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Abstract: Principal Components Analysis (PCA) is increasingly being used for
reducing the dimensionality of multivariate data, process monitoring, model
identification, and fault diagnosis. However, in the mode that PCA is currently
used, it can be statistically justified only if measurement errors in different
variables are assumed to be i.i.d. In this paper, we develop the theoretical basis
and an iterative algorithm for model identification using PCA, when measurement
errors in different variables are unequal and are correlated. The proposed approach
not only gives accurate estimates of both the model and error covariance matrix,
but also provides answers to the two important issues of data scaling and model
order determination.
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1. INTRODUCTION

Principal Components Analysis is a multivariate
statistical tool developed primarily to obtain a
parsimonious representation of multivariate data.
This is achieved by choosing a few linear combi-
nations known as principal components, which to-
gether capture most of the variability in the data.
The number of linear combinations chosen is typ-
ically less than the number of measured variables.
In chemical engineering, PCA has been used in
a similar manner for data compression. In recent
years, PCA is also gaining significant importance
as a tool for model identification or to discover
the underlying spatial and/or temporal relation-
ships between variables. For example, PCA is a
critical part of many subspace based dynamic
model identification methods (Viberg, 1995). The
model identified using PCA has also been subse-
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quently used in fault diagnosis (Yoon and Mac-
Gregor, 2000).

If measurements are corrupted by random errors,
then PCA is an optimal procedure for estimating
the model parameters only if the errors in dif-
ferent variables are independently and identically
distributed (Wentzell et al., 1997). An improved
approach, called the maximum likelihood PCA
(MLPCA), has been developed by Wentzell et al.
(1997) for general error covariance matrix struc-
tures. However, their method assumes that the
measurement error covariance matrix is known. It
would be advantageous if the measurement error
covariance matrix can be estimated along with
the model from the same data set. This becomes
especially important in chemical processes, since
the model as well as the error covariance matrix
are likely to change over time.

In this paper, we describe an iterative method
which combines PCA with a maximum likelihood
estimation procedure for obtaining an estimate



of the error covariance matrix. The proposed ap-
proach also provides answers to important ques-
tions on how to scale measured data before ap-
plying PCA, and how to obtain the model order
without a priori knowledge.

2. MODEL IDENTIFICATION USING PCA
WITH NOISE FREE DATA

We first discuss the case of model identification
using PCA when the measurements are not cor-
rupted by noise. Although this is well known, we
present an alternative viewpoint which motivates
the development of our proposed approach. We
will consider the following process identification
problem, which, despite its simplicity, contains
the essential features for describing more complex
processes.

Let x(t) be a set of n variables at time instant
t, which are related by the following set of m
independent linear constraints

Ax(t) = 0 (1)

where A : m × n is a constant time invariant
constraint matrix. The above equations represent
the spatial relations between variables, which are
assumed to hold at all time instants. At each time
instant, measurements y(t) of all the variables
corrupted by random errors are available, which
can be written as

y(t) = x(t) + ε(t) (2)

We assume that the random errors, ε(t), are tem-
porally independent and follow a multivariate nor-
mal distribution with mean zero and covariance
matrix Σε. The random errors are also assumed
to be independent of x(t). Given a sample of N
measurements, y(1) . . . y(N), the objective is to
estimate the constraint matrix (also referred to as
the model).

We assume that the true values of variables,
x(t), are a deterministic sequence satisfying the
following two conditions.

lim
N→∞

{
√

N(x̄− µx)} = 0

lim
N→∞

√
N

[
N∑

i=1

(x(i)− µx) (x(i)− µx)T − Σx

]
= 0

where x̄ represents the average of the sequence
x(t), and µx and Σx are bounded. The above
assumptions ensure that y(t) is a quasi-stationary
signal (Ljung, 1999).

