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Abstract

In this paper, we formulate the problem of system
identification as a problem in statistical learning. By
doing so, we are able to derive finite-time estimates
of the proximity of the current model to the ‘true sys-
tem’ if any, or to the ‘optimal model’ in case there
is no true system. The main advantage of doing
so is that traditionally system identification theory
provides asymptotic results. In contrast, statistical
learning theory is devoted to the derivation of finite
time estimates. If system identification is to be com-
bined with robust control theory to develop a sound
theory of indirect adaptive control, it is essential to
have finite time estimates of the sort provided by sta-
tistical learning theory.

As an illustration of the approach, a result is de-
rived showing that in the case of systems with fading
memory, it is possible to combine standard results in
statistical learning theory (suitably modified to the
present situation) with some fading memory argu-
ments to obtain finite time estimates of the desired
kind. In contrast with earlier results in this area, the
results presented here are applicable also to nonlinear
systems. Moreover, no assumptions are made about
the data to which a model is to be fitted, other than
that it is a stationary stochastic process. This in con-
trast to earlier papers which assume that the data is
generated by a model of known order. In fact, in the
case of linear systems, the estimates presented here
are not very conservative, but are more so in the case
of nonlinear systems. As there is considerable scope
for improving the specific bounds presented here, the
results presented here should be viewed as just the
beginning of a new theoretical approach.
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1 Introduction

The aim of system identification is to fit given data,
usually supplied in the form of a time series, with
models from within a given model class. One can di-
vide the main challenges of system identification into
three successively stronger questions, as follows: As
more and more data is provided to the identification
algorithm,

1. Does the estimation error between the outputs
of the identified model and the actual time series
approach the minimum possible estimation error
achievable by any model within the given model
class?

2. Does the identified model converge to the best
possible model within the given model class?

3. Assuming that the data is generated by a ‘true’
model whose output is corrupted by measure-
ment noise, does the identified model converge
to the ‘true’ model?

From a technical standpoint, Questions 2 and 3 are
easier to answer than Question 1. Following the
notational conventions of system identification, let
{h(6),8 € O} denote the family of models, where
0 denotes a parameter that characterizes the model,
and O is a topological space (usually a subset of R
for some £). Since identification is carried out recur-
sively, the output of the identification algorithm is a
sequence of estimates {6;};>1, or what is the same
thing, a sequence of estimated models {h(6;)}s>1-
Traditionally a positive answer to Question 2 is as-
sured by assuming that © is a compact set, which
in turn ensures that the sequence {6;)} contains a
convergent subsequence. If the answer to Question



1 is ‘yes,” and if 6* is a limit point of the sequence,
it is usually not difficult to establish that the model
h(6*) is an ‘optimal’ fit to the data among the family
{h(#),0 € ©}. Coming now to Question 3, suppose
Oirue is the parameter of the ‘true’ model, and let
ftrue denote the ‘true’ system. Suppose 6* is a limit
point of the sequence {#;}. The traditional way to
ensure that Oy.ye = 0* is to assume that the input
to the true system is ‘persistingly exciting’ or ‘suffi-
ciently rich,” so that the only way for h(68*) to match
the performance of firue iS to have 8* = Oyrye.

With this background, the present paper concen-
trates on providing an affirmative answer to Ques-
tion 1. In a seminal paper [11], Lennart Ljung has
shown that indeed Question 1 can be answered in
the affirmative provided empirical estimates of the
performance of each model h(f) converge uniformly
to the corresponding true performance, where the
uniformity is with respect to § € ©. Very closely
related results are proven by Caines [2, 3]. Ljung
also showed that this particular uniform convergence
property does hold, provided two assumptions are
satisfied, namely:

e The model class consists of uniformly exponen-
tially stable systems, and

e The parameter 6 enters the description of the
model h(6) in a ‘differentiable’ manner. Coupled
with the assumption that © is a compact set, this
assumption implies that various quantities have
bounded gradients with respect to 6.

