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Abstract: In weighted fusion algorithm for multisensor, the weights are only determined 

by noise variance and the precision of the variance estimation will affect the performance 

of the fusion algorithm. An approach of variance estimation for multisensor is presented 

and proves unbiased in this paper. The recurrence formula for the algorithm is also 

proposed, and moreover, there is no need for initial values, for which the approach is 

adaptive and can be used in real-time estimation. A numerical example is given to show 

the usefulness of the approach.  Copyright © 2003 IFAC 
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1. INTRODUCTION 

 

Modern industry adopts a great variety of sensors to 

monitor and control production in order to obtain a 

satisfactory control performance of the industrial 

process (Yang and Yuzo, 2000), and thus some 

appropriate methods are required. Multisensor data 

fusion is defined as the process of integrating 

information from multiple sources to produce the 

most specific and comprehensive unified data about 

an entity, activity or event (Raol and Girija, 2002). 

The process is supposed to achieve improved 

accuracy and more specific inferences than could be 

achieved by the use of a single sensor alone. In the 

field of measurement, weighted fusion algorithm is 

widely used for multisensor fusion process. The 

weight of each sensor is determined only by its own 

variance (Ling, et al., 2000; Yifeng and Leung, 1997). 

The precision of the variance estimation will affect 

the performance of the fusion algorithm seriously 

and the accuracy of the fusing results as well. 

 

The variance of sensor is determined by both internal 

noise and environmental interference. Most of the 



variance estimation methods used in weighted fusion 

algorithm are based on experience or the sensor’s 

variance parameter and the environmental noise is 

not included in consideration, which results in the 

distortion of the variance and the imprecision of the 

fusing results (Zhong, et al., 2002). 

 

An algorithm of variance estimation for multisensor 

is presented and proves unbiased in this paper. No a 

priori information about each sensor and 

environment noise is needed in this algorithm and the 

real-time variance estimation can be achieved only 

by the observations of sensors. Simulated data given 

in this paper indicate the usefulness of the algorithm. 

 

 

2. WEIGHTED FUSION ALGORITHM FOR 

MULTISENSOR 

 

The observation of state can be modeled by using the 

linear system (Zhong, et al., 2002): 

  eHxY +=               (1) 

where Y  is the ( n , 1) observation vector with 

[ ]TnyyyY �
21= , x  is the (1, 1) state, 

H is a known ( n , 1) vector with 

[ ]TH 111 �= , and e is the ( n , 1) vector 

of measurement error (noise, including internal and 

environmental) with [ ]Tneeee �
21= , a 

zero-mean Gaussian white noise sequence and 

independent of each other. It is also assumed that the 

noise sequence is a stationary process with ergodic 

property. Therefore, 
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where )(⋅E is the expected value operator, 

and iR denotes the noise variance of sensor i . 

According to the result (Gao, et al., 1999; Yifeng and 

Leung, 1997), The estimate of the state is�  
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The state estimation variance (Ling, et al., 2000) is  
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From the foregoing, it can be seen that the weight of 

each sensor is determined only by its own variance. 

The accuracy of the results obtained from data fusion 

process will be determined by the precision of the 

variance estimation directly.  

 

 

3. VARIANCE ESTIMATION FOR 

MULTISENSOR 

 

The mean of measurements from n  sensors is: 
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where y  is the unbiased estimation of x  

obviously. From (3), the variance of sensor j  is: 

])[()( 2xyExyDR jjj −=−=    

 nj ,,2,1 �=                 (7) 

where )(⋅D  is the variance operator. In fact, it is 

impossible to obtain the actual state x . Here let y , 

the unbiased estimation of x , replace x  in form, 

then the following form can be obtained: 
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jR′  denotes the variance of the difference between 

the measurement from sensor j and the mean of the 

measurements from n  sensors. The relation 

between jR′  and kR � nk ,,2,1 �= � is given in 

� 9 � . Sum up jR′ � nj ,,2,1 �= � : 
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According to (9) and (10), the following form of the 

variance of sensor j  is obtained:  
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Considering the condition of measuring N  times 

by using nsensors, ijy  is the i -th measurement 

from sensor j  and ije  is the error. Based on the 

ergodic property of stochastic process� incorporation 

of (8) and (9) gives the estimation of jR′ : 
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By using (11), the variance estimation of sensor j  

is: 
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What should be given attention to is that the 

foregoing algorithm is invalid when measuring with 

only two sensors because of the lack of the redundant 

information. The method of variance estimation is 

applicable when the number of sensors is larger than 

2. 