It can be easily observed that due to the con-
straints, the vectors x(t) span a n−m dimensional
subspace of Rn (denoted as Vx). Furthermore,
the rows of A span a m dimensional subspace of

Rn (denoted as Vc), which is orthogonal to Vx.
Thus, given a sample of measurements in Rn, the
objective of model identification can be viewed as
the problem of decomposing Rn into two orthog-
onal subspaces, one of which defines Vx and the
other Vc. It can be further noted that in order to
define Vx and Vc, we only need to identify a basis
for each of these spaces. Thus for identifying the
model, it is sufficient to estimate any m linearly
independent vectors in the row space of A.

In the absence of measurement errors, if we have a
sample of n−m linearly independent realizations
of x(t), then we can use it as a basis for Vx.
We can then construct m linearly independent
vectors orthogonal to Vx, which define a basis for
Vc exactly. Note that this is sufficient to solve the
stated problem.

If we use PCA to solve the above problem, then
we will determine the orthonormal eigenvectors
of the data variance matrix Sy = 1

N Y T Y (which
is identical to Sx = 1

N XT X in the absence of
measurement errors), where

Y = [y(1), y(2), . . . , y(N)]T (3)

Since the column space of Sy is identical to Vx,
the matrix Sy has rank n−m. Thus, it will have
n − m nonzero eigenvalues, while the rest are
zeros. The eigenvectors corresponding to the non-
zero eigenvalues is an orthonormal basis for Vx.
These eigenvectors are linear combinations of the
variables xi, and are called principal component
directions. The eigenvector corresponding to the
largest eigenvalue is the direction in Vx of maxi-
mum variability, and so on, in decreasing order of
the magnitudes of the eigenvalues. The transpose
of the m eigenvectors corresponding to the zero
eigenvalues represent a basis for Vc. Note that
these eigenvectors are not uniquely defined, be-
cause the corresponding eigenvalues are all equal.
Although in some applications the PC directions
may be useful, from the viewpoint of model iden-
tification they do not have any advantage over
any other basis choice. Nevertheless, PCA does
identify a basis for Vc exactly in the absence of
measurement errors.

3. EFFECT OF SCALING IN PCA

We can raise the question of whether we can
obtain an exact basis for Vc in the absence of
measurement errors, if we scale the data before
applying PCA. In order to answer this question,
we will consider the following general linear trans-
formation of the data

ys(t) = Dy(t) = Dx(t) = xs(t) (4)

where D is any nonsingular matrix. If D is di-
agonal, then the above transformation defines a



scaling of the data. We can apply PCA to the vari-
ance matrix Sys = 1

N Y T
s Ys where the scaled data

matrix Ys is defined in a manner analogous to eq.
3. Since D is nonsingular, the rank of Sys is also
equal to n−m. Thus, if we apply PCA using Sys

,
the transpose of the m orthonormal eigenvectors
corresponding to the zero eigenvalues represent a
basis for the space orthogonal to the scaled data
vector xs(t). If we denote the transpose of these
eigenvectors by As, then we can write

Asxs(t) = 0 (5)

Using eq. 4 in the above equation we get

AsDx(t) = 0 (6)

From the above equation, we can deduce that
the rows of the matrix A = AsD is a basis for
Vc. Thus, in the absence of measurement errors,
we obtain an exact basis for Vc even if we apply
PCA to transformed (or scaled) data using eq. 4.
However, it must be noted that the rows of A are
not orthonormal and they also do not correspond
to the eigenvectors of Sy.

4. MODEL IDENTIFICATION WITH
KNOWN Σε

We now consider the problem of model identifica-
tion from noisy measurements using PCA, under
the assumption that the measurement error co-
variance matrix, Σε, is known. If measurements
are noisy, then Sy will be a full rank matrix,
and by using PCA we will not be able to obtain
an exact basis for Vx or Vc. In fact, it is not
possible to establish a relationship between the
orthonormal eigenvectors of Sy and those of Sx.
Furthermore, if we scale or transform the data
using eq. 4, the eigenvectors of Sys and those of
Sy do not bear any simple relation to each other
(Morrison, 1967). Both these problems have been
hitherto tackled in a heuristic manner in model
identification from noisy data using PCA. If we
assume that the error variances are much smaller
compared to the variances in x(t), then we can
expect Sy to possess n−m dominant eigenvalues
and m small eigenvalues. The orthonormal eigen-
vectors corresponding to the small eigenvalues can
be used as an estimate for the basis of Vc. It has
also been suggested that if x contains variables
which are not commensurate, then it is better
to scale the data using standard deviations of
the measurements. Other scaling strategies have
also been suggested which can be applied under
restrictive assumptions (Wentzell et al., 1997).
The effect of these heuristics on the quality of the
identified model cannot be easily assessed. In what
follows, we describe a procedure which effectively
resolves the issue of appropriately scaling noisy
data, such that a basis for Vc can be exactly

