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Abstract: Understanding regulation is a critical hurdle in unraveling complex
biological systems. As gene-level architectures become known, the open challenge is
to assign predictable behavior to a known gene structure, the so-called “genotype-
to-phenotype” problem. In response to this challenge, the discipline of systems
biology has emerged with an integrative perspective towards determining complex
systems behavior. This research area lies at the intersection of classical fields such
as microbiology and systems engineering, with strong influences from the more
recent fields of informatics and genomics. In this paper, an overview of a number of
quantitative tools from systems theory will be presented as enabling methodologies
for unraveling biological regulatory systems, with an emphasis on (i) sensitivity
analysis, (ii) identification methods, and (iii) optimization approaches.
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1. INTRODUCTION

The term “complexity” is often invoked in the
description of biophysical networks that under-
lie gene regulation in biological organisms. There
are categorically two distinct characterizations of
complexity: (i) the classical notion of behavior
associated with the mathematical properties of
chaos and bifurcations, and (ii) the descriptive
or topological notion of a large number of con-
stitutive elements with nontrivial connectivity. In
both biological and more general contexts, a key
implication of complexity is that the underlying
system is difficult to understand and to verify
(Wen et al., 1998). Simple low-order mathemat-
ical models can be constructed that yield chaotic
behavior on one hand, and yet rich complex bio-
physical networks may be designed to reinforce
reliable execution of simple tasks or behaviors
(Lauffenburger, 2000).
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A systematic approach to analyzing complexity
in biophysical networks was previously untenable,
owing to the lack of suitable measurements and
also the limitations imposed in simulating com-
plex mathematical models. Advances in molecular
biology over the past decade have made it possi-
ble to probe experimentally the causal relation-
ships between microbiological processes initiated
by individual molecules within a cell, and their
macroscopic phenotypic effects on cells and organ-
isms. These studies provide increasingly detailed
insights into the underlying networks, circuits,
and pathways responsible for the basic function-
ality and robustness of biological systems and
create new and exciting opportunities for the de-
velopment of quantitative and predictive modeling
and simulation tools. Model development involves
translating identified biological processes into cou-
pled dynamical equations which are amenable to
numerical simulation and analysis. These equa-
tions describe the interactions between various
constituents and the environment, and involve



multiple feedback loops, responsible for system
regulation, and noise attenuation and amplifica-
tion.

The discipline of Systems Biology has emerged in
response to these challenges (Kitano, 2002), and
combines approaches and methods from systems
engineering, computational biology, statistics, ge-
nomics, molecular biology, biophysics, and other
fields. The recurring themes include: (i) integra-
tive viewpoints towards unraveling complex dy-
namical systems, and (ii) tight iterations between
experiments, modeling, and hypothesis genera-
tion.

The perspective adopted in this paper is that
systems engineering tools, including model iden-
tification; sensitivity analysis, and dynamic pro-
gramming, find unique roles in characterizing the
rich behavior exhibited by such biological systems.
The systems perspective is also valuable in ana-
lyzing the integrative behavior of such complex
multiscale stochastic systems, as opposed to tra-
ditional reduction techniques.

2. ELEMENTS OF SYSTEMS BIOLOGY

In this section, three topics in systems biology
will be described that have relevance for sys-
tems engineering tools and methodologies. They
include: (i) the recurrence of elementary motifs
in biological networks, (ii) a brief classification of
computational modeling approaches to biological
regulation, and (iii) the detailed treatment of feed-
back control structures in some specific biological
systems.

2.1 Motifs in Regulation

The biophysical networks under consideration can
be decomposed into modular components that
recur across and within given organisms. One
hierarchical classification is to label the top level
as a network, which is comprised of interacting
regulatory motifs consisting of groups of 2-4 genes
(Lee et al., 2002; Shen-Orr et al., 2002; Zak et al.,
2003a). At the lowest level in this hierarchy is the
module that describes transcriptional regulation,
of which a nice example is given in (Barkai and
Leibler, 2000).

At the motif level, one can use pattern search-
ing techniques to determine the frequency of
occurrence of these simple motifs (Shen-Orr et
al., 2002), leading to the postulation that these
are basic building blocks in biological networks. Of
relevance to the present discussion is the fact that
many of these components have direct analogs
in system engineering architectures. Consider the

three dominant network motifs found in E. coli
(Shen-Orr et al., 2002):

• feedforward loop - one transcription factor
regulates another factor, and in turn the pair
jointly regulate a third transcript factor

• single input module (SIM) - in control
terminology, a single-input multiple output
(SIMO) block architecture

• densely overlapping regulons (DOR) -
in control terminology, a single-input multi-
ple output (SIMO) block architecture

