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Abstract： In the operation and control of chemical process, automatic data logging 
systems produce large volumes of data. It is important for supervising daily operation that 
how to exploit the valuable information about normal and abnormal operation, significant 
disturbance and changes in operational and control strategies. In this paper, principal 
component analysis (PCA) is clarified its essence from the view of space, and every 
different subspace represents different operational mode and process performance. Based 
on that, distance between two subspaces is calculated to evaluate the difference between 
them. The method is illustrated by a case study of a fluid catalytic cracking unit (FCCU) 
reactor-regenerator system. Copyright © 2003 IFAC 
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1. INTRODUCTION 
 

Advances in computer technology and application of 
advanced control theory have resulted in routine 
collection and storage of large volumes of data in 
chemical plant. Massive amounts of stored data can 
be used for analysis of the process operation and 
previous occurrences of abnormal situation. Principal 
component analysis (PCA) can extract valuable 
information from large historical database. Notable 
applications of PCA in chemical engineering have 
been in process monitoring (Nomikos and 
MacGregor, 1995; Kresta, et al., 1991), disturbance 
detection (Ku and Storer, 1995), sensor fault 
diagnosis (Wang and Song, 2002) and process fault 
diagnosis (Kano, et al.,2001; Dunia and Qin,1998; 

Zhang, et al.,1996).  
 

As far as process fault diagnosis is concerned, 
statistical process monitoring via PCA involves the 
use of Hotelling T2 and Q (also known as Square 
Prediction Error or SPE) charts. Fault is identified 
with contributions of process variables to SPE. It is 
only valid for simple fault situation, and difficult to 
identify the root causes. Zhang and Martin (1996) 
proposed fault direction to identify different fault. 
Fault diagnosis is achieved by comparing the 
direction of the current on-line measurements with 
those of a database of known trajectories of identified 
faults. This method based on angle measurement 
does not make full use of principal component 
information of faults, and only the first loading 



 
vector is used. Dunia and Qin (1998) analyze the 
detectability, identifiability and reconstructability of 
faults using subspace approach. But they assume that 
the fault effect is not propagated into the other 
variables, which restricts its application. Kano, et al. 
(2001) proposed a novel statistical process 
monitoring method based on changes in the subspace 
which is spanned by several principal components. 
The method makes use of principal component 
information sufficiently, and has better monitoring 
performance than conventional PCA based on 
Hotelling T2 and Q charts. In essence, the method 
proposed in this paper is similar to the one proposed 
by Kano, et al.. Their work is not dealt with fault 
identification, while our approach goes beyond the 
fault detection task. Once a fault is detected, we have 
proposed a method based on subspace distance to 
identity the type of fault.   
 

The paper is structured as follows: the second section 
gives a more strict procedure of deduction for PCA 
based on subspace distance, and proposes a method 
of fault identification according to historical database. 
The third section presents an application of the 
approach to FCCU reactor-regenerator system. The 
final section summarizes the approach. 
 

 

2.  PCA BASED SUBSPACE 
 

2.1 Spacial Signification of PCA 
 

PCA decomposes a normalized sample vector into 
two portions, 
            xx ~ˆ +=x ,                  (1) 

where mℜ∈x is the sample vector normalized to 

zero mean and unit variance. The vector x̂ is the 
projection on the principal component subspace S: 

ˆ T= =x PP x Cx                 (2) 

where km×ℜ∈P is the PCA loading matrix, and k≥

1 is the number of PCs retained in the PCA model. 

The matrix TPPC = is projection operator on the 

principal component subspace S, mS ℜ⊆∈x̂ , with 

dim(S)=k. The columns of the loading matrix P are 

the eigenvectors of the correlation matrix associated 

with the k largest eigenvalues. 

Similarly, the residual x~ satisfies 
mS ℜ⊂∈=−=

~~)(~ xCxCIx ,         (3)  

where C~ is projection operator on the residual 

subspace S~ , with kmS −=)~dim( . From the view 
of space, PCA divides the measurement space Sm 
(dim(Sm)=m) into two orthogonal subspaces, a 
principal component subspace and a residual 
subspace. That is, 

SSSm
~

⊕=                  (4) 

Principal component subspace primarily 

characterizes the measurement subspace. When a 

change in variable correlation occurs, that is, space  

Sm has a change, the bases of principal component 

subspace also produce corresponding changes. We 

call principal component subspace S as characteristic 

subspace.  

