 
trajectories. 

 
MPCA decomposes X as follow, 
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where R is the number of principal components used 
in the analysis, t is score vectors and p is loading 
matrices. E is residual matrix. It accomplishes this 
decomposition in accordance with the principles of 
PCA and separates the data in an optimal way into 
two parts. 

 
This decomposition represents a new coordination 
system obtained by rotating the original variables and 
projecting the data into the reduced space defined by 
the first few principal components, where the data 
are described adequately and in a simpler and more 
meaningful way (Wold et al, 1978). By doing this, 
MPCA utilizes not just the magnitude of the 
deviation of each variable from its mean trajectory 
but also the correlations among them. The 
appropriate number of principal components may be 
determined by cross- validation (Jackson.,1991). 

 

The MPCA algorithm derives directly from the 
nonlinear iterative partial least squares (NIPALS). 
NIPALS is a simple, fast and effective algorithm to 
extract the principal components in a sequential 
manner and is a variant of the power method for 
calculating eigenvectors of a matrix. The algorithm 
proceeds as follow. At first, scale X by subtracting 
from each column its mean and dividing by standard 
deviation, choose arbitrary a column of X  as t , 
arrange XE = , this vector is multiplied by score 
vector t to give the loading vector P and 
normalizes P  to have length one.  
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The new score vector t is calculated and the 
convergence of t is checked. If t has converged 
then to equation (5). Otherwise, one iterates 
equations (2)-(4). 

 
Two approach for MPCA monitoring of process are 
used, one is the squared prediction error (SPE) 
(Jackson, 1991) of residual space as follows, 

EE'=Q ,                              (6) 
The critical value for Q is,  
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where, iλ is the eigenvalue of X’s covariance. J kJ KJ1 

Another index is the Hotelling 2T test. 2T value 
can be expressed as,  
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The critical value for 2T is, 

),(2
, RIRF

RI
1)R(ITk −

−
−

= αα ,            (9) 

If an observation vector that produce a value 
ofT greater than , the process will be out of 
control. 
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However, one problem arises when MPCA monitors 
a new batch, only the data up to the present time is 
available and nothing is known about the remainder 
of the batch. In order to calculate the score vectors 
for the present batch, the missing data will have to be 
filled with some assumed approaches. MacGregor 
and Nomikos (Nomikos et al, 1995) suggests several 
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1 
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Fig.1. Overview of the MPCA method. 



methods to solve this, usually, two methods are used. 
The first is put zeros in the vector for all remaining 
missing batch. It assumes that the process will 
continue as a normal batch from the present time 
until the end of the batch. The second approach fills 
in the future data with the current observed value that 
has been normalized. All these method have been 
seen to work in practice. However, it would be more 
satisfying if one would not have to make such 
assumptions when monitoring an on going batch. In 
the following sections, it is shown that by using a 
step-by-step adaptive MPCA, this can be 
accomplished. 

 
 

3. STEP-BY-STEP ADAPTIVE MPCA    
 

In the proposed Step-by-Step Adaptive MPCA 
algorithm the X-block is divided into a number of 
blocks, which are the time slices from the 
three-dimensional batch data matrix and each block 
has N batches and J variables. The different between 
the step-by-step adaptive MPCA from ordinary PCA 
algorithm is that it only looks at one time slice each 
time rather than all of the blocks at once. 

 
The step-by-step adaptive MPCA algorithm proceeds 
as follows. The initial step is to calculate one PCA 
model for the first time slice (k=1), giving the first 
block’s score vector and loading vector , then 

lead in a forgetting factor 
1T 1P

1β to decide l columns 
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make a new score vector T  ( T  captures 
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among ), the T will join in the PCA model 
building of the next time slice. The value of l can be 
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The algorithm begins with the second time slice and 
continues for the rest of the duration (k= 2, … K).  

 
The first step in building the PCA model for time k is 
to combine the previous score vector that 
summarizes the recent prior history and the present 

 matrix together, then apply the PCA to , 

 is relative score vectors and  is loading 
vectors respectively.  
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The second step is, through (13) decided the first l 
score vectors of  compose T , that will take 
part in the next time slice. 
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where ikλ is the eigenvalue of the ’s covariance 
matrix. 

kD

The third step: define 1+= kk .  If k less than K 
then return the first step. Otherwise, ends. 