The uniform convergence property in question is re-
ferred to hereafter as UCEM (uniform convergence of
empirical means). A precise definition of the UCEM
property, as well as a rationale for its name, is given
in subsequent sections.

Now it turns out that a study of the UCEM prop-
erty in various forms lies at the heart of a branch of
applied probability theory, variously known as empir-
ical process theory or statistical learning theory. One
of the distinguishing features of statistical learning
theory is its emphasis on finite time estimates. This
is in contrast to the asymptotic results provided by
nearby branches of probability theory such as large
deviation theory. Note that the main results of sys-
tem identification theory of relevance to the present
discussion, such as [11], Lemma 3.1, or [12], Theo-
rem 2B.3, are also asymptotic. Actually, the proofs
of these results can in fact provide finite time esti-
mates. However, these estimates are not very tight,
possibly because by tradition the emphasis in system
identification theory has not been on deriving finite
time estimates.

This brings us to the motivation of the present
paper, which is to apply the techniques of statisti-
cal learning theory (if not exactly the actual results
from that theory) to the problem of system identifi-
cation. By doing so, we are able to derive finite-time
estimates of how much the performance of the cur-
rent estimate differs from the optimal performance.
If these estimates can be combined with robust con-
trol theory, then it will be possible to put indirect
adaptive control on a sound analytical foundation.

In statistical learning theory, the UCEM property
can be established under a variety of assumptions.
However, the most common assumption is that the
model family {h(),6 € O} has finite ‘P-dimension,’
which is an integer that reflects the ‘richness’ of the
model family. In turn, the P-dimension equals the
Vapnik-Chernonenkis (VC-) dimension of an asso-
ciated family of binary-valued functions; see [13].
Moreover, the differentiability assumptions made in
[11] (and commonly employed in the system identifi-
cation community) in fact guarantee the finiteness of
the P-dimension of the model family {h(¢),6 € ©}.
See for example [6]. Thus in principle it is possible
to derive UCEM results very similar to (if not ex-
actly identical to) those in [11] using statistical learn-
ing theory. However, it is well-known in the statis-
tical learning theory community that the estimates
of the (finite) VC-dimension based on differentiabil-
ity assumptions are extremely conservative. Indeed,
obtaining ‘tight’ estimates for the VC-dimension has
been one of the dominant themes of statistical learn-
ing theory for the past several years. Over the years,
several methods have been developed for estimating
the VC-dimension of various function families. The
books [14, 1, 15] contain quite complete descriptions
of the known results. Many of these estimates can be
applied directly to the types of model classes that are
widely used in system identification theory. One of
the objectives of the present paper is in fact to apply
these bounds to identification.

Two distinct types of identification problems are
studied here. The first might be called ‘model-free’
identification, in the sense that no assumptions at
all are made on the data to which one is attempting
to fit a model, other than that it is a bounded sta-
tionary time series. (The assumption of boundedness
is purely technical and can definitely be relaxed by
resorting to more careful arguments.) This model-
free approach is in contrast to the usual assumption
made in identification theory, namely that the data is
generated by a model of known order; see for exam-
ple Section 2.1 of [4]. The results derived here show
that the rate of convergence of the identified model



to the ‘optimal’ model depend only on the richness
of the model class, and not on the data. The sec-
ond approach builds on the earlier work of [18, 17]
and assumes that the data is indeed generated by an
input-output stable system driven by an i.i.d. noise
sequence with bounded variance. It is not assumed
that the system is linear. By invoking recently proved
results about the mixing properties of such systems
and combining these with the results of [18, 17], we
extend system identification theory to nonlinear sys-
tems. In principle we derive ‘explicit’ estimates for
the rates of convergence. However, since these esti-
mates are based on Lyapunov theory, there is consid-
erable scope for improvement.