Similar studies in a completely different organism,
S. cerevisiae, yielded six related or overlapping
network motifs (Lee et al., 2002):

• autoregulatory motif - in which a regula-
tor binds to the promotor region of its own
gene

• feedforward loop - as noted above
• multi-component loop - effectively, a closed-

loop with two or more transcription factors
• regulator chain - cascade of serial tran-

scription factor interactions
• single input module - as noted above

(SIM)
• multi-input module - natural extension of

preceding motif

In effect, these studies prove that, in both eu-
karyotic and prokaryotic systems, cell function is
controlled by sophisticated networks of control
loops which are cascading onto, and intercon-
nected with, other (transcriptional) control loops.
The noteworthy insight here is that the complex
networks that underly biological regulation ap-
pear to be constructed of elementary systems com-
ponents, not unlike a digital circuit. This lends
credibility to the notion that analysis tools from
systems engineering should find relevance in this
problem domain.

Reverse engineering, or the process of unraveling
the functionality of such motifs is one of the major
goals of systems biology, but forward engineering,
in effect the dual problem, is also of considerable
interest and is concerned with the active design
of biological networks, typically for biomedical or
biotechnological applications. In that direction,
early work has shown great promise for the de-
velopment of synthetic gene networks, using basic
building blocks to achieve a desired function (for
example, (Judd et al., 2000)). A novel 3-node
oscillating circuit, dubbed the “repressilator”, was
studied using flow cytometry imaging techniques
(Elowitz and Leibler, 2000). Several other exam-
ples of synthetic functions (switches and oscilla-
tors) have been realized (Hasty et al., 2001b).



2.2 Dynamic Models of Gene Regulation

In this section, three general classes of modeling
techniques that have been applied to gene regula-
tion are reviewed: (i) first principles approaches,
(ii) empirical model identification, and (iii) a hy-
brid approach that combines minimum metabolic
network knowledge with an objective function to
yield a predictive model.

In the development of the mathematical mod-
els described in this section, a number of “guid-
ing principles” direct the organization of the ele-
ments of the biophysical networks. For purposes
of nomenclature consistency and overall model
organization, the constitutive elements of the bi-
ological hierarchy are reviewed briefly (expand-
ing beyond the 3 simple levels described in the
previous section). The following classification is
adopted (Savageau, 2001):

• Transcriptional Unit (TU): lowest level
element in hierarchy, input elements bind
to receptor molecules and the output is an
mRNA product.

• Input signaling: element which enables the
transfer of an input signal to the TU, such
as two component systems (regulator and
receptor), combinations of extracellular and
intracellular transport to regulator, as well as
direct connection from another TU.

• Mode: category of response generation, ei-
ther stimulation of response against a silent
background, or repression of an otherwise
active gene.

• Logical Unit: combined logic of multiple
modes, referred to as motifs in the proceeding
discussion.

• Expression cascades: also know as “cen-
tral dogma”, cascade of DNA to mRNA to
protein product to metabolite product, with
possibility of multi-stage, complex connectiv-
ity.

• Connectivity: overall architecture describ-
ing coordination of expression of related
function (examples include operons and reg-
ulons).

To give an indication of complexity, the dimension
of logical units for E. coli are on average 2-3
modulators per promotor site, and can be as high
as 5 per site. On the output side (connectivity),
TUs can have as many as 50 output connections
(Savageau, 2001).

As emphasized in the introduction, an important
point in systems biology is the integrative perspec-
tive, that is to say, the analysis of the system
considered as a whole, and not the reductionist
analysis of individual components. So while it is
useful to categorize the elements and levels of
a hierarchical regulatory scheme, it is more use-

ful to analyze such schemes for behaviors that
emerge from combinations of motifs. Some simple
examples of canonical regulatory constructs that
yield specific classes of behavior in gene networks
include:

• positive feedback: multi-stability, oscilla-
tions, state-dependent response

• integral feedback: robust adaptation
• negative feedback: steady-state (home-

ostasis, adaptation)
• time delay: complex response, oscillations
• protein oligomerization: multi-stability,

oscillations, resonant stimulus frequency re-
sponse

• stochastic fluctuations: random response
to stimuli, random outcomes, as well as
stochastic focusing.

The interested reader is referred to, for example,
(Smolen et al., 2000) for additional insights.

2.2.1. Mechanistic Models Given detailed knowl-
edge of a biological architecture, one can construct
mathematical models to describe the behavior of
interconnected motifs or TUs. A number of ex-
cellent review papers have been detailed in recent
years (Smolen et al., 2000; Hasty et al., 2001a).
In the majority of these studies, gene expression
is described as a continuous time biochemical pro-
cess, using combinations of algebraic and ordinary
differential equations (ODEs) (Goldbeter, 1996;
Smolen et al., 2000; Cherry and Adler, 2000). In a
similar manner, models at the signal transduction
pathway level have been developed in a continuous
time framework, yielding ODEs (Kholodenko et
al., 1999). At the TU level, a detailed mathe-
matical treatment of transcriptional regulation is
described in (Barkai and Leibler, 2000).