 

During this algorithm, kβ is the forgetting factor. It 
controls the number of the columns of the score 
vector . A higher value of kT kβ  will put more 
weight on the previous history and the model will 
adapt slowly, while a low value of kβ will make the 

model adapt fast. Setting kβ to zero will be equation 
to calculating separate PCA modes since it uses no 
memory of previous history of the batches. The value 
of kβ depends on the type of process to be 
monitored.  

 

The criteria of choosing the forgetting factor kβ is 
described as follows, first lead-in the similarity 
(Manabu kano et al, 2002) between time slice k and 
k+1 of data sets.  

 
When two data sets are similar to each other, the 
coefficient of similarity must be near one; the 
corresponding forgetting factor kβ is also high. 
However, the coefficient of similarity should be near 
zero when data sets are quite different from each 
other, the value of kβ  is also low. 

 
When the calculation as mentioned above is finished, 
K PCA models can be obtained. The Ith model 
relates to the Ith sample time of the batch process. In 
the monitoring phase two statistics with 
complementary information, the squared prediction 
error (SPE) and the Hotelling’s statistics 
( 2T )(Jackson, 1991) can be used. 

 
 

4. APPLICATION  
 

In this section, an industrial typical multi-stage 
streptomycin fermentation process will be 
investigated to evaluate the performance of 
Step-by-Step Adaptive MPCA. The available on-line 
measurements for the employed process are shown in 
table1 and all these measurements are obtained at 
regular sample intervals. 

 
 

Table 1 Online measurements obtained from the 
streptomycin fermentation process 

 

1 Temperature 5 Nitrogen(N) Concentration 
2 Air flow 6 Sugar Concentration 
3 PH 7 Product Concentration 
4 Viscosity   
 
With both good final product concentration 
(26000~30000) and normal variable trajectory, 20 
good batches are used to train the model for process 
monitoring. Both variables are centred about their 
average trajectory and scaled to have unit variance 
prior to the analysis. 

 
A special batch (the initial value of PH of this batch 
is abnormally high, due to the operator’s operation, 



the final product concentration is 24920) is employed 
for comparison between the proposed method and 
MacGregor’s method (Nomikos et al, 1995). The 
Squared Predictive Error (SPE) (solid line) 
monitoring results are listed in following figures, 
where the dotted line represents the 95% SPE 
confidence level. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From figure 2, it’s clear that Step-by-Step MPCA 
detects abnormal behaviours at the beginning of the 
bad batch. As we know, the initial condition of 
fermentation process has large effect on the final 
product quality, thus it’s quite important to detect 

abnormal initial condition as soon as possible. Due to 
operators’ efforts and compensations for the bad 
initial condition, this bad batch is drawn back to 
sub-normal operation trajectory. Compared with 
Step-by-Step MPCA, ignoring the multi-stage 
characteristics and taking the batch as whole, 
traditional MPCA method neglects the efforts of 
operators and evaluates this batch badly. Furthermore, 
using the first method to fill future data, MPCA is 
less sensitive to abnormal operation and the second 
method is too sensitive. 

 
 

5. CONCLUSIONS 
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In this paper, a new Step-by-Step Adaptive MPCA 
algorithm has been presented for the purpose of 
monitoring batch processes. One advantage of this 
approach is that in the monitoring phase, there is no 
need to assume anything about the future deviations 
of the going batch from the normal trajectory. In 
traditional MPCA algorithm, one has to assume the 
operation of the future of the batch in order to 
full-fill the data vector from the current time period 
until the end of the batch. The step-by-step adaptive 
MPCA only works with the present and past data of 
the batch. Thus avoids the filling procedure. Another 
advantage is the model’s ability of adapting to 
different stages of the batch process making it very 
suitable for monitoring multistage batch processes. In 
the industrial fermentation example involved in this 
paper, the step-by-step adaptive MPCA has 
represented its advantage. If one has a process with 
even more stages this method could be more 
advantageous since it will reduce the number of 
variables for monitoring and thereby simplifying the 
presentation of the monitoring results. 

Fig 2 Monitoring of Special Batch
Using Step-By-Step MPCA  
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