The results presented here represent only a begin-
ing at applying statistical learning theory to the long-
standing problem of system identification, and un-
doubtedly it is possible to improve both the results
themselves and also the proofs of the results. It is the
hope of the authors that the paper will spur further
research in the subject.

2 System Identification with
No Restrictions on Data

2.1 Preliminaries

In this section, we state the problem of system iden-
tification without assuming anything about the na-
ture of the data, other than that it is a stationary
stochastic process assuming values in a bounded set.
The assumption that the values lie in a bounded set is
made purely to avoid lots of technicalities, as the as-
sumption guarantees that the stochastic process has
finite moments of all orders; perhaps, with some care,
this assumption can be relaxed. Other than this as-
sumption, there are no other assumptions about the
nature of the data. For instance, it is not assumed, as
is done in [4] for example, that the data is generated
by an ARMA model whose order is bounded ahead
of time. Any and all assumptions are on the model
family used to fit the data, and not on the data itself.
This seems to represent a fairly significant departure
from previous work.

For the class of systems under study, the output set
is some Y C R¥ | while the input set is some bounded
U C R for some k and £. There is also a ‘loss func-
tion” £ : Y xY — [0,1]. The purpose of the loss
function is to assign a quantitative value to the error
between the actual output and the predicted output.

To set up the time series that forms the input
to identification or stochastic adaptive control, let

us first define Y := Hiooo U, and define ) analo-
gously. Equip the doubly infinite cartesian product
Y xU =[] (Y x U) with the product Borel o-
algebra, and call it S°°. Next, introduce a probability
measure Py,u on the measurable space (Y x U,S*).
Now let us define a ‘stochastic process’ as a measur-
able map from (¥ x U,S8%, Py ) into Y x U. Let
the coordinate random variables (y¢,u:) be thought
of as the components of the time series at time ¢,
and let us assume that the time series is stationary
(which means that the probability measure Py, is
shift-invariant). Let P, denote the one-dimensional
marginal probability associated with Py ,, on Y, and
note that Py,u is a probability measure on the set
Y xU.

Let U°_ denote the one-sided infinite cartesian
product U°  := H(loo U, and for a given two-sided
infinite sequence u € U, define

R 0
u; = (ut_l,ut_g,ut_3, .. ) < Ufoo'

With this preliminary notation, we can set up the
problem under study.

2.2 System Identification: Problem

Formulation

The input to the identification process is a time series
{(y¢,ut) }¢>1 generated through a stochastic process,
as described above. The duality between two-sided
infinite sequences and one-sided infinite sequences is
always present in stochastic process theory, and we
shall not attempt to reconcile it here. It suffices to say
that the stochastic process is assumed to stretch into
the infinite past, but the system identification process
has a definite starting time which can be denoted as
t=0.

The objective of system identification is to fit the
time series with a model from a specified class. To fit
this time series, we use a family of models {h(6),6 €
©}, where each h(f) denotes an input-output map-
ping from U° _ to Y, and the parameter § captures
the variations in the model family. Thus the output
at time ¢ of the system parametrized by 6 to the input
sequence u € U is given by h(f) - u;. Note that this
definition automatically guarantees that each system
is time-invariant.

For each parameter § € O, define the objective
function

J(8) := E[t(ys, h(8) - w;), Py,

Thus J(6) is the expected value of the loss we incur
by using the model output h(f) - u; to predict the
actual output y;.



Problem (System Identification): Choose the
paramater § € © so as to minimize the function J(6).

Thus the objective of system identification is to
find the model h(#) from within the family {h(6),6 €
O} that best fits the data, as represented by the
stochastic process {(yt,u:)}. The difficulty of this
problem arises from the fact that the underlying
probability measure Py ,, with respect to which the
expectation is being taken, is in general unknown.
This is because, if we know the measure Py ,, then
we know all the statistics of the stochastic process
and there is nothing to model and nothing to identify.
Thus we are obliged to resort to indirect methods to
achieve this minimization.