Mechanistic models for a number of specific bi-
ological systems have been reported, including
basic operons and regulons in E. coli (trp, lac,
pho), and bacteriophage systems (T7, λ) (see, for
example, review in (Gilman and Arkin, 2002)).
A detailed benchmark problem is described in
(Zak et al., 2003a) which consists of four bio-
physical motifs: cascade, mutual repression, auto-
activation and sequestration, and agonist-induced
receptor down-regulation. The complete network
model consists of 118 reactions with 44 species
and 97 parameters (rates of dimerization, degra-
dation, transcription, translation, etc.). The latter
model will be utilized in a subsequent discussion
on identifiability.

2.2.2. Empirical Models Complementing the
mechanistic methods for model development are
the empirical or data-driven methods that include
singular value decomposition analysis of microar-



ray data (Holter et al., 2000; Alter et al., 2000),
self-organizing maps (Tamayo et al., 1990), K-
tuple means clustering or hierarchical clustering
(Wen et al., 1998; Spellman et al., 1998; Eisen
et al., 1998), protein correlation and dynamic de-
viation factors (You and Yin, 2000), and robust
statistics approaches (Zhao et al., 2001; Thomas
et al., 2001). In contrast with the mechanis-
tic approaches, most empirical approaches em-
ploy discrete-time gray box models (D’Haeseleer
et al., 1999; Weaver et al., 1999; Wessels et
al., 2001; Hartemink et al., 2002). A number of
challenges are present, however, in treating ex-
perimental data for such problems: (i) the sam-
pling rate is rarely uniform, and may be exponen-
tially spaced by design, and (ii) data from multi-
ple research groups is often combined (e.g., from
WWW-posted data) to yield data records with in-
consistent sampling, experimental bias, etc. From
a systems engineering perspective, another critical
point is the potentially divergent qualitative be-
havior between continuous time and discrete time
models of corresponding order (Pearson, 1999).
Recent work has shown the promise of continuous
time formulations of empirical models using mod-
ulating function approaches (Zak et al., 2003b).

There are a number of issues that must be consid-
ered in empirical modeling formulations. Many are
related to notions of “identifiability” and design of
suitable experiments. Unstructured approaches to
model identification are completely ill-posed when
faced with organisms such as the yeast cell with
6200 genes having four possible states (off, low,
medium, high), leading to an overall expression
state dimension in excess of 1E15 (Lockhart and
Winzler, 2000)! Clearly a number of a priori con-
straints and correlations must be exploited, as well
as multiple sources of data.

A related challenge is the suitable design of rich
experiments. In the case of yeast, repeated single
gene knockouts of all genes leads to 6200 × 6200
profiles, without consideration for multiple knock-
outs. Mere extrapolation of current technology for
microarrays will not solve these high dimensional
data issues, however, systems engineering con-
cepts of “rich” sequences can be exploited to im-
prove the limited data. Perturbations can also be
designed strategically. Typical knockouts involve
so-called “direct effects” in which the expression
level of various genes are altered in a network
arrangement that involves direct connectivity to
cis-regulatory elements of downstream genes (pos-
sible multiple cascades). An “indirect effect” can
also be used (Davidson et al., 2002) in which a
mediating component (e.g., mRNA) is introduced
to correct an intermediate element in the direct
action cascade described previously.

2.2.3. Optimization-based Models A third cat-
egory of modeling regulation can be considered
to be a hybrid combination of empirical modeling
and mechanistic modeling, and invokes principles
of optimal control theory. The underlying assump-
tion is that cells have been organized over evolu-
tionary time scales to optimize their operations in
a manner consistent with mathematical principles
of optimality.

The cybernetic approach developed by Ramkr-
ishna and co-workers (Kompala et al., 1986;
Varner and Ramkrishna, 1998) is founded on
a simple principle; evolution has programmed
or conditioned biological systems to optimally
achieve physiological objectives. This straightfor-
ward concept can be translated into a set of opti-
mal resource allocation problems that are solved
at every time step in parallel with the model
mass balances (basic metabolic network model).
Thus, at every instant in time, gene expression
and enzyme activity is rationalized as choice be-
tween sets of competing alternatives each with a
relative cost and benefit for the organism. Math-
ematically, this can be translated into an in-
stantaneous objective function. The researchers
in this area have defined several postulates for
specific pathway architectures, and the result is a
computationally tractable (i.e., analytical) model
structure. The potential shortcoming is a lim-
ited handling of more flexible objective functions
that are commonly observed in biological sys-
tems (Bonarious et al., 1997; Savinell and Pals-
son, 1992a; Savinell and Palsson, 1992b; Varma
and Palsson, 1993a; Varma and Palsson, 1993b).

