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Abstract: A robust adaptive control design is considered for a class of bilinear plants with unmodeled
high-order dynamics and bounded disturbances. A basic optimal control law is first introduced by the
generalized minimum variance control strategy, followed by a modification of introducing the
modeling error estimate to the control law. Modified least-squares scheme with a relative dead zone is
developed to form a novel robust adaptive controller. The resulting closed loop system is proven
theoretically to have a zero average tracking error and robust stability. Furthermore, the simulation and
an application in controlling of sensitive plate temperature of distillation column demonstrate the
effectiveness of the algorithm. Copyright © 2003 IFAC
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1. INTRODUCTION

Attempts to invent, design and build systems capable
of controlling unknown plants or adapting to
unpredictable changes in the environment resulted in
the emergence of adaptive control in the 1950s, and
since then, adaptive control has been in the
mainstream of control research and development with
numerous papers and books published and successful
applications every year (Astrom 1983, Ljung and
Soderstrom 1983, Goodwin and Sin 1984, Astrém
and Wittenmark 1995, Kanellakopoulos and Koktovic
1995, and the References therein). Significant
contributions have been made with the stability
establishment of adaptive control theory (Egardt 1979,
Gawthrop 1980, Goodwin and Sin 1984, Middleton et
al. 1988, 1989). They, however, have been limited to
the ideal cases, such as linear plants of disturbance-
free, random noises, etc. A stable adaptive control
algorithm may not be necessarily robust stable
(Egardt 1979, Rohrs et al. 1982), and the disturbances
in an adaptive control system may be inherently
related to the plant inputs and outputs (Krisselmeier
and Anderson 1986). This led to the recent interest of

the robust stability research for adaptive control
systems. In the presence of nonlinear uncertainties,
unmodeled dynamics and/or bounded disturbances, it
has been shown that for the linear plants, robust
stability can be ensured by combining the
normalization, 0-modification and relative dead zone
parameter estimation algorithms with the control
strategies of minimum variance, generalized
minimum variance or pole placement (Clarke and
Gawthrop 1975, 1979, Gawthrop and Lim 1982,
Middleton et al. 1988, 1989, Shao 1991, 1996). For
the bilinear systems, adaptive control stability has
been studied recently with bounded external
disturbances (Sun and Rao 1999), but the robust
stability has not been considered for the systems with
the presence of unmodeled dynamics.

This paper examines the robust stable adaptive
control problem of the bilinear system in the presence
of unmodeled plant uncertainties and bounded
disturbances. The considered plant is a class of high-
order bilinear systems with unknown and perturbed
parameters. By means of minimizing a generalized
variance function, a basic control law is first derived
and then modified by introducing model error
feedback. A self-tuning controller is proposed by
combining the control law with a modified least



squares parameter estimator with relative bilinear
dead zone. With the proposed self-tuning controller,
it is proven that robust stability for the bilinear
system can be ensured with respect to the unmodeled
high-order nonlinear dynamics and bounded
disturbances, without any static state tracking error in
an average sense.

Distillation column is a kind of important fraction
equipment in chemistry industry. Due to the complex
structure of the equipment and the different effects
caused by the fluids, the whole system is of essential
nonlinearity and of large delay. The control of
distillation process is quite concerned with the
products quality. In the control system designing for
it, in order to satisfy the high quality demand, the
sensitive plate temperature is usually selected as the
controlled variable. Bilinear system can be used to
model many industrial process. In this paper ,a plant
of sensitive plate temperature modeled as bilinear
system is presented and used as application model.
Because of nonlinear characteristics of distillation
column, it is naturally to develop robust nonlinear
adaptive control algorisms to solve this problem. The
experimental results suggested in the paper
demonstrated the effectiveness of the proposed
bilinear adaptive algorithm for control of distillation
column also.

2. THE PLANT DESCRIPTION

Consider a class of bilinear plants with uncertain
perturbation and bounded disturbances
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where y and u are the scalar output and input,
respectively, V is a bounded output disturbance,
d =1 is the plant delay, 4, A, B, B',C and C' are

1

polynomials of delay operator ¢ of orders

n,,Ny,Ng,Np,N. and n. , respectively,
and U = 0 is a singular uncertain perturbation scalar,

by which the unmodeled high-order dynamics will be
brought. In fact from (2.1):

y(r)=§u(z—d>+§u<z—d)y<r—d)+np(z) (2.24)
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Consequently, a singular perturbation from ¢ >0 to
U =0 results in the reduced-order model

y(t):%u(t—d)+%u(t—d)y(t—d)+v(t) (2.3)