 

For a certain chemical process, we can define fault 

set n
iiF 1}{ =  according to the data recorded in 

historical database and technologic information. We 
denote Si, Sj as the characteristic subspace of fault Fi, 
Fj respectively. They are spanned by the 
corresponding loading vectors, respectively, that is, 

      1 2( , , , )i rS span= u u uL         (5) 

          1 2( , , , )j sS span= v v vL        (6)                                                                            

where dim(Si)=r, dim(Sj)=s. Without loss of 
generality, suppose s r≤ . The dimensions of 
subspace Si, Sj can be determined by the percent of 
contribution to the accumulative variances. The 
difference between Fi and Fj can be reflected by the 
difference of bases of their characteristic subspace. In 
order to identify different fault, the distance between 
two subspaces is used to measure the difference. Let 
matrix 

 1 2[ , , ]r=U u u uL , 1 2[ , , ]s=V v v vL , with 

IUU =T , IVV =T .The  projection operator 
from subspace Sj onto subspace Si can be represented 
as   

             TUUC =                  (7) 

For any unit vector jS∈y ,that is ,
2

1=y , its 

projection on subspace Si is written as Cyy =ˆ . Now, 

the distance between two subspaces is defined as 



 

2, ˆmax yy
y

−=jid              (8) 

subject to      1
2

=y                   (9) 

Since y is a unit vector in Sj , it can be represented as  

Vty =                   (10) 

where t is the coordinate coefficients vector 

correspond to bases v1,v2,…, vs , with 1
2

=t . 

According to Lagrange’s method, we have  

)1(ˆ),( 2

2

2

2
−+−= yyyt λλL        (11) 

Let 0/ =∂∂ tL  and 0/ =∂∂ λL , with substitution 
of Eq.10 in Eq.11, we get the following expression,  

              tAt λ=                (12) 

where VUUVA TT= .  The coordinate coefficients 

vector t is an eigenvector of the matrix A, and λ  is 
the corresponding eigenvalue. The distance between 
two subspaces is obtained by the substitution of 
Eq.12 into Eq.8, 

)(1 min Aλ−=d              (13) 

Now, we prove the distance ].1,0[∈d  

Proof. ∵ VUVUVUUVA TTTTT )(== ,  

∴ A  is nonnegative definite , that is ,  0≥A , 

min ( ) 0λ ≥A . 

Suppose the bases of residual subspace of fault Fi is 

1 2[ , , , ]r r m+ +=U u u u% % % %L .  Let ]~,[ UUE = , then E is 

the bases of the measurement space Sm ,  with 

IEEEE == TT . T T T= + =EE UU UU I% %∵ ,  

and 0T ≥UU% %∵ , T∴ ≤UU I .   Thus, 

IVUUVA ≤= TT , that is,  min ( ) 1λ ≤A  

Therefore, 10 ≤≤ d ,  End. 
  

Thus, we have the following three special cases: 

(i) if the subspace Si = Sj , that is , the two subspace   
are identical, then U=VQ, where Q is nonsingular 
orthogonal matrix. With Eq.13, we can get 

1)(min =Aλ , that is, d=0. In the case of this, the 

fault Fi, Fj can be considered as the same fault.  

(ii) If the subspace i jS S⊂ , that is, the subspace 

spanned by the model for the fault Fj  contains the 
subspace spanned by the model for fault Fi , we can 
also get d=0. It means that the fault Fi is masked by 
fault Fj , and they can not be distinguished from each 
other. In fact, they are mistaken for the same fault.  

(iii) If the subspace ⊥= ji SS , that is, they are 

orthogonal, then 0=VUT . Thus, we can get 

min ( ) 0λ =A , that is , d=1. It means that the fault Fi, 

Fj can be distinguished from each other to the most 
extent. 
 

2.2 Fault Diagnosis Based on Distance 
 

From above description, the distance between 
subspaces can be used to identify the different faults. 
We define a match function as follows, 

%100)1( ,, ×−= jiji dp  

min ,1 1 ( ) 100%i jλ= − − ×A           (14) 

When a fault occurs, the loading vectors of the fault 
data are calculated through PCA and used to 
represent the bases of characteristic subspace of the 
fault. On the basis of that, the library of characteristic 
subspace of faults can be formed and represented as 
follows, 
          SF =[S1, S2, …,Sn]              (15) 
Where Si is the characteristic subspace corresponding 
to the fault Fi, and SF the subspace set, and n the 
number of faults. 