An alternative approach is the Flux Balance Anal-
ysis (FBA) (Watson, 1986), in which a suitable
linear programming problem is posed and solved
(Edwards et al., 1999). The resulting model is not
a dynamic model, and does not yield an analyti-
cal formulation, but the computational solution
time is modest, and the approach has yielded
success for a number of biological examples. Es-
sential to the development of the model are the
formulation of the system constraints, consisting
of: (i) stoichiometric constraints that represent
flux balances; (ii) thermodynamic constraints to
restrict the directional flow through enzymatic
reactions; and (iii) physicochemical capacity con-
straints to account for maximum flux through
individual reactions. Recent extensions have ad-
dressed the problem of regulation by including ad-
ditional time-dependent constraints in the formu-
lation. The incorporation of transcriptional regu-
latory events in the FBA framework has extended
the validity of the methodology for a number
of complex dynamic system responses (Covert et
al., 2001).



In general, FBA has proven effective in applica-
tions where the steady state assumption is valid.
However, there are many situations for which
the steady state assumption is not valid, many
of which are biophysically meaningful, such as
the diauxic shift in E. coli . Dynamic extensions
of the FBA algorithm have been proposed in
(Mahadevan et al., 2002) and will be described
in a later section.

2.3 Analysis of Feedback Control Architectures

Control theory has found an enabling role in the
analysis of the complex mathematical structures
that result from the previously described model-
ing approaches. The language of control theory
now dominates the quantitative characterization
of biological regulation, as robustness, complexity,
modularity, feedback, and fragility are invoked
to describe these systems. Even classical control
theoretic results such as the Bode sensitivity in-
tegral are being applied to describe the inherent
tradeoffs in sensitivity across frequency (Csete
and Doyle, 2002). Robustness has been introduced
as both a biological system-specific attribute, as
well as a measure of model validity (Ma and
Iglesias, 2002). In the sections that follow, brief
accounts are given of control theoretic analysis
of biological regulatory structures, emphasizing
where new insights into biological regulation have
been uncovered.

2.3.1. Chemotaxis The signal transduction sys-
tem that mediates chemotaxis exhibits a type of
adaptation in which the response to a persistent
stimulus is reset to the pre-stimulus value, thereby
enabling an enhanced sensitivity. For a number
of years, researchers speculated on a mechanistic
explanation for this robust behavior, and two hy-
potheses had emerged: (i) precise fine tuning of
several parameters to yield a consistent (robust)
response under varied conditions, or (ii) inher-
ent regulation that yielded this robust behavior.
John Doyle and co-workers at Caltech were able
to utilize the internal model principle to demon-
strate that the regulatory system was exploiting
integral feedback control to achieve the robust
level of adaptation exhibited in chemotaxis, and
more generally in systems with such behavior (Yi
et al., 2000). This understanding suggests that
many seemingly complex biological networks may
employ redundancy and other structural motifs
or modules (enumerated in an earlier section) to
achieve relatively simple overall system behavior
(Lauffenburger, 2000).

2.3.2. Circadian Rhythm The gene network
underlying circadian rhythm in the fly and in

mammals has been the focus of detailed anal-
ysis in recent years (Goldbeter, 1996; Reppert,
2000; Winfree, 2001; Young and Kay, 2001; Gold-
beter, 2002). The biological details are coming
into sharper focus, as new experiments yield
clues to the detailed (and somewhat overlapping)
molecular circuitry of both the fly and mam-
mals (Panda et al., 2002). Building upon the
evolving biological knowledge, there have been
many postulated mathematical models (Leloup
and Goldbeter, 1998; Tyson et al., 1999; Scheper
et al., 1999; Lema et al., 2000; Smolen et al., 2001)
that range in complexity from simple 2-state os-
cillators to more biophysically detailed transcrip-
tional feedback schemes. As with adaptation in
chemotaxis, robustness is the dominant character-
istic often associated with the circadian rhythm
regulatory loop (see, e.g., (Vilar et al., 2002)), al-
though formal systems-theoretic treatment of this
behavior is a notable absence among the published
reports. In a subsequent section, formal methods
will be introduced for analyzing the robustness in
the circadian rhythm gene network.