obtained using PCA, under the assumption that
Σε is known.

Let L be the square root of Σε defined by

LLT = Σε (7)

Similar to eq. 4, we will transform the measure-
ments using L−1 as the nonsingular transforma-
tion matrix. The transformed measurements are
given by

ys(t) = L−1y(t) = L−1x(t) + L−1ε(t)

= xs(t) + L−1ε(t) (8)

If Σε is a diagonal matrix, then L is also a diagonal
matrix containing the standard deviations of mea-
surement errors, and the above transformation is
equivalent to scaling the data using standard de-
viations of the corresponding measurement errors.

By taking the expectation of Sys
, it can be easily

shown that
Σys = Sxs + I (9)

In the above equation Σys is the population vari-
ance matrix of ys, while Sxs = L−1SxL−T (since
x(t) is deterministic).

From eq. 9 and the Eigenvalue Shift Theorem, the
following two important results can be immedi-
ately derived.

(1) The eigenvectors of Σys are identical to those
of Sxs .

(2) The eigenvalues of Σys are equal to the cor-
responding eigenvalues of Sxs increased by
unity.

Since Sxs is of rank n − m it will have m zero
eigenvalues. From the above results, we can con-
clude that the corresponding eigenvalues of Σys

will be unity. Furthermore, the eigenvectors, cor-
responding to the eigenvalues of Σys that are
greater than unity, define a basis for Vxs . We have
already shown that we can obtain the basis for
Vx exactly, given the basis for Vxs . Thus, given
a sample of measurements, we can transform the
measurements as in eq. 8 and apply PCA on Sys .
The eigenvectors corresponding to the eigenvalues
that are close to unity, can be used to obtain a
basis for Vc (refer to the discussion that follows
eq. 6). Using Theorem 2.3 (Ljung, 1999) for a
quasi-stationary signal, we can prove that Sys is
a consistent estimate of Σys . Thus, in the limit as
the sample size goes to infinity, an exact basis for
Vc is obtained using this method.

Wentzell et al. (1997) proposed a maximum like-
lihood estimation technique for model identifi-
cation using PCA when the covariance matrix
of measurement errors is known, and the model
order is also specified. Their procedure is an al-
ternating regression procedure which does not
scale the data. Instead, it iteratively transforms



the model identified by PCA on unscaled data,
until the maximum likelihood estimates of x(t) are
obtained. In contrast, the procedure we have de-
scribed above is a non-iterative technique, which
has a stronger theoretical basis and also provides
additional useful information. In particular, the
fact that the eigenvalues of Sys corresponding
to the eigenvectors which define a basis for Vc

should be unity, can be used to obtain the model
order m. If an incorrect value of m is assumed,
then the eigenvalues corresponding to the last m
eigenvectors of Sys

may not be close to unity.

5. SIMULTANEOUS MODEL
IDENTIFICATION AND ERROR

COVARIANCE MATRIX ESTIMATION

If Σε is unknown, then the method described in
the preceding section can be applied, if we can
estimate the error covariance matrix from the data
along with the model. We describe an iterative
algorithm for achieving this by combining PCA
with a maximum likelihood estimation (MLE)
method for obtaining an estimate of the error
covariance matrix. We will assume that an initial
estimate of the model constraint matrix, Â0, is
available. (Such an estimate can be obtained by
applying PCA to the measured data). Using this
initial model estimate, we compute the constraint
residuals at each time instant as

r(t) = A0y(t) (10)