The designer is assumed to be given only the
reduced-order model (2.3), without the knowledge of
the coefficients of 4, B and C. Therefore, the

modeling errors 1 p(¢) which includes the unmodeled
high-order dynamics related to u(¢), y(¢) and their

products, has to be considered in designing of
adaptive controller and the robust stability of the
resulting closed loop system must be ensured. Model
representation of (2.3) has been effectively employed
for modeling a combustion process with one input
(flow of air) and one output (Oxygen content) in
discrete time and many other industrial processes,
such as nuclear fission, convective heat-transfer, and
turbo-pump dynamics may be also effectively
modeled by a bilinear system (Mohler 1991,
Aganovi¢ and Gaji¢ 1995). The analysis of the model
is made with the following assumptions for the model
polynomials 4, B and C, in this paper.

Assumption 1: A is monic and coprime with B.
Assumption 2: N, ,Ng N and delay d are known.

Remark 1: Assumption 1 implies that the reduced-
model is controllable, the pole placement control
design can, therefore, be applied to the processes that
are unstable and/or non-minimum phase. Assumption
2 provides a necessary structure parameter frame for
constructing a self-tuning controller.

3. ANOVEL SELF-TUNING CONTROLLER

Our objective is to design a self-tuning controller
based on the reduced-order model, or the structural
knowledge of 4, B and C, so that the application of
such a controller to the plant (2.1) results in a robust
stable closed loop system tracking the desired output
in the presence of the unmodeled dynamics and
bounded disturbances.

Let P be an arbitrary monic polynomial in q_l of

order 7, . Introduce the polynomial identity

P=AF +¢q7°G (3.1

where F and G are polynomials in q_1 of orders
np=d-1 and ng=max{n,~1,np} , respectively,
and F'is monic also. Multiplying (2.2a) by AF gives

Py(t+d)=Gy(t) + FBu(t) + FCu(t)y(t)

(3.2)
+AF, (i +d)

Define

@) = Py(t)



X' (@)=(y(t),...., y(t = ng),u(t), ...,

u(t = ny=d +1),u(t)y(@), .. (3-3)
u(t—-n, —d+l)y(t-n, —d+1))
n(t) = AFn,(t) (3.4)

Then a regression form of (3.2) can be given as
follows

Pit+d)=0"X@)+n(t+d) (3.5)

where O is the parameter vector composed of the
coefficients of G, FB and FC. It should be noted that
though the plant is modeled linearly in 6 , the
nonlinearity exists in the multicity of measured inputs
and outputs, and the high-order unmodeled
dynamics ) (¢) . The following lemmas are given to

establish a relative upper bound of 1(z).

Lemma 1: Let D(¢™") be a polynomial in q_l with
finite order #,, . For arbitrary 0 [J(0,1) there exists
Ho >0 such that D, (z™)=1+uD(z"")#0 for all
|z| >0 and pO[0, 4,1, that is D, (¢™") is strictly
Hurwitz uniformly in (4 U[0, 14, ].

The proof is given in Shao (1996).

Lemma 2: There exist non-negative constants K

and K, independent of y and p; such that for all
Hoo, 141

176)| < K, fma{ y(0)| + max| u(@) ()]}

= <r<i-d
+K,

(3.6)

Proof: Substituting (2.2a) into (2.2b) results in:
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The result follows from (3.7) and (3.4) by applying
Lemma 1 to B;l: 1 +UB’" and referring to the proof

of Lemma 2 of Shao (1996).

To achieve a basic optimal control law, suppose that
{I’](t)} is a white noise sequence, the generalized

minimum variance control strategy of Clarke-
Gawthrop type (Clarke and Gawthrop 1975, 1979)
then may be employed by minimizing the following
quadratic cost function with respect to u(f):

J =E{P(y(t+al)—y*(z+d))+§u(t)}2 (3.8)

where P and Q are constant weighting polynomials
in ¢~ withQ = (1-¢™")Q, and y*(2) is bounded
desired output. It follows from (3.5) that

J=E{07 X ()~ Pyt + ) + Ou(r) +Dn
(3.9)

It is obvious that an optimal control law can be given
by

07 X (1) + Qu(t)= Py *(t+d) (3.10)

The preceding control law (3.10) is not suitable for
our purpose, as f](¢) includes unmodeled dynamics.