2.3.3. Stress Response As a final example,
stress response is introduced to motivate both the
ideas of reverse engineering as well as forward en-
gineering. Cells are inherently robust to stochastic
perturbations, and can readily recover from short-
term exposure to environmental stressors (heat,
pH, nutrient deprivation, etc.). The process of
increasing specific protein activities to compen-
sate for cellular insults has been termed stress
response. One specific form of stress response that
has been studied extensively is the cytoplasmic
heat shock response in bacteria (see, e.g., (El-
Samad et al., 2002)). It has been established that
bacteria respond to environmental perturbations
such as an increase in temperature by rapidly
inducing the synthesis of so-called heat shock pro-
teins (hsps). These proteins play a critical role
in protein processing, leading eventually to a re-
stored balance in the organism. In E. coli, this
balance is achieved through a feedback architec-
ture involving so-called σ-factors, and the robust
regulation of the transcription of the heat shock
proteins. A recent mathematical analysis of the
system (El-Samad et al., 2002) has revealed the
presence of nested inner and outer feedback loops,
as well as feed-forward loops – suggesting that
classical engineering control elements enable the
robust regulatory behavior. Such understanding,
or unraveling, is often termed reverse engineering.

In contrast, forward engineering involves the re-
design of a regulatory system for a specific pur-
pose or application. This can also be motivated in
the context of stress response. One consequence
of stress response is slower cell growth and de-
creased protein expression in an attempt to avoid



cell death. Such a response is particularly unde-
sirable in the application of heterologous protein
expression. This stressor has clear implications
for biotechnology, as the high level expression of
any protein is difficult and unpredictable. Our
work to date suggests commonalities as well as
key differences between this endogenous stress
source in comparison with the more tradition-
ally studies exogenous or environmental stressors.
Modeling studies (Kauffmann et al., 2000) are
complemented with experimental studies employ-
ing S. cerevisiae to express a model single-chain
antibody (scFv) protein (Kauffman et al., 2002).
Our ongoing work aims to understand cellular
function in the context of this dynamic network,
and focuses specifically on one regulatory network
within the cell – the stress response to unfolded
protein accumulation in the endoplasmic retic-
ulum, or the unfolded protein response (UPR)
(Travers et al., 2000; Spear and Ng, 2001). In addi-
tion to reverse engineering the feedback architec-
ture of the UPR for biological understanding, we
aim to forward engineer cells that achieve higher
levels of protein expression under the influence of
a modified UPR.

3. SYSTEMS RESEARCH CHALLENGES IN
SYSTEMS BIOLOGY

3.1 Robustness Analysis

Robustness is a recurring theme in the behavior
of complex systems, whether they are man-made
or natural (Morohashi et al., 2001; Kitano, 2002).
From an engineering perspective, one can inter-
pret robustness as the ability to maintain some
target level of behavior or performance in the
presence of perturbations. In biological systems,
these disturbances can be environmental (heat,
pH, etc.) or intrinsic to the organism (changes
in kinetic parameters). Recently, a framework
has been established that elucidates the princi-
ple that the presence of robustness in a complex
system requires the offsetting presence of fragility
in the system (Csete and Doyle, 2002). While
preliminary results are available for simple (low-
dimensional, deterministic) systems, general tools
for analyzing these tradeoffs are the subject of
active research.

As mentioned previously, the gene network which
underlies circadian rhythms is an ideal system to
study robustness, owing to its remarkable per-
formance in a highly uncertain environment. Of
interest for control theoretic analyses, the domi-
nant elements of the postulated architecture for
Drosophila consist of nested negative autoregula-
tory feedback loops controlling the expression of
timeless (tim) and period (per) interlocked with a
positive feedback loop established via the dClock

gene. Complex formation, regulated translocation
and degradation of several of these gene products,
which is additionally controlled (and delayed)
by protein phosphorylation, add further levels of
complexity to the system (Panda et al., 2002).

A number of straightforward perturbation sensi-
tivity studies have pointed to the robust character
of this network under parameter uncertainty and
stochastic variation owing to discrete molecular
behavior (Leloup and Goldbeter, 1999; Barkai
and Leibler, 2000; Smolen et al., 2001; Gonze
et al., 2002). Our preliminary work addressed
the variations in robustness properties among the
very early, and relatively simple, models for this
gene network. This work pointed to the pres-
ence of fragilities that were specific to different
model classes (e.g., degradation fragility versus
transcription fragility), as well as the convergence
of molecular behavior at different rates to the
continuum (i.e., deterministic) limit.

A more detailed treatment of this system has
involved the use of the Fisher Information Ma-
trix (FIM) to characterize points of relative sen-
sitivity and robustness in the network (Stelling
et al., 2003). The FIM analysis provides a lower
bound on parameter estimation accuracy, thus
indicating robust elements (large variances) and
fragile elements (tight variances). Corresponding
to such a characterization are parametric sensi-
tivities, which are high for fragile elements, and
low for robust elements. Previous work had shown
the utility of this approach for analyzing robust-
ness in complex biophysical networks (Stelling and
Gilles, 2001).