The currently monitored process measurements can 
then be analyzed using PCA. The calculated loading 
vectors form the bases of the subspace corresponding 
to the current observations. Denoting the current 
characteristic subspace by Scur, the matching degree 
between Scur and the every subspace in SF can be 
measured by Eq.14 respectively after a fault is 
detected. If the matching degree between Scur and 
some subspace (for example, Si ) is very close to 
100%, then the current abnormal occurrence may be 
probably ascribed to fault Fi. On the contrary, if the 
matching degree is close to zero, it may be least 
ascribed to fault Fi. Thus, fault identification can be 
performed by calculating the matching degree 



 
between the characteristic subspace of the current 
data and the library of subspace of known faults. As 
already discussed, some faults may be masked, so 
domain knowledge is further needed in that case to 
analyze the results and determine which fault has 
occurred on earth. 

In practical application, a diagnostic threshold is 
required to be defined in advance. The maximum of 
matching degree between the current data and the 
faults in the library should be larger than the 
diagnostic threshold. Otherwise, if the maximum of 
matching degree is less than the diagnostic threshold, 
that is, the current data subspace is not well matched 
with any fault characteristic subspace in the library, 
then it is likely that a novel fault has occurred. Once 
the occurrence of a novel fault is confirmed, the 
bases of the current data subspace can be stored in 
the library. Through this method, diagnostic 
knowledge about novel faults is progressively learnt 
and the library updated.    
 

 

3. CASE STUDY 

3.1 Process Description  

Fluid catalytic cracking unit (FCCU) is considered as 
one of the most important unit in the refinery. A 
simplified flow diagram is shown in Fig.1. Briefly, 
the fresh feed and recycle sludge oil are preheated, 
mixed, and then enter into the riser reactor where 
they contact regenerated catalyst and start the 
cracking reactions. The spent catalyst passes to the 
steam stripping section and enters the regenerator 
where the coke on the catalyst is burnt off with air. 
The heat released by the combustion of coke is 
supplied to the endothermic cracking reactions. The 
extra heat than what is required by cracking reactions 
is taken away by the heat exchanger outside the 
regenerator. The FCCU reactor–regenerator model 
which is used in this paper can be referred to the 
work done by Yang, et al. (1997). 

To generate an instance, the simulation is running at 
normal mode. When all parameters become stable, a 
disturbance or fault is introduced and at the same 
time, data recording is started. Fourteen variables are 
chosen to be recorded, including temperature of feed 
preheated, flow rate of recycle oil, sludge oil, slurry 

oil, distillate oil and assembled feed, flow rate of air 
of the first regenerator and the second regenerator, 
outlet temperature of riser, the heat of exchanger, 
carbon dioxide content in the flue gas from the first 
regenerator, oxygen content in the flue gas from the 
second regenerator, the temperature in the high 
density bed of the first and the second regenerator. 
During the simulation, random noise was added to 
the measurement and controller outputs.  Altogether 
ten data instances have been generated and 
summarized in Table 1. Sample time is 4 minutes. 
Each instance is simulated for 1000 minutes, and the 
database is a 250╳14╳10 matrix.  
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1：deaerator  2: 2nd regenerator  3: 1st regenerator    
4:  settler    5: heat exchanger  6: riser  
7: 2nd regenerator flue gas   8: 1st regenerator flue 
gas   9: product    10: feed    11: air 

 Fig.1 FCCU Reactor-regenerator Flow Sheet 

3.2 Data Analysis and Fault Identification 

When the measurement data are obtained, data 
reconciliation is performed to validate the sensor data. 
Then they are normalized to zero mean and unit 
variance before the data of each instance is analyzed 
by PCA. The distance between two corresponding 
subspaces is calculated with Eq.13.  Table 2 is the 
calculated results. From Table 2, it can be seen that 
the distance between subspaces of case 2, 3, 4 is 
relatively small compared with other distance, which 
indicates that their difference between them is 
relatively small. This is because they are all the flow 
disturbance of fresh feed, only different in the 
magnitude, and they have similar effect on the 
correlation of data. The distance between case 2,3,4 
and case 5 is relatively large compared with the one 



 
between case 2,3,4. That is because case 5 has an 
adverse disturbance direction. The distance between 
other cases is large. So we can use the distance to 
identify different fault or disturbance.  