In fact for the self-tuning case, replacing 6 in (3.10)
with its estimate é(t) and then applying (3.10) to (3.5)
one obtains

POt +d) =y *(t +d))=(0-0()) X(z)
—Qu() +n(t +d)

which means that due to the existence of n(¢) the

(3.11)

tracking error e(z) = y(¢t) —y *(¢t) will not converge to

zero even when the parameter estimates

() approach to their true values. To remove the

effect of unmodeled dynamics, the control law (3.10)
is modified by introducing an estimate of () :

A0 =90 -6 X (1 - d) (3.12)
which results in a novel self-tuning control law
0" X (1) +Qu() =Py *(t+d)-n@n)  G.13)

The parameter estimates are given by the modified
least squares scheme with relative dead zone (Shao,

1996) by changing the parameter A(t) as follows:

D iffe(o] < 280K * (ax (o)

+ max [u(T)y(1))) +1]
A(t) - % 05rsr—d| Y |
¥ otherwise,yUd[o,,3(1-0,)/4]

where [ is positive user adjustable parameter with

B= max{Kl,Kz} (see (3.6)), and {W(t)} is a
matrix sequence with arbitrary initial ' (-1) > 0 .

(3.14)

Remark 2: Tt can be shown that for a linear plant (i.e.
C equals to zero in (2.1)) the quadratic cost function
(3.8) is equivalent to the generalized minimum
variance function of the Clarke-Gawthrop type
(Clarke and Gawthrop 1975, 1979, Gawthrop 1980,
Gathrop and Lim 1982, Shao 1996)

J= E{[P(y(t + d) =y * (1 + d))* + [Qu ()] }
(3.15)

And here choice of weighting polynomial Q in the

form of Q =(1-¢7")0 , to be seen in the sequel,

will remove static state tracking error in an average
sense.



Remark 3: It can be observed that a relative bilinear
dead zone method is employed in this paper. Despite
the appearance of the bilinear term in the control law,
u(f) is always solvable from (3.13) by choosing
proper A(¢) and/or O . The singularity problem in

solving u(¢) from (3.13) can hence be avoided.

Remark 4: The condition f3 Zmax{Kl,KJ is not

crucial. In practice, one can start with a large initial
value, and then reduce [ when the closed-loop

system approaches the steady state, to improve
control accuracy.

The following assumption is made on P and Q .

Assumption 3: The off-line choices of P and Q are
such that

f(@)y=P(qg ")B(g )+ 0(qg")A(q™")
(3.16)
is stable, that is f(z) %0, |z|sl.

Remark 5: Assumption 3 is often made for linear
control systems with the pole placement design. Here
it is made, however, for the reduced-order model with
the design consideration of the robust stable adaptive
control of a bilinear system with unmodeld high-
order dynamics. The linear part of the plant (2.2) may
be unstable and/or non-minimum phase, without any
further constraints on 4 and B.

The only assumption on the unmodeled dynamics is
made as the following:

Assumption 4: A sufficiently small upper bound [*
of U is available. (The meaning of ‘'sufficiently

small' will be elaborated later.)

Remark 6: This is a condition often used to construct
relative dead zone adaptation algorithms for solving
the linear robust adaptive control problems
(Kreisslmeier and Andson 1986, Shao 1996).
Extension has been made here to bilinear nonlinear
systems with unmodeled high-order dynamics.

4. ROBUST STABILITY ANALYSIS

The following lemmas are given for the robust
stability of the resulting closed loop system.

Lemma 3: If pu* is sufficiently small such that
p*<u, , the application of parameter estimation
scheme (3.14) to (3.5) for all p O[O0, u*] has the
following properties.

M i 202 e)

=g @)
SR+ X(—d) Wt -2)X (1 -d)]?

2) ‘[é(t )-8 -d) X(t - d)‘ <h@o|X@-d)| -
h(t) > Oas t » (4.2)
where ” E” denotes the vector-Euclidean norm.

3) é(t) is bounded.

The proof may be referred to that of Lemma 3 in
Shao (1996), and is thus omitted here.

Lemma 4: The tracking error and the input dynamics
satisfy

(PB + QA)e(t) = QCy(t —d)u(t —d) + 40N, (t)
+BA,£(1) + 3, (1)

(4.3)

(PB + QA)u(t—d) = —PCy(t —=d)u(t —d) - APN , (1)
+ AN £(2) +0, (1)
(4.4)
where A, =1-¢~ and
3,(t1)=B[B(t-1)-0(t-d)]" X (t —d)
+B[O(t-d)-0(t—d -1)]" X (t —2d) 3)
— 40y * (1)

3,(1) = A0t -1)-0(t-d)" X(t-d)
+ A[6(t—d)-O(t—d-1)]" X(t-2d) (4.6)

+ APy * (1)

Proof: Using (3.13) and (3.14d) gives

Pdt) =@(t) ~1i(t —d)~0(t —d) X(t —d) ~ Qu(t ~d)
=0,£0) +[6( 1) -6 ~d)] X(t~d)
+[6(t ~d) =0t ~d =] X(t ~2d) = Qu(t —d)
4.7)
From (2.2a) one obtains
Ae(t) = Bu(t—d)+ Cu(t—d)y(t-d)
+ AN, (1) = Ay * (1)

(4.8)

A summation of (4.8) multiplied by Q and (4.7)
multiplied by B results to (4.3) with J,(¢) of (4.5). In

the same fashion, a summation of (4.8) multiplied by
P and (4.7) multiplied by -4 leads to (4.4) with J, (¢)

of (4.6).