 

 

4. THE UNBIAS OF VARIANCE ESTIMATION 

 

Based on the assumption of noise and (12), the 

following equation is obtained: 
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Considering (9) and (14), the conclusion that jR′ˆ  is 

the unbiased estimation of jR′  can be reached. By 

using (13), jR  also proves to be unbiased. 

 

 

 



5. IMPLEMENTATION OF ALGORITHM AND 

THE SIMULATED INSTANCE 

 

 

5.1 Implementation of algorithm 

 

Assume that ijR′ˆ  denotes the variance estimation of 

the i -th measurement from sensor j , then (12) can 

be described by the following recursion: 
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Using (15) in (13), the variance estimation of each 

sensor based on i  times sampling is obtained. 

However, a smaller number of sampling times than 

needed will lead to an inaccurate estimation and even 

results in the negative variance estimation. In order 

to ensure that the variance estimation is strictly 

positive, (13) is reformed as follows: 
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In practice, (15) and (16) are used to estimate the 

variance of each sensor. 

 

The algorithm of variance estimation presented in 

this paper can be used in real-time estimation 

because of its small amount of calculations by using 

recursive algorithm. In the mean time, it is also an 

adaptive algorithm and there is no need to set its 

initial value. With sample size increasing, the 

variance estimation of each sensor tends to be stable 

and approaches the true variance gradually. 

5.2 Simulated Instance 

 

Consider a system with 8 sensors. It is assumed the 

noise of each sensor is composed of internal noise 

and environmental noise and the noise is independent 

of each other. Suppose that the internal noise of each 

sensor is zero-mean white Gaussian noise with 

standard deviation 0.10, 0.20, 0.05, 0.40, 0.50, 0.30, 

0.24 and 0.10 respectively and environmental 

interference zero-mean white Gaussian noise with 

standard deviation 1.0, 0.8, 1.5, 2.0, 0.8, 2.5, 3.0 and 

1.3 respectively. In Table 1, algorithm 1 refers to the 

algorithm presented in this paper. The algorithm in 

which the weight is determined only by the sensor’s 

own variance is algorithm 2, and the algorithm of 

averaging measurement is algorithm 3. In algorithm 

4, each sensor’s weight is determined by its true 

variance. Based on the foregoing assumption, the 

state modeled by tty =)(  is sampled 2000 times, 

with the sampling interval T=1. The simulation 

results are shown in Figure 1, Table 1, and Table 2. 

 

As can be seen from Figure 1, the estimated variance 

of each sensor gradually approaches its true variance 

as the sampling times increasing in algorithm 1. Data 

given in Table 1 and Table 2 indicate that algorithm 1 

is better than algorithms 2 and algorithm 3. 

Algorithm 1 is a little inferior to algorithm 4 which is 

the optimal algorithm theoretically (see Table 1). 

Mean of estimation errors in each sampling range 

given in Table 2 can be regarded as the state 

estimation variance of each algorithm. According to 

(5), the optimal estimated variance is 0.1951. Data 

given in Table 2 show that mean of the square of 

state estimation errors approaches the true value as 

the sampling times increase. 

 

 

 

 

 

 

 

 

 

 

Fig. 1 The curve of sensors’ variance estimation. As can be seen from the figure, the estimates of the variance 

converge to the actual values gradually. 



 

Table 1 The absolute value distribution of estimation error 

 

 

 

 

 

 

 

 

 

Table 2 The mean square error of state estimation 

 

 

 

 

 

 

 

6. CONCLUSION 

  

The algorithm of variance estimation for multisensor 

is discussed in this paper and proves unbiased. The 

approach is adaptive and can be used in real-time 

estimation due to the presentation of the recurrence 

formula. A numerical example is given to illustrate 

the results and to show the usefulness of the 

approach. 
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Error Rang Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 

0-0.1 360 171 229 364 

0.1-0.3 653 325 485 645 

0.3-0.7 747 597 725 749 

0.7-1.5 236 681 519 238 

1.5-3 4 221 42 4 

>3 0 5 0 0 

Sampling Rang Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 

1-50 0.3059 1.0778 0.3947 0.2190 

51-500 0.2106 0.9094 0.3926 0.2090 

501-2000 0.1954 0.9052 0.4266 0.1952 