Note that, since the only value of y that appears
within the expected value is y;, we can actually re-
place the measure Py, by P, .. In other words, we
can also write

J(8) == E[l(ys, h(6) - us), Pyul- (2.1)

Thus the expectation is taken with respect to the
‘one-dimensional’ marginal measure py’u onY x U.
Note that, by the assumption of stationarity, the
quantity on the right side of (2.1) is independent of
t. The objective of identification is to determine a
6 € O that minimizes the error measure .J(6).

The theory presented here applies to any loss func-
tion. However, for some specific loss functions, the
problem formulation becomes very natural. For in-
stance, suppose

Uy, 2) =y -z

where || - || is the usual Euclidean or £3-norm. In this
case J(0) is the expected value of the mean squared
prediction error when the map h(6) is used to predict
Y- Suppose further that the output y; arises from
a ‘true but unknown’ system driven by i.i.d. noise,
corrupted by i.i.d. measurement noise. Specifically,
suppose

(2.2)

where the input sequence {u;}>, is i.i.d. according
to some law P, {n:}°°,, is a measurement noise se-
quence that is zero mean and i.i.d. with law @, and
in addition, u;,n; are independent for each ¢,j. In
such a case, the expected value in (2.1) can be ex-
pressed in terms of the probability measure @ x P>,
and becomes.

7 (6)

Yt = ftrue sug + Tt 5 Vt:

[l (firue = 5(6)) - e + e |, @ x RZP)
[ 7(6) - ue |17, P+ Ell 7 |7, @1,

where h(6) := h(#) — fiue- Since the second term
is independent of 6, we effectively minimize only

E || true
El

the first term. In other words, by minimizing J(6)
with respect to 6, we will find the best approxima-
tion to the true system fiue in the model family
{h(0),0 € ©}. Here by ‘best approximation’ we mean
the system h(6) that minimizes the second moment
of the output error. With suitable assumptions on
ug (e.g., white noise), this quantity can be readily re-
lated to the Huo-norm of the error transfer function
h(6). Note that it is not assumed the true system
ftrue belongs to {h(6),0 € O}. In case there is a ‘true’
value of 8, call it f;rye such that firye = h(Btrue), then
an optimal choice of @ is G ye. If in addition we im-
pose some assumptions to the effect that the input
sequence {u;} is sufficiently exciting, then 8 = Girye
becomes the only minimizer of J(-).

3 Uniform Convergence of Em-
pirical Means

In this section, it is shown that if a particular prop-
erty known as UCEM (uniform convergence of em-
pirical means) holds, then a very natural approach of
choosing 6; to minimize the empirical (or cumulated)
average error will lead to a solution of the system
identification problem. Note that such an approach
is already adopted in the paper of Ljung [11]. Note
also that the result given here is not by any means the
most general possible. In particular, it is possible to
show that if 8; is chosen so as to ‘nearly’ minimize the
empirical error ‘most of the time,” then the resulting
algorithm will still be asymptotically optimal. For
an exposition of this approach to the standard PAC
learning problem, see [14], Section 3.2.

Theorem 1 For each t > 1 and each 8 € O, define
the empirical error

t

Ji0) = 3 s h(6) - wil.

At time t, choose 0f so as to minimize jt(é?); that is,
0; = Argming g J;(6).
Let

J* = glg(f;) J(6).

Define the quantity

q(t,€) := Py,u{slelg 1Je(6) = (@) > e} (3.1)

Suppose it is the case that q(t,e) — 0 as t — oo.
Then

Py uf{Ji(07) > J*+€} =0 ast — .



Remark: The condition that g(¢,¢) — 0 as ¢t — oo
is usually referred to in the statistical learning theory
as the property of uniform convergence of empir-
ical means (UCEM). Thus the theorem states that
if the family of error measures {J(6),6 € ©} has the
UCEM property, then the natural algorithm of choos-
ing 6, so as to minimize the empirical estimate J(6)
at time ¢ is ‘asymptotically optimal.” Moreover, as
the proof below makes clear, the ‘asymptotic’ result
can actually be used to provide finite time estimates
as well.