If the estimated model is exact, then the con-
straint residuals will be independent normally dis-
tributed variables with zero mean and covariance
matrix Σr = Â0Σε(Â0)T . Thus, the joint density
function of r(1) . . . r(N) can be easily obtained,
and an estimate of Σε can be obtained by maxi-
mizing the log likelihood function of r(1) . . . r(N).
This results in the following nonlinear optimiza-
tion problem.

min
Σε

N log |Â0Σε(Â0)T |

+
N∑

i=1

(rT
i (t)(Â0Σε(Â0)T )−1ri(t)) (11)

The above MLE problem can also be interpreted
as a procedure for extracting an estimate of Σε,
given an estimate of the covariance matrix of
constraint residuals Σr. This follows from the
fact that the maximum likelihood estimate of
Σr (which maximizes the likelihood function of
r(1) . . . r(N)) is the sample covariance matrix Sr.
The estimate of Σε, which maximizes the same
likelihood function, is the one that satisfies the
following relation.

Â0Σ̂ε(Â0)T = Sr (12)

F1 F3

F2

F4 F5

Fig. 1. Schematic of a flow process

Depending on the number of constraints and num-
ber of variables, it may or may not be possible to
satisfy the above equation. Typically, the number
of spatial relations m is usually less than n. In
such cases, if we attempt to estimate all diagonal
and off-diagonal elements of Σε, multiple solutions
that satisfy the above equation are obtained. One
possibility is to assume that Σε is diagonal, and es-
timate only the n diagonal elements corresponding
to the measurement error variances. Even in this
case, a non-degenerate estimate for Σε is obtained
only if m(m + 1) ≥ 2n. Other techniques have
been proposed for estimating the measurement er-
ror covariance matrix, given the constraint model
and the covariance matrix of constraint residuals
(Romagnoli and Sanchez, 1999). However, these
methods are not maximum likelihood estimates.

Assuming that the number of diagonal and off-
diagonal elements of Σε that we are estimating is
less than or equal to m(m+1)/2, we can minimize
(11). We can also impose lower bounds on the
elements of Σε that we are estimating, and solve
the constrained optimization problem. Let us de-
note the estimate of measurement error covariance
matrix obtained using the above method as Σ̂0

ε .
Note that this estimate has been obtained assum-
ing that the model has been estimated exactly.
We can use Σ̂0

ε to transform the data as described
in the preceding section, and apply PCA on the
transformed measurements to get an updated es-
timate of the constraint matrix. We can repeat
the entire procedure until the estimates for the
model and error covariance matrix converge. A
simple test of convergence is to check that the
singular values obtained using PCA do not change
significantly from one iteration to the next.

6. SIMULATION RESULTS AND
DISCUSSION

A flow process example shown in Fig. 1, has been
chosen to test the proposed procedure. The above
example has been chosen so that it satisfies the
condition m(m + 1) > 2n (in the above example
m = 3 and n = 5). We will assume that the
measurement error covariance matrix is diagonal.

In order to simulate the true values of variables
at each time instant, a set of independent flow
variables are chosen (in the above example F1 and
F2 are chosen as independent variables). The true
values of independent variables are simulated by



adding normally distributed random fluctuations
to their base values. The true values of the depen-
dent flow variables are calculated such that they
satisfy the flow balance constraints. The base val-
ues of variables and the standard deviations of the
fluctuations are given in Table 1. In the simulation

Table 1. Data for simulating true values
of variables.

Flow variable True values σε

Base value Std of fluctuation

F1 10 1.0 0.1
F2 10 2.0 0.08
F3 F1 + F2 0.15
F4 F3 0.2
F5 F4 - F2 0.18

procedure, the measured values of variables are
simulated by adding normally distributed random
noise to their true values. The standard deviations
of measurement errors are also given in Table 1.
A sample of 1000 measurement vectors is simu-
lated and the procedure described in Section 5 is
applied.