A model for Drosophila circadian rhythm was em-
ployed that consisted of 10 states, and 38 parame-
ters to describe two branches of negative feedback
regulation (per, tim loops). Two versions of the
model were considered: the originally published
deterministic model, and a stochastic model which
accounts for the molecular interactions of small
numbers of proteins. Gillespie’s method was used
to simulate the stochastic model (Gillespie, 1976).
Parameters were varied to explore diverse areas
in the operating space, and the rank-ordered sen-
sitivity results are plotted in Figure 1. A strik-
ing characteristic of this plot is the uniform or-
dering of ranked sensitivities, despite the large
variations explored in the parameter space. Two
curves are depicted: the open circles show the
results of the deterministic simulation, the lines
connect the corresponding results for the formal
stochastic simulation. The latter contains error
bars to denote standard deviations in the ranges
observed. The most sensitive or fragile parameters
(lower rank order) correspond to global elements
of the cellular machinery that are not specific to
circadian rhythm, such as maximum rates of tran-
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Fig. 1. Robustness of ordered sensitivity based
on FIM calculations for all model parameters
rank-ordered according to their accuracy.

scription. The robust parameters are those that
correspond to the right side of the x-axis (high
rank for sensitivity) and are associated primarily
with the circadian rhythm specific attributes of
the system such as the phosphorylation steps in
the protein feedback paths. This suggests a design
principle in which robust behavior in the circadian
rhythm character is achieved at the expense of
fragilities which are relegated to the central cellu-
lar machinery. A more detailed treatment of the
analyses is described in (Stelling et al., 2003).

These preliminary studies support the idea of ro-
bustness/fragility tradeoffs, and point to systems
tools that can generate these insights. These tools
are suitable for more complex problems, and with
suitable modifications, can be applied to complex
stochastic systems.

3.2 Identifiability of High Throughput Biological
Data

It is anticipated that regulatory networks gov-
erning diverse cellular behavior will be discov-
ered through the analysis of functional genomic
data. Computational models may play an essen-
tial role in this task, as they can generate in
silico data for validating analysis methods (Zak et
al., 2001; Smith et al., 2002), and their properties
may be analyzed to gain system–level insights. In
this section, local identifiability analysis is applied
to a computational model of a genetic regulatory
network. The objective is to determine whether
or not it is theoretically possible to uncover the
network architecture using microarray (gene ex-
pression) data. It was observed that identifying
the network architecture may only be possible
when a rich microarray time course is coupled
with information that specifies which transcrip-
tion factors bind to which genes. The model
used in the present study (Figure 2) is from a

larger model that has been reported previously
(Zak et al., 2001). It is based on agonist–induced
down–regulation of a steroid receptor (Brivanlou
and Darnell, 2002). A soluble ligand (Q) diffuses
through the plasma membrane and into the nu-
cleus where it binds to and activates a tran-
scription factor (the steroid receptor, E), which
then causes changes in the expression of target
genes (F ). In this model, these changes in gene
expression ultimately lead to down–regulation of
the steroid receptor.

Fig. 2. Model of genetic regulatory network

For the present analysis, this system is repre-
sented by a set of ordinary differential equations
(ODEs). Transcriptional regulation is modeled in
the manner of (Barkai and Leibler, 2000). Equa-
tion (1) shows the equations pertaining to D:
promoter (PDF ) binding by a transcription factor
(F2), transcription, translation of the transcript
(MD), dimerization of the protein (D), and fur-
ther promoter binding. The other components are
described similarly.

˙[PDF ] = −kP DF [PDF ][F2] + kUP DF [F2PDF ]

˙[F2PDF ] = kP DF [PDF ][F2]− kUP DF [F2PDF ]

˙[MD] = kRP DF [PDF ] + kRF P DF [F2PDF ]− kdMD [MD]

˙[D] = kT D [MD]− 2kD2[D]
2

+ 2kUD2[D2]− kdD [D]

˙[D2] = kD2[D]
2 − kUD2[D2]− kdD2[D2]

−kP ED [PED][D2] + kUP ED [D2PED]

(1)

The overall model consists of 13 states and 31
parameters. Parameter values were taken from
similar biological systems in the literature. Sample
time courses of the transcripts (MD, ME, and
MF ) in response to ligand inputs are shown in
Figure 3.