Lemma 5: Subject to Assumptions 1-4, there exist
sufficiently small p* >0 and non-negative constants

L,L, and Lj that are independent of yu and
polynomial C such that for all p [0, pu*]



max ‘u(T)‘SL'(ué +[1P) max ‘CU(T),V(T)‘

0sr<t-d (49)
+ L, max] s(r)\+L

max | y(1)| < Lj(Hg+H,) max |Cu(T)y(1)| 4.10)
+ L) max 8(T)|+L

0<T<t
h _ ng — np ~ d
where yi =% " |g,| #p=) [Pl @ and py

are coefficients of polynomials Q and P, respectively.

The following assumption is further made on

weighting polynomials P and Q to ensure the
resulting closed loop system with robust stability.

Assumption 5: The norms Up, Hp of P and é,

respectively, are relatively small.

Remark 7:
requirement on the weighting polynomials P and Q

Assumption 5 gives the specific

for the robust stabilization of bilinear systems, in
addition to the general pole placement method.

Theorem 1: Subject to Assumptions 1-5, there exists
sufficiently small p*>0 such that the application of
self-tuning control algorithm (3.14) to plant (2.1)
ensures that

(1) The resulting closed loop system is globally
robust stable in the sense that u and y are bounded for
arbitrary bounded initial conditions and all

p o, p*]

(2) The tracking error satisfies

1 N
SPRUS
(3) In particular, if the disturbance V is constant (not

necessarily equals to zero) and the reference signal y*
is fixed, then

lim [y() = y*] = 0

(4.11)

(4.12)

The proof is omitted here.

5. NUMERICAL SIMULATION

To demonstrate the effectiveness of the proposed

adaptive  control algorithm some numerical
simulation results are given below.

EXAMPLE

Select
A=1+qg'+¢?2,B=1,C=1;4"=1+q"",
B'=1,C'"=1. Then a bilinear system plant is

given as below:

40

-a0
o

Fig.1 The plant output

k) ==y(k=1) = p(k =2) +u(k =2)* (k=2)
Fu(k=2) = p* y(k=1)/(1+ 1)
+(1+240) [(1+ ) * e(k)

e(k) is a random gaussian distribution sequence

with mean zero and variance 0.01;
controller:

P=6+5¢"+q7,0=1,a=1,B=4,y=05,
U =0.01, and the initial conditions:

é(O) =[-2,043,-0.01403] , WQ=al>0 ,
(@ =0.8); As shown in figure 1, the controller

worked well with the presence of unmodeled
dynamics.

For designing

6. APPLICATION OF THE ALGORITHM

A certain loop in a industrial distillation column can
be modeled as follows:

T(k +1) = 0.3848T (k) + 0.0767T (k)u(k)
+0.5*sin(u(k — 1) * y(k — 1))
~1.2663u(k) + e(k)

T (k) (°C)is the temperature of the sensitive plate,

u(k) (kmol / h) s the charge in flow.

The sampling cycle 7, =Is. e(k) is a random
gaussian distribution sequence with mean zero and
variance 0.01.The simulation result is shown in figure
2. From the results, it can be seen that the tracking
error is zero and the tracking velocity is satisfactory.
The robust adaptive control algorithm worked very
well and improved the quality of the controlled

system.
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Fig.2 The plant output

7. CONCLUSIONS

A new self-tuning control algorithm has been
developed in this paper for a class of bilinear systems
with uncertain perturbation and bounded disturbances.
The generalized minimum variance control strategy
has been extended to suit our purpose together with a
modified least squares estimation with relative
nonlinear dead zone. The robust stability of the
resulting closed loop system has been established
with respect to unmodeled high-order dynamics
related to the plant input and output, and to bounded
disturbances. Simulation example and application for
control of sensitive plate temperature of distillation
column showed that the proposed algorithm is
available for robust control of a class of nonlinear

systems with uncertain disturbances and high degree

unmodeled dynamics.
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