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Abstract
Parameter estimation and PID tuning are two crucial issues in control engineering. Classical methods either require some

prior information or depend on some rules, especially they are short of generality and their performances are not satisfied in
many engineering fields. Although genetic algorithm and simulated annealing approaches have gained much attention and
applications during the past decades, it may cause the premature convergence of genetic algorithm and prohibitive time-
consumption required for simulated annealing if executing them alone. In this paper, reasonably combining the parallel
structure of genetic algorithm with the controllable jumping property of simulated annealing, a class of effective and general
hybrid optimization strategy is proposed for parameter estimation and PID tuning. The proposed strategy is easy to be
understood and implemented, and only a little pre-needed information is required. Numerical simulation results demonstrate
that the hybrid strategy is of effectiveness, robustness on initial states, and adaptability on models or plants, and comparisons
show that the hybrid strategy can achieve performances greatly better than those of pure genetic algorithm and classical
methods.
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1. Introduction

Parameter estimation and PID tuning are two
crucial issues in control engineering, which are of
important theoretical value and engineering
significance and have been widely studied so far.
Traditional estimation methods, such as Least Square
Method (LSM) and their generalizations, gradient
estimation algorithms, and maximum likelihood
algorithms require some prior information and model
structure, e.g. time-delay, order etc, which greatly
limit their applications, especially in the field of
nonlinear systems. Moreover, most classic and
improved methods are intrinsically dependent on the
gradient information of the error index so as to be
prone to be trapped in local optima. It is known that
the control performances of PID are completely
dependent on PID parameters, but classical tuning
methods, such as Ziegler-Nichols method, Cohen-
Coon etc (Astrom and Hagglund, 1995), are based on
experiments and strongly depend on the plant model
and the tuning results are not satisfied in many fields,
which leads to the limitation of their applications. In
the past decade, genetic algorithm (GA) gained much
attention (Michalewicz, 1994) and was widely
applied in many engineering fields, including control
engineering (Szczerbicka and Becker, 1998). Versek,
Urbancic and Filipic (1993) developed a three-stage
framework based on genetic algorithms for learning
control. Lima and Ruano (2000) proposed neural
network models of tuning criteria together with the
use of GA to achieve PID autotuning. Li and Shieh
(2000) designed a GA-based fuzzy PID controller for
non-minimum phase systems. Teo and Marzuki
(1999) presented a neuro-fuzzy controller based on
neural network with all the parameters tuned by GA.
Kristinsson and Dumont (1992) used GA for model
identification and then used the model parameters in

a certainty equivalence control law based on pole-
placement method. Lennon and Passino (1999) used
a different method for fitness evaluation and
employed a model reference approach. Wu and Yu
(2000) proposed a GA based learning algorithm for
the identification of a class of fuzzy models. But
there still existed two main drawbacks when using
pure GA alone, that is, difficult to determine
operating parameters and pre-mature convergence.
  In this paper, GA and Simulated Annealing (SA)
are reasonably combined to construct an effective
hybrid strategy (HS) for parameter estimation and
PID tuning, which utilizes the population parallel
search structure of GA and the controllably
probabilistic jumping of SA. With some operations
specific designed, the HS can be applied to various
kinds of models and controlled plants. The
computation procedure is simple and easy to
understand and accomplish, and only a little pre-
needed information is required. Numerical simulation
results based on some classical problems demonstrate
that the HS is of effectiveness, robustness on initial
states, and adaptability on models or plants, and it
can achieve better performances than classical
approaches.
  The organization of remain contents is as follows.
Firstly, the problems to be studied are described,
secondly the HS is proposed, then the strategy is
implemented in detail for parameter estimation and
PID tuning, and some numerical simulations and
comparisons are carried out, lastly we end with some
conclusions.

2. Problem statement

Generally, the representation style of the estimated
model is known in advance, and it is supposed that



the system output can be measured and the ratio of
signal/noise should be large enough, as well as the
parameters to be estimated should be specified.
Usually, a system model can be generally described
as follows.

),()( θrfty =                (1)
where, )(ty is the system output, r is the system
input ),,,( 21 kθθθθ ⋅⋅⋅= is the parameters to be
estimated, f  is the model representation which can
be expressed by transfer function, state space or
ARMA model etc.
  Parameter estimation means to obtain the
estimated parameters using certain algorithm
according to certain error index based on the model
output and actual sampling data ntty ,,2,1),(0 ⋅⋅⋅= ,
with certain model input. In this paper, hybrid
strategy will be proposed to estimate the model
parameters. The principle can be illustrated by Fig. 1,
which will be explained in detail later.
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Fig. 1. Illustration of model parameter estimation