Initially, the problem of identifying the architec-
ture of the system in Figure 2 from expression
profiles of MD, ME, and MF for cases with and
without localization information is considered. Lo-
calization information specifies which transcrip-
tion factors bind to which promoters (for example
(Simon et al., 2001)). When there is localiza-
tion information available, the identification of
the system architecture involves identifying the
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Fig. 3. Expression profiles in response to a step up
(top) and step down (bottom) in ligand (Q)
concentration.

transcription rate constants for the bound and
unbound promoters for each gene (kRPDF and
kRFPDF for gene D, for example), six parameters
in total. In the case without localization informa-
tion, identifying the architecture involves identi-
fying the binding constants for each transcription
factor for each gene as well as the transcription
rate constants, giving a total of 27 parameters
(3×3 + 6×3), of which only six are non–zero. The
difference is illustrated in Figure 4, where each X
corresponds to 3 parameters (1 promoter binding
and 2 transcription rate constants) that must be
identified. A model parameter is locally identifi-

Fig. 4. Possible transcription factor–gene interac-
tions in model, demonstrating the constrain-
ing effect of localization. (a) Localization is
not known. (b) Localization is known.

able if a set of ideal measurements determines a
finite set of values for that parameter (Jacquez
and Perry, 1990). Local identifiability is weaker,
but more computationally feasible, than global
identifiability, which requires unique determina-
tion of parameter values. If a parameter is not
locally or globally identifiable, its value can only
be determined as a combination of other param-
eters. For this reason, identifiability analysis is a
key component of parameter estimation. Follow-
ing (Jacquez and Perry, 1990), local identifiability
analysis involves first determining the Ns × Np

sensitivity matrix, S(t) for the ODE system of
Ns states (x) and Np parameters (p). It is rare
to measure all of the dynamic states (x) in an
experiment, and thus the sensitivities of the mea-
surements, S′(t), may be given by S′(t) = CS(t),
where the measurements (y) are related to the
states by y(t) = Cx(t). Values of S′ at several
different times may be stacked to give G:

G ≡ [S′(t1), S′(t2), ...]T (2)

The system is locally identifiable if det(GT G) 6= 0.
When det(GT G) = 0, putting it into reduced row
echelon form will reveal rows that contain single

nonzero elements. The column indices of these
elements indicate locally identifiable parameters.
Rows containing multiple nonzero elements indi-
cate parameters that are not locally identifiable
(Jacquez and Perry, 1990). Note that when this
analysis is applied to nonlinear systems, absence
of local linear identifiability does not guarantee
absence of local identifiability for the nonlinear
system, while the reverse is true for global identi-
fiability (Jacquez and Perry, 1990).

The local identifiability analysis is performed for
cases where microarray data is used alone or with
localization information for three experimental
designs of ligand step up, step down, and com-
bined steps. Results are shown in Figure 5. If
microarray data is used alone, the parameters that
determine the network architecture are not locally
identifiable. Inclusion of localization information
allows the network architecture parameters for
gene E to become locally identifiable for either of
the steps (step down not shown). Only when both
steps are used together with localization informa-
tion do all of the network architecture parameters
become identifiable. For this case, there are also
many more types of parameters that become lo-
cally identifiable.

Fig. 5. Localization and rich data are necessary to
determine network architecture. Locally iden-
tifiable parameters when microarray data is
used alone or with localization information.
(a) Step up in ligand alone. (b) Step up
and step down used together. Emphasized pa-
rameters are those necessary for determining
network architecture.

Even with localization information, the network
architecture is identifiable only when both steps
were used together. These results demonstrate
the importance of rich experimental data. The
microarray data that may be acquired in the near
future, however, may not be rich enough for deter-
mination of network architecture. Even with rich



data, in the absence of localization information,
the parameters that determine network architec-
ture are not identifiable. This motivates combin-
ing microarray data with other information that
constrains possible interactions, and is consistent
with previous studies that demonstrated that in-
clusion of localization information improved de-
termination of regulatory network architectures
(Zak et al., 2001; Hartemink et al., 2002).

3.3 Optimality Approaches to Modeling Dynamic
Regulation

As described in the modeling section, an inter-
esting intersection of systems theory and regula-
tion modeling is in optimization-based approaches
such as FBA or cybernetic models. The cybernetic
modeling framework is predicated on a specific
objective formulation, namely an instantaneous
objective, point-wise in time. FBA, on the other
hand, accommodates a more general cost formu-
lation, but does not yield an analytical model
and yields an inherently steady-state model. In
this section, the details of a dynamic extension to
the FBA are highlighted. Specifically, two formu-
lations are considered: a horizon-based objective
(dynamic optimization approach), and a static
optimization approach.