For online monitoring, the data matrix representing 
the current operating conditions is updated by 
moving the time-window step by step as proposed by 
Kano et al (2001). PCA is applied to the data matrix, 
and the distance between the subspace of current data 
and the one of normal operation data is calculated 
with Eq.13 at each step. If the distance goes beyond 
the given control limit, the process is judged to be 
out of normal operation condition. And then, the 
distances between the subspace of current data and 
the one of known faults in the library are calculated 
respectively, and the match degrees between them are 
also obtained with Eq.14. If the maximum of 
matching degree is larger than the diagnostic 
threshold, then the fault in the library corresponding 
to the maximum has probably occurred. 

In order to verify the method for fault identification, 
the preheated temperature of fresh feed decreased 6K 
at 100 minute in the simulation. The monitoring 
results are shown in Fig.2, and the 95% warning limit 
which can be determined by statistical method is also 
shown.   
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Fig 2   Monitoring results for FCCU reactor- 

regenerator system 

When the distance is out of the control limit, the 
matching degrees between the current data and the 
faults in the historical database are calculated, and 
the results are shown in Fig.3. The diagnostic 
threshold is predefined as 0.80. It can be seen that the 
current case matches well with case 8 at 86.32% 
matching degree which is above the diagnostic 
threshold, and the fault is successfully identified.  
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Fig 3  Matching degree of the current case with 
the cases in the historical database 

 

 

4. CONCLUSIONS 
 

The diagnosis of abnormal operation can be greatly 
facilitated if similar system performance has been 
recorded in the historical database. Principal 
component analysis is among the most popular 
methods for extracting information from data. 
Through PCA, features associated with different 
faults can be identified and used in fault diagnosis. 
The features are the characteristic subspace spanned 
by several loading vectors. Fault diagnosis can then 
be performed by calculating the distance between the 
subspace of current data matrix and the one of known 
faults in the library. It can also deal with novel faults 
and learn diagnosis knowledge about novel faults. 
This method is applied to monitoring the FCCU 
reactor-regenerator system. The results have shown 
that the method can successfully identify different 
faults, because it makes full use of information about 
several principal components. It is important to note 
that although the approach is well founded, there are 
problems to be solved in real industrial application. It 
is advisable to combine domain knowledge with data 
mining method to diagnosis fault. 
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Table 1 Summary of the 10 simulated cases 

Cases Description of cases 
1 normal operation 
2 a step increase of 10% in fresh feed flow rate  
3 a step increase of 20% in fresh feed flow rate 
4 a step increase of 40% in fresh feed flow rate 
5 a step decrease of 30% in fresh feed flow rate 
6 a step increase of 10% in air flow rate of 1st regenerator 
7 a step increase of 10% in heat of heat removal system 
8 decrease of 3K in  preheated temperature of fresh feed    
9 increase of 3K in outlet temperature of riser reactor 
10 increase of 3K in high density bed temperature of 1st regenerator 

 
Table 2 The distance between ten different cases

d case 1 case 2 case 3 case 4 case5 case 6 case 7 case 8 case 9 case 10 

case 1 0 0.3896 0.5799 0.6619 0.5953 0.3406 0.4191 0.7596 0.5754 0.5355 

case 2 0.3896 0 0.0678 0.2054 0.6251 0.9915 0.9427 0.9454 0.9998 0.9881 

case 3 0.5799 0.0678 0 0.1300 0.6535 0.9991 0.9622 0.9227 0.9527 0.9555 

case 4 0.6619 0.2054 0.1300 0 0.6990 0.9998 0.9653 0.9469 0.9360 0.9609 

case 5 0.5953 0.6251 0.6535 0.6990 0 0.9769 0.9958 0.9359 0.9566 0.9510 

case 6 0.3406 0.9915 0.9991 0.9998 0.9769 0 0.8441 0.9960 0.8684 0.9926 

case 7 0.4191 0.9427 0.9622 0.9653 0.9958 0.8441 0 0.9991 0.9618 0.9998 

case 8 0.7596 0.9454 0.9227 0.9469 0.9359 0.9960 0.9991 0 0.9747 0.6478 

case 9 0.5754 0.9998 0.9527 0.9360 0.9566 0.8684 0.9618 0.9747 0 0.9230 

case 10 0.5355 0.9881 0.9555 0.9609 0.9510 0.9926 0.9998 0.6478 0.9230 0 

 

 