  PID controllers are well known to engineers for
their simple structure, easy implementation, good
performances and strong robustness, so that they are
widely used in various fields of industry, especially
in chemical process industry. More than 90% of the
controllers used in real applications are of the PID
types. Generally, the formula of conventional PID
and its discretized formula can be written as follow.
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where pK , iT  and dT are proportional (P), integral
(I) and derivative (D) parameters respectively, 0T  is
sampling period, )(te  and )(tu  are error variable
and plant input respectively. Let ipi TTKK /0=  and

0/TTKK dpd = , then the formula (3) can be
rewritten as follows.
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  PID tuning means to determine the above three
parameters by certain algorithm to achieve the
optimal control performances. In this paper, PID will
be tuned by hybrid strategy, whose principle can be
illustrated by Fig. 2 and interpreted later.
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Fig. 2. Illustration of PID tuning

  Intrinsically, both parameter estimation and PID
tuning are the problems to search optimal parameters
according to certain objective functions, which can
be regarded as complex functional optimization
problems with high dimensions and many local
minima. To solve the problems effectively and
achieve good performances, in next section a class of
HS by combining genetic algorithm and simulated
annealing will be proposed.

3. Hybrid optimization strategy

Based on the mechanics of natural selection and
genetics, genetic algorithm combines the concept of
survival of the fittest among solutions with a
structured yet randomized information exchange and
offspring creation. GA is naturally parallel and is
able to exhibit implicit parallelism, which does not
evaluate and improve a single solution but analyses
and modifies a set of solutions simultaneously. There
are three basic operators in pure GA, i.e. selection,
crossover and mutation. The ability of GA, i.e.,
operating on many solutions simultaneously and
gathering information from all current solutions to
direct search, reduces the possibility of being trapped
in a local optimum.
  Originated from the similarity between statistical
mechanics and combinatorial optimization, simulated
annealing provides a framework for optimization of
properties of very large complex system and can be
viewed as an enhanced version of local optimization
or iterative improvement algorithms (Kirkpatrick et
al, 1983). SA attempts to avoid entrapment in a local
optimum by sometimes accepting a move that
deteriorates the value of the objective function. With
the help of the distribution scheme, SA can provide a
reasonable control over the initial temperature and
cooling schedule so that it performs effective
exploration of solution space and good confidence in
the solution quality.
  GA is a highly parallel procedure, which contains
certain redundancy and historical information of past
solutions. However, GA may lose solutions and
substructures due to the disruptive effects of genetic
operators. In addition, it is not easy to regulate GA’s
convergence and tune global parameters.
Consequently, GA is easy to be premature and results
in poor solution (Leung et al, 1997). On the other
hand, SA maintains only one solution at a time,
whenever they accept a new solution, the old one



must be discarded, which often causes low search
efficiency. But, SA has the ability to escape from
local optima that can be controlled by cooling
schedule (Hajek, 1988). Reasonably combining these
two approaches from mechanism to structure, it will
develop novel hybrid strategy (HS) with more
powerful search efficiency. So, utilizing the parallel
searching framework of GA and incorporating SA to
avoid individual being trapped in local minima with
controllable probability, an efficient HS is proposed
as follows.
 Step1: initialize population, and determine the
initial temperature 0t , and set 0=k .
 Step2: if stop criterion has been satisfied, then
output the results; else go on below steps.
 Step3: implement selection and crossover operators.
 Step4: implement mutation operator.
 Step 5: perform simulated annealing for each
individual i  in parallel mode, then back to Step 2:
 Step 5.1: if equilibrium condition has been reached,
then decrease temperature )(1 kk tupdatet =+  and set

1+= kk , and go to step2; otherwise go to step 5.2.
 Step 5.2: generate a neighbor solution j  from
solution i  randomly and calculate the difference of
the objective values ijij ccc −=∆ ;
 Step 5.3: if ]1,0[)}/exp(,1min{ randomtc kij >∆− ,
then let i = j , and update the best solution found so
far if possible; else keep the old solution.
  It can be seen that during the hybrid search process
GA provides a set of initial solutions for SA at each
temperature to perform Metropolis sample for each
solution until equilibrium condition is reached, and
GA uses the solutions found by SA to continue
parallel evolution. Temperature is adjusted to control
the behavior of SA, i.e., at a high temperature, SA
performs a “course” search with high escaping
probability from current solution; while at a low
temperature, SA performs a “fine” search among the
neighbor solutions of current solution. In addition,
the optimization operators, such as mutation operator
and the new solution generator of SA, can be
different or hybrid used to yield a large neighborhood
and efficiently explore better solutions among the
solution space. Theoretically, Wang and Zheng (1998)
analyzed the convergence behavior of such HS and a
sufficient condition for global convergence was
provided, and the job-shop scheduling was solved
(Wang and Zheng, 2001).
  Moreover, such HS reserves the generality of GA,
SA and can be easily implemented and applied to any
optimization problems by suitably modifying the
encoding scheme, optimization operators, algorithm
criteria and parameters. In next sections, the HS will
be designed in detail for parameter estimation and
PID tuning.