Dynamic Optimization based dFBA Ap-
proach (DOA) Consider a metabolic network
with m metabolites and n fluxes. The set of con-
servation of mass equations, for each metabolite,
results in a set of ordinary differential equations;

dz

dt
= AvX

dX

dt
= µX

µ = Σwivi (3)

where z is the vector of metabolite concentrations,
X is the biomass concentration, v is the vector of
metabolic fluxes per gram (DW) of the biomass,
A is the stoichiometric matrix of the metabolic
network, µ is the growth rate obtained as a
weighted sum of the reactions that synthesize the
growth precursors, and wi are the amounts of
the various growth precursors required per gram
(DW) of biomass.

Along with the system of dynamic equations, sev-
eral additional constraints must be imposed for
a realistic prediction of the metabolite concen-
trations and the metabolic fluxes. These include:
non-negative metabolite and flux levels, limits on
the rate of change of fluxes, and any additional
nonlinear constraints on the transport fluxes. A
general dynamic optimization problem can be for-
mulated as shown in Equation 4:

Max.
z(t),v(t),X(t)

ŵendΦ(z, v, X)|t=tf
+

ŵins

M∑

j=0

∫ tf

t0

L(z, v, X(t))δ(t− tj)dt

s.t.
dz

dt
= AvX

dX

dt
= µX

µ = Σwivi

tj = t0 + j
tf − t0

M
j = 0 . . . M

c(v,z) ≤ 0 |v̇| ≤ v̇max

z ≥ 0 X ≥ 0

z(t0) = z0 X(t0) = X0 (4)

where z0 and X0 are the initial conditions for the
metabolite concentration and the biomass con-
centration respectively, c(v, z) is a vector func-
tion representing nonlinear constraints that could
arise due to consideration of kinetic expressions
for fluxes, t0 and tf are the initial and the final
time, Φ is the terminal objective function that
depends on the end-point concentration, L is the
instantaneous objective function, δ is the Dirac-
delta function, tj is the time instant at which L
is considered, ŵins and ŵend are the weights as-
sociated with the instantaneous and the terminal
objective function respectively and v(t) is the time
profile of the metabolic fluxes. If the nonlinear
constraint is absent, the problem reduces to an
optimization involving a bilinear system.

The dynamic optimization problem can be solved
by parameterizing the dynamic equations through
the use of orthogonal collocation on finite el-
ements (Cuthrell and Biegler, 1987). The time
period (t0-tf ) is divided into a finite number of
intervals (finite elements). The fluxes, the metabo-
lite levels and the biomass concentration are pa-
rameterized at the roots of an orthogonal poly-
nomial within each finite element. The details of
the parameterization for a specific example are
presented in (Mahadevan et al., 2002).

Static Optimization based dFBA Approach
(SOA) In SOA, the time period is divided into
N intervals. In the absence of the nonlinear con-
straints involving the fluxes, the optimization
problem is reduced to a LP problem. The LP
(equation 5) is solved at the beginning of each
interval to obtain the fluxes at that time instant:



Max.
v(t)

Σwivi(t)

s.t. z(t + ∆T ) ≥ 0 v(t) ≥ 0

ĉ(z(t))v(t) ≤ 0 ∀t ∈ [t0, tf ]

|v(t)− v(t−∆T )| ≤ v̇max∆T

z(t + ∆T ) = z(t) + Av∆T

X(t + ∆T ) = X(t) + µX(t)∆T

(5)

where ∆T is the length of the time interval chosen.

The dynamic equations are integrated assuming
that the fluxes are constant over the interval. The
optimization problem is then formulated at the
next time instant and solved. This procedure is
repeated from t0 to tf . For the class of systems
involving only bilinear terms with fluxes and the
biomass concentration, it is possible to directly
solve the dynamic equations and thereby elimi-
nate the numerical integration.

A detailed description of the dFBA approach
and its application to metabolic modeling can be
found in (Mahadevan et al., 2002). The pertinent
observation is the traditional FBA modeling ap-
proach invokes a steady state assumption that
allows one to solve for the metabolic flux distribu-
tion, but eliminates the ability to track metabolic
concentrations or study metabolic transients. The
dFBA extension allows the tracking of metabolite
concentrations and dynamic transients. In effect,
regulation is captured by virtue of the optimiza-
tion objective solved under the constraint of dy-
namic metabolic fluxes.

4. SUMMARY

Biological regulation has been introduced and an-
alyzed from the perspective of systems engineer-
ing. Mathematical modeling approaches, both em-
pirical and fundamental, have yielded descriptions
of many complex systems, and control-theoretic
tools have been employed to provide hypotheses
for biological behavior, such as system robust-
ness. Open challenges were described in the ar-
eas of robustness analysis, design of experiments,
and mathematical modeling frameworks. Future
advances will require complementary approaches
from experimental disciplines as well as theoret-
ical and computational disciplines in order to
achieve the aims of systems biology.
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