In order to evaluate the accuracy of the estimated
basis for Vc, the distance between the row spaces
of the true constraint matrix and the estimated
constraint matrix can be used. The minimum
distance of each row of A from the subspace
spanned by the rows of Â is given by

αi = ||AT
.i −AT

.iÂ
T (ÂÂT )−1Â|| (13)

A consolidated measure of model estimation ac-
curacy is given by

α =
∑

i

αi (14)

The above measure treats all bases sets for the
row space of Â as equivalent. Alternatively, the
angle θ between the row spaces of A and Â can
also be used as a measure of the model estimation
accuracy.

The results obtained for the above example using
PCA for different choices of data scaling and the
proposed iterative method (denoted as IPCA) are
presented in Table 2. In both approaches, the
actual number of constraints are assumed to be
known.

In Table 2, the first three rows are the results
obtained using PCA, respectively, when the mea-
sured data are not scaled, scaled using sample
standard deviation of the corresponding measure-
ment, and scaled using true standard deviations
of measurement errors. The last row gives the
results obtained using the proposed method. The
constraint matrix obtained by PCA is used as an
initial estimate in IPCA. From the values of α
and θ, we can conclude that a good estimate of
the model constraints is obtained using both PCA

Table 2. Quality of the model identified
for different scaling choices.

Case Scale α× 103 θ (deg)

PCA None 5.86 0.17
PCA σy 10.22 0.24
PCA σε 1.62 0.028
IPCA 1.2 0.03

and IPCA. This is due to the fact that in this
simulation, the signal to noise variation is high
(ratio of their standard deviations is more than
10). However, even in this case, the proposed itera-
tive method is able to improve the accuracy of the
model obtained through PCA by more than 80%.
The number of major iterations required for IPCA
to converge was around ten, although within three
to four iterations the estimates obtained are very
close to the final converged values. The estimated
standard deviations of measurement error vari-
ances obtained using the proposed method are
[0.1121 0.0837 0.1406 0.2031 0.1775], which are
close to their true values. For the given sample
of data, the best achievable model accuracy is
obtained when the data are scaled using the true
standard deviations of measurement errors, as
shown in the third row of Table 2. It is observed
that the accuracy of model obtained using IPCA
is very close to this achievable limit.

The converged singular values, [236.5 17.7 1.01
1.0 0.99], obtained using IPCA reveal an inter-
esting feature. It can be observed, that the sin-
gular values corresponding to the last three PCs
(which correspond to the assumed number of con-
straints) are very close to unity, as theoretically
predicted. In contrast, the singular values ob-
tained using PCA for the three scaling strategies
are, respectively, [33.32 1.9 0.18 0.16 0.11], [19.84
1.35 0.15 0.08 0.06], and [238.9 18.8 1.06 0.99
0.97]. Clearly by scaling the data differently, we
can alter the singular values, and it may make
it difficult to determine the number of PCs to
be retained/rejected. In other words, we may not
be able to determine the number of constraints
precisely by examining the singular values of the
scaled data, unless we use the standard deviations
of measurement errors for scaling. It may also
be noted that if the data is auto-scaled, a worse
model may be obtained compared to the case
when the data is not scaled at all (compare results
of first and second rows of Table 2).

In order to evaluate how the proposed method
performs for low signal to noise variation, the
standard deviations of the true value variations in
F1 and F2 are reduced to 0.2 each, while retaining
the standard deviations of measurement errors as
before. The results obtained for this case are given
in Table 3. As expected the accuracy of the mod-
els estimated by both approaches has decreased.
However, a good estimate of the model is still



Table 3. Quality of the model identified
for low signal to noise ratio.

Case Scale α× 103 θ (deg)

PCA None 447.0 12.73
PCA σy 252.1 7.61
PCA σε 21.1 0.49
IPCA 32.5 1.39

obtained using the proposed approach, and there
is a 90% improvement over the model obtained
using PCA. The estimated standard deviations of
measurement errors using the proposed approach
are [0.1121 0.0838 0.1406 0.2031 0.1774], which
are same as before. Thus even though the model
is estimated less accurately, the measurement er-
ror standard deviations are estimated fairly ac-
curately by the proposed approach. The con-
verged singular values obtained are [233.5 2.4 1.01
1.0 0.98], which again satisfy the condition that
the singular values corresponding to the assumed
number of constraints are close to unity.