Proof: Suppose q(t,e) = 0 as t - co. Given any
number J > 0, choose to large enough that

Py w{sup |J:(0) — J(0)| > €/3} < 6. (3.2)

9co
This number is often referred to as the ‘sample com-
plexity’ corresponding to the accuracy €/3 and confi-
dence §. Select a 6, € © such that J(0.) < J* + €/3.
Such a 6, exists in view of the definition of J*. Then,
in view of (3.2), we can say with confidence 1 —§ that

J(0;) > J(6;) —€/3, and J(8.) < J(8.) + /3.

By definition, A .
J(0) < J(0e).

Combining these two inequalities shows that

J(O) < J0) +e/3<T(0) +e/3< T(0) +2¢/3
< J42/34€/3=J" +e. (3.3)

This statement holds with confidence 1 — 4. ®
Thus the sample complexity of ensuring that
J(6;) < J*+eis at most equal to the sample complex-
ity of q(m,€/3). This naturally brings up the ques-
tion as to what kinds of families {h(8),6 € ©} have
this particular UCEM property, and what their sam-
ple complexities are like. These questions are given a

very simple-minded answer in the next section.

4 A UCEM Result

In this section, it is shown that the UCEM prop-
erty of Theorem 1 does indeed hold in the commonly
studied case where y; is the output of a ‘true’ system
corrupted by additive noise, and the loss function £ is
the squared error. By Theorem 1, this implies that by
choosing the estimated model h(6;) so as to minimize
the cumulated least squares error, we will eventually
obtain the best possible fit to the given time series.
Note that no particular attempt is made here to state
or prove the ‘best possible’ result. Rather, the objec-
tive is to give a flavour of the the statistical learning

theory approach by deriving a result whose proof is
free from technicalities.

We begin by listing below the assumptions regard-
ing the family of models employed in identification,
and on the time series. Recall that the symbol h(6)-u,
denotes the function (firue —h(6))-u;. Define the col-
lection of functions ‘H mapping U into R as follows:

9(8) ==u| (f = h(0)) wo [I>: U = R,

G:={g(0) :6 €0}
Now the various assumptions are listed.

A1l. There exists a constant M such that
|9(0) -uo| < M, V8 € ©O,uecld.

This assumption can be satisfied, for example, by
assuming that the true system and each system
in the family {h(6),6 € O} is BIBO stable (with
an upper bound on the gain, independent of 6),
and that the set U is bounded (so that {u;} is a
bounded stochastic process).

A2. For each integer k > 1, define

gk(0) U = 9(0) - (ut_l,ut_g, .. -;ut—k;O;O; .. )

With this notation, define

pi = sup sup |(g(0) — gk (6)) - uol-
ucld /e

Then the assumption is that uy is finite for each
k and approaches zero as k — oo. This assump-
tion essentially means that each of the systems
in the model family has decaying memory (in the
sense that the effect of the values of the input at
the distant past on the current output becomes
negligibly small). This assumption is satisfied,
for example, if

e Each of the models h() is a linear ARMA
model of the form

l
ye =Y ai(®)ue—; + bi(0)ye—i,
i=1
e The characteristic polynomials

!
#(0,2) =2t — Z bi(6)2'
i=1

all have their zeros inside a circle of radius
p < 1, where p is independent of 6.



e The numbers a;(6) are uniformly bounded
with respect to 6.

The extension of the above condition to MIMO
systems is straight-forward and is left to the
reader.

A3. Consider the collection of maps G = {gx(8) : 6 €
0}, viewed as maps from U* into R. For each
k, this family has finite P-dimension, denoted by
d(k). (See [14], Chapter 4 for a definition of the

P-dimension.)
Now we can state the main theorem.