4. Implementation of the strategy

Encoding scheme: The real value encoding is used,
i.e., all the parameters are specified by real values
except that the model order is encoded by an integer.

Objective function or fitness function: The Integral
of Time multiplied by Absolute Error (ITAE) index,
i.e., ∫∞τ dttet )(  is employed as objective function in
PID tuning, which is able to restrain the overshoot
and settling-time to certain extent. While
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t
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used as fitness function in parameter estimation,
where )(0 ty  is the actual output and )(ty  is the
output of the estimated system.

Initialization of population and temperature: After
generating initial population with sizeP  individuals
randomly at the beginning of the procedure, the best
and worst individuals with the objective index bestc
and worstc  are determined. Then, at the initial
temperature 0t  the probability to accept the worst
individual with respect to the best individual is set as

)1,0(∈rp , i.e., ]/)(exp[ 0tccp bestworstr −−= . Hence,

0t  can be determined by )ln(/)(0 rbestworst pcct −−= .
Obviously, such process can be implemented easily
and the relative performance of the initial population
is used, so such method is of handleability and
reasonability.

Selection: In parameter estimation, classical
proportional selection based on fitness value is
applied, i.e., individual i  would be selected with
probability ∑ ji ff / , where if  is the fitness value
of i . While in PID tuning, rank-based selection is
applied, i.e. all the individuals are arranged with
decently order according to the objective value firstly,
then the k th individual would be selected with
probability )]1(/[2 sizesize PPk + .

Crossover: Based on real-value-encoding scheme,
crossover operator is designed as Equation 5 to
generate two new individuals after selection operator.
And such procedure is repeated 2/sizeP  times ( sizeP
is population size) to generate the new population.
Then, the top sizeP  solutions with better objective
values from the old population and new solutions are
reserved for the next optimization operator.
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where )1,0(∈α  is a random variable, 1w  and 2w
are parents, '1w  and '2w  are children.

Mutation, SA state generator: Due to the merit of
HS, here mutation rate is set to one to perform a
“fine” local neighbor search and all these operators
can be conducted by appending random noise for
each parameter.



ξη ⋅+= ww'                 (6)
where ξ  is a random variable subjected to Gaussian
distribution N(0,1), η  is a scale parameter.
  Moreover, during the evolution process the best
solution found so far should be updated if possible to
avoid the lost of good solution, i.e., “elitist” scheme.

Annealing function: Exponential cooling schedule
is used to adjust the temperature, i.e. 1−⋅= kk tt λ ,
where )1,0(∈λ  is decrease rate.

Equilibrium condition and stop criterion: since
theoretical convergence conditions may lead to huge
computation and are not practicable, two
approximate conditions are simply designed to
provide a rather good compromise between quality
and search efficiency. The Metropolis sample process
is set to 1L  iterations fixed, and if the best solution
found so far keeps fixed at 2L  consecutive
temperatures, the algorithm will stop.

5. Numerical simulation
5.1 Simulations on parameter estimation

Based on three kinds of models (Jiang and Wang,
2000) described as follows, the performances of the
HS are tested and some comparisons with simple GA
are carried out.
  Model 1 (Transfer function of 2-ordered system
with time-delay): parameters to be estimated are k ,

1T , 2T  and time-delay τ .

)1/()(/)( 2
2

1 ++= − sTsTkesusy sτ    (7)
  Model 2 (Nonlinear state space model): parameters
to be estimated are 1θ , 2θ , 3θ  and 4θ .
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  Model 3 (Hammerstein Model): parameters to be
estimated are 1a , 2a , 0b , 1b  and d .






















−<≤−−+−

−≥≥−+
=

+=

++=

=

−−

−−−

−−−

2/152/12/1

2/152/12/1
][

)(

1)(

)]([)()()(

1
10

1

2
2

1
1

1

11

uu

uu
u

qbbqB

qaqaqA

kuqBqkyqA d

φ

φ

 (9)

  Combining Matlab and C++ simulation
environment, and setting sizeP =20, rp =0.1,
λ =0.85, η =0.1, 1L =30, 2L =20, sampling time

0T =0.1, numerical simulations are carried out on
PIII/550 PC and the average results of 20 random
simulation are summarized as follows.