Theorem 2 Define the quantity q(t,e) as in (3.1)
and suppose Assumptions A1 through A3 are satis-
fied. Given an € > 0, choose k(e) large enough that
ur, < €/4 for all k > k(e). Then for all t > k(e) we
have

8k(e) (32 1n &)d(k(e))
-exp(—|t/k(e)|€*/512M?),

q(t,e) <
(4.1)

where |t/k(e)| denotes the largest integer part of
t/k(e).

Remark: From the proof of Theorem 1, it follows
that the rate of convergence of the estimated model
to the optimal performance can also be quantified.

Proof: Write g(0) = gr(0) + (9(0) — gx(8)), and

define
f1(0) == gr(6) - wi, fr(6) := (9(6) — gx(9)) - u
Next, define
¢

dh (1) 1= Pr(pup | 37 1u(0) = BUO).F] > o)

g5 (t€) == Pf{jgg ka (6), P| > e}.
Then it is easy to see that

q(t,€) < qf(t,€/2) + g5 (t,¢/2). (4.2)

Now observe that if k is sufficiently large that
pr < €/4, then ¢k(t,e) = 0. This is because, if
[(g(8) — gr(0)) - u;| is always smaller than €/4, then
its expected value is also smaller than €/4, so that
their difference can be at most equal to €/2. Since
this is true for all u and all 8, the above observation
follows. Thus it follows that if k(e) is chosen large
enough that uy < €/4 for all k > k(e), then

alt,e) < ¢¥9(t,e/2) Vt > k(e), Ve. (4.3)

Hence the rest of the proof consists of estimating
@9 (t,€) when t > k(e).

From here onwards, let us replace k(e) by k in the
interests of notational clarity. When ¢t > k, define
l:=|t/k], and r = t — kl. Partition {1,...,t} into k
intervals, as follows.

Ii:={i,i+k,...,i+1lk}for1<j<r, and
L={ii+k,...,i+({-1Dk}forr+1<j<k.

Then we can write

t k

1 1
;ng(a) uz:zzzgk(o) u;

i=1 j=liel;

Now define
1 ~
@ i= |2 (9¢(6) - us - Elge(6) - wi, P]) |
i€l

Then, noting that E[gy,(6) - u;, P] is independent of i
due to the stationarity assumption, we get

ng

Elgr(6) - w;, P)

It follows that if a; < € for each j, then the left side
of the equality is also less than e. So the following
containment of events holds:

(gr -u

k
1 -
{sup - —E[gk-ui,P]‘>e}g U{aj>e}.
geo |t i1

Hence

k

Kt,e) < Z Pr{a; > €}. (4.4)

Now note that each gy - u; depends on only u;_1
through u;_k. Hence, in the summation defining each
of the ¢, the various quantities being summed are
independent. Since it is assumed that the family
{9x(0),6 € O} has finite P-dimension d(k), standard
results from statistical learning theory can be used to
bound each of the probabilities on the right side of
(4.4). A small adjustment is necessary, however. The
results stated in [14] for example assume that all the
functions under study assume values in the interval
[0,1], whereas in the present instance the functions
h(8) - u; all assume values in the interval [—M, M].



Thus the range of values now has width 2M instead
on one. With this adjustment, Equation (7.1) of [14]
implies that

Remark: It is interesting to note that the above
estimate is linear in both the number of parameters
! and the duration k£ of the input sequence u, but
is only logarithmic in the degree of the polynomials

d(k)
Pr{a; > €} <8 (% In %) exp(—|I;|*€?/128 M pi- In the practically important case of linear ARMA

Clearly exp(—|I;]?) < exp(—I?). Hence

(k)
16 16
ai(t,€) < 8k (Te In {) exp(—12€2 /128 M?).
(4.5)
Finally, the conclusion (4.1) is obtained by replacing

€ by €/2 in the above expression, and then applying
(4.3). m

5 Bounds on the P-Dimension
In order for the estimate in Theorem 2 to be useful,

it is necessary for us to derive an estimate for the
P-dimension of the family of functions defined by

Gr 1= {g(0) : 0 € O}, (5.1)
where g;(6) : U*¥ — R is defined by
gr(0)(w) :=|| (f = h(8)) -uy ||, (5:2)

where
ug = (...,0,up, Up—1,---,u1,0,0,...).

Note that, in the interests of convenience, we have
denoted the infinite sequence with only & nonzero el-
ements as ug, . . ., w1 rather than ug,...,u;_ as done
earlier. Clearly this makes no difference. In this sec-
tion, we state and prove such an estimate for the com-
monly occuring case where each system model h(6)
is an ARMA model where the parameter 6 enters lin-
early. Specifically, it is supposed that the model h ()
is described by

!
Do = Y 0; $ilwe,w), ye =,
i=1
where 8 = (61,...,6;) € ©® C R, and each ¢;(-,-) is a
polynomial of degree no larger than r in the compo-
nents of x, u;.

(5.3)

Theorem 3 With the above assumptions, we have
that
P-dim(Gy) < 9L+ 2llg[2(rFt —1)/(r — 1)]
r 9+ 2klg(2r) if r > 1. (5.4)
In case v =1 so that each system is linear, the above
bound can be simplified to

P-dim(Gy) < 91 + 211g(2k). (5.5)

models, even k appears inside the logarithm.

Proof: For each function g; () : U¥ — R defined
as in (5.2), define an associated function g}, : U* x
[0,1] — {0, 1} as follows:

9k (0)(u, ¢) == nlgr(6)(w) — ],

where n(-) is the Heaviside or ‘step’ function. Then
it follows from [14], Lemma 10.1 that

P-dim(Gy,) = VC-dim(G},).

Next, to estimate VC-dim(G},), we use [14], Corollary
10.2, which states that, if the condition n[gx(6)u —
¢] =1 can be stated as a Boolean formula involving s
polynomial inequalities, each of degree no larger than
d, then

VC-dim(G},) < 211g(4eds). (5.6)

Thus the proof consists of showing that the conditions
needed to apply this bound hold, and of estimating
the constants d and s.

Towards this end, let us back-substitute repeatedly
into the ARMA model (5.3) to express the inequality

I (f = h(@))uy [|* —c <0

as a polynomial inequality in u and the §-parameters.
To begin with, we have

Th41

I
> " 0i dilar, ur)
i=1

! !
Zei¢z’ Zej ¢ (Tr—1,Ur-1)
i=1 j=1

Thus each time one of the functions ¢; is applied to
its argument, the degree with respect to any of the
0; goes up by a factor of 7. In other words, the total
degree of 341 with respect to each of the §; is no
larger than 147 +72+...+7F = (P¥H1 —1)/(r - 1).
If r = 1, then the degree is simply k. Next, we can
write

” Tr41 ”2 —c<0 & a“;c+1'rk+1 —c<0.

This is a single polynomial inequality. Moreover, the
degree of this polynomial in the components of 8 is
at most 2(r**t —1)/(r — 1) if r > 1, and 2k if r = 1.



Thus we can apply the bound (5.6) with and s = 1,
and

g ] AN i e,

2k if r=1.

The desired estimate now follows on noting that
lge < 1.5, so that 1g(8¢) < 4.5. m

6 Mixing Properties of Dynam-
ical Systems

In [17] it is shown that if the time series to be fit
with a suitable model is S-mixing, then conventional
least-squares identification methods will possess the
UCEM property. This result generalizes an earlier
result in [18] in which the same conclusion is reached
under the much stronger assumption that the time
series to be fitted with a model exhibits finite depen-
dence (that is, (Y¢4k,us+r is independent of (yg,uy)
whenever k exceeds some finite number kq. In [4], this
very promising approach to system identification is
dismissed with the off-hand observation that ‘signals
generated by dynamical systems are not f-mixing in
general.” On the contrary, recent results from [8] show
that input-output stable dynamical system do gener-
ate S-mixing sequences. The main result, taken from
[8], is as follows:

Throughout, we consider Markov chains described
by the recursion relation

Tep1 = f(@,e4), (6.1)

where z; € R¥ e, € R™ for some integers k,m, and
{e.} is a stationary noise sequence. It is assumed that
the following assumptions are satisfied:

Al. The function f : R¥ x R™ — R* is ‘smooth,’ i.e.,
is C, and in addition, f is globally Lipschitz
continuous. Thus there exist constants L and K
such that

|f(@,u) = f(y,v)| < L]z —y| + Klu—vl|. (6.2)

A2. The noise sequence {e;} is i.i.d., has finite vari-
ance, and has a continuous multivariate density
function ¢(-) that is positive in some neighbour-

hood 2 of the origin in R™.

A3. When e; = 0 V¢, the ‘unforced’ system

ziy1 = f(x4,0)

is globally exponentially stable with the origin as
the unique globally attractive equilibrium. This

means that there exist constants M’ and A < 1
such that

|$Ct| S MI|IL'0|)\t, Vit Z ]., V.’L’().

By taking M := max{M’,1}, one can write the
above inequality as

|£L't| S M|.€E0|)\t, Vit Z 0, VJE().

A4. The associated deterministic control system

Tepr = f(@e, ue) (6.3)
is ‘globally forward accessible’ from the origin
with the control set Q. In other words, for ev-
ery y € R¥ there exist a time N and a control
sequence {ug,...,un—1} C Q such that, with
2o = 0 we have zx = y.

A5. The associated deterministic control system
(6.3) is ‘locally controllable’ to the origin with
the control set 2. This means that there ex-
ists a neighbourhood B of the origin in R* such
that, for every y € B there exist a time N and a
control sequence {uo, ...,un—_1} C 2 such that,

with zog = y we have zx = 0.

Now we can state the main result.

Theorem 4 Suppose assumptions Al through A5
hold. Then the state sequence {X;} is geometrically
B-mizing.

The next result shows that if a Markov chain is
(geometrically) S-mixing, so is any hidden Markov
model generated from the Markov chain. Actually,
the result is more general than that.

Theorem 5 Suppose {Xi}i>0 is a stationary
stochastic process assuming values in a set X with
associated o-algebra S. Suppose Y is a complete
separable metric space, and let B(Y) denote the
Borel o-algebra on'Y . Suppose p: X x B(Y) — [0,1]
is a transition probability function. Thus for each
x € X, p(z,-) is a probability measure on Y, and
for each A € B(Y), u(-, A) is a measurable function
on (X,S). Finally, suppose {Vi}i>0 is a Y-valued
stochastic process such that

Pr{yt € A|y,,7, <t-— ].,Xj,j < t} = ,u(Xt,A)

Under these assumptions, if {X;} is B-mizing, so is

{}-



Proofs of both theorems can be found in [8].

Thus, in summary, the approach of [17] can be ap-
plied very fruitfully to problems of identifying time
series when the data is generated by an input-output
stable system driven by a noise signal with bounded
variance. Needless to say, this includes the standard
situation of a stable linear system driven by i.i.d.
Gaussian noise.

7 Conclusions

In this paper, a general approach has been outlined
on using the methods of statistical learning theory to
derive finite time estimates for use in system identifi-
cation theory. Obviously there is a great deal of room
for improvement in the specific results presented here.
For instance, in Sections 4 and 5, it would be desir-
able to combine the fading memory argument and the
ARMA model into a single step. This would require
new results in statistical learning theory, whereby one
would have to compute the VC-dimension of map-
pings whose range is an infinite-dimensional space.
This has not been the practice thus far.

In summary, the message of the paper is that both
system identification theory and statistical learning
theory can enrich each other. Much work remains to
be done to take advantage of this potential.
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