Table 1. Estimation results of Model 1
Parameter k 1T 2T τ

Actual 1 1 2 1
Estimated 1 1 1.9997 1

Table 2. Estimation results of Model 2
Parameter 1θ 2θ 3θ 4θ
Actual 0.5 0.3 1.8 0.9
Estimated 0.5069 0.3048 1.8095 0.9077
Results of Huang
and Wang (1996)

0.4916 0.3014 1.8432 0.9267

Table 3. Estimation results of Model 3
Parameter 1a 2a 0b 1b d
Actual -1.5 0.7 1 0.5 2
Estimated -1.5004 0.6984 0.9861 0.4516 2
Results of
Huang and
Wang (1996)

-1.4982 0.6970 1.3654 -0.0371 2

  The results demonstrate the effectiveness of the
HS, which is competent for the models with different
styles and properties, including nonlinear systems. In
addition, in the Hammerstein model there are some
parameters may affect the system output much less
than others, e.g. 1b , which are hard to estimate. The
estimation process of pure GA would lead to these
parameters far deviate from the true value, but by
incorporating SA into GA the hybrid strategy can
achieve good results. The system output of actual
model and the estimated one are shown on Fig. 3,
from which it can be seen that the two curves are so
adjacent each other. Compared with the results of
Jiang and Wang (2000), the results from hybrid
strategy are much better than those from pure GA.
The reason is that the hybrid strategy takes the
advantages of both GA and SA and improves the
potential of global optimization.

Fig. 3. Output of the actual and estimated Model 3

5.2 Simulations on PID tuning

Firstly based on the controlled plant
)12/(5.0 +− se s , the statistical performances of PID

controller tuned by hybrid strategy (HS) are
investigated, and some comparisons with GA and Z-
N methods are carried out. The parameter η  is set to
0.6 and the others are the same as before. The
statistical results of 20 random simulations are shown
in Table 4 (comparatively, the ITAE object value by



Z-N method is 12.6951). The closed loop step output
response using PID tuned by the three methods are
shown in Fig. 4, and the decreasing curves of
objective value are shown in Fig. 5.

Table 4. Average performances gained by the HS and GA

Algorithm Average
ITAE

ITAE
Variance

Average
overshoot

Average
generation

HS 4.1625 1.5974 1.2% 39.80
GA 7.3840 2.3001 18.5% 49.15

Fig. 4. The closed loop step output response

Fig. 5. Decent curves of objective value

  To further test the tuning performances of the
hybrid strategy, we study the plants as follows. The
average performances of 20 random simulations are
shown in Table 5, and the corresponding closed loop
step output response curves are shown in Fig. 6~10.

2
1 )1/(1)( += ssG            (10)

8.02.0],12/[1)( 2
2 orsssG =++= ξξ     (11)
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Table 5. Average control performances of PID
Overshoot(%) Average ITAE

Plant
GA HS GA HS

)(1 sG 26.1 4.8 6.83 3.17
2.0),(2 =τsG 15.1 3.5 5.18 3.13
8.0),(2 =τsG 6.2 2.4 4.86 2.77

)(3 sG 23 0 21.29 10.92
)(4 sG 20.1 4.3 10.15 6.92

Fig. 6. The closed loop step output response of )(1 sG

Fig. 7. The closed loop step output response of
2.0),(2 =ξsG

Fig. 8. The closed loop step output response of
8.0),(2 =ξsG

Fig. 9. The closed loop step output response of )(3 sG



Fig. 10. The closed loop step output response of )(4 sG

  Lastly, considering the water turbines plant
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 with a non-minimum

phase zero and taking η =0.1, 0T =0.04, the closed
loop step output response curves using PID tuned by
HS, GA and the simplex method (Liu and Mao, 1997)
are show in Fig. 11.

Fig. 11. The closed loop step output response

  From the simulation results, it can be concluded
that the HS can achieve good optimization
performances, such as high quality, rapid speed and
robustness on initial values. Secondly the controllers
tuned by the HS can achieve better control
performances than those of the controllers tuned by
GA and Z-N methods, in particular, the overshoot,
settling-time and error index are very small. In
addition, the HS is independent of plant and control
objective. So the HS is well fit for PID tuning.
  In brief, the features of the proposed method can
be summarized as followed. (1) The computation of
parameters is easy and simple. (2) The estimation
and tuning procedure is easy to understand and
accomplish. (3) Only a little pre-needed information
is required. (4) Hybrid global search can achieve
very satisfied and better performances than
traditional or pure GA methods. (5) The method is
general and has a wide range of applications.

6. Conclusion

This paper proposed an effective hybrid strategy
by combining SA and GA for parameter estimation
and PID tuning. Numerical simulation results
demonstrated the effectiveness, robustness on initial
states, and adaptability on models or plants. The

comparisons showed that the HS could achieve
performances greatly better than those obtained by
pure GA and traditional methods. The future work is
to apply the proposed HS or combining fuzzy logic
and neural networks in time-varying systems, some
advanced controllers, such as fuzzy controller and
neural network controllers, and online estimation and
tuning, especially in actual industry environments.
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