In order to demonstrate that our proposed method
can be used even if errors in different variables
are correlated, we simulated data for the above
example using an error covariance structure which
contained an off-diagonal element. It should be
noted, that since the above process has only 3 con-
straints, we can estimate at most 6 elements of the
error covariance matrix. This implies that besides
the diagonal elements, at most one off-diagonal
element can be estimated from the measured data.
The true flow rates in this case are simulated as
described in Table 1. The non-zero elements of
the measurement error covariance are chosen as
[0.0244 0.0064 0.0369 0.04 0.0324 0.03], where the
first five elements are the diagonal elements (error
variances) and the last element is the covariance
between errors in variables 1 and 3. The results
for this case are shown in Table 4.

Table 4. Model identification for non-
diagonal error covariance matrix.

Case Scale α× 103 θ (deg)

PCA None 10.53 0.20
PCA σy 13.68 0.27
PCA cholesky factor of Σε 1.21 0.024
IPCA 1.47 0.043

The above results again indicate that the model
obtained using IPCA is better than that obtained
using PCA, and is close to the maximum achiev-
able accuracy. The non-zero elements of the esti-
mated error covariance matrix are [0.0266 0.007
0.0367 0.0402 0.0312 0.0312], which are also close
to their corresponding true values. The converged
singular values obtained using IPCA are [2458.5
27.53 1 1 1]. As theoretically predicted, the last
three singular values are unity even in this case.

We had stated that it may also be possible to
determine the number of constraints using the

proposed approach. As a test of this, the number
of constraints was incorrectly assumed as four
instead of three in the above simulations, and
the proposed method was used. In this case, the
estimated std of measurement errors obtained are
[1.118 1.117 0.047 0.242 1.127], and the singu-
lar values are [434.37 1.72 1.00 0.15 0.11]. Since
the singular values corresponding to the last four
eigenvalues are not close to unity, this indicates
that the number of constraints has been incor-
rectly assumed.

7. CONCLUDING REMARKS

In this paper, we have proposed an algorithm
for simultaneously estimating an accurate process
model and the measurement error covariance ma-
trix from noisy data, using an iterative PCA tech-
nique. As part of the development, the outstand-
ing issue of appropriately scaling or transforming
noisy data before applying PCA, has also been
resolved. A new criteria for determining model
order by examining the eigenvalues obtained us-
ing PCA on the transformed data is proposed,
which has a rigorous theoretical basis. As part
of future research, the technique described here
can be extended to methods which use PCA as
an integral component such as PCR, PLS, and
subspace based model identification.
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Abstract: Canonical variates state space (CVSS) modeling is a popular subspace
linear model identi�cation technique. A nonlinear extension of CVSS modeling
approach was proposed (DeCicco and Cinar, 2000). The modeling procedure consists
of two steps: development of a multivariable nonlinear model for a set of latent
variables and the linking of the latent variables to outputs of the process. The
nonlinear model is structured like a Generalized Additive Model (GAM) and is
estimated with CANALS, a nonlinear canonical variate analysis algorithm. This
communication presents the methodology and an illustrative example of chemical
reactor modeling using data generated from a detailed polymerization reactor model.
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1. INTRODUCTION

Canonical variate analysis (CVA) and canoni-
cal variate (CV) regression are powerful meth-
ods used for developing linear dynamic models.
Most notably they are used in subspace modeling
to estimate linear state space models (Larimore,
1990b). Subspace methods are attractive because
of their ease in which they can model multivariate
systems. An extension of linear CVA for �nd-
ing nonlinear state space models was examined
(Larimore, 1990a) where use of alternating condi-
tional expectation (ACE) algorithm (Breiman and
Friedman, 1985) was suggested as the nonlinear
CVA method. The examples used linear CVA to
model a system by augmenting the linear system
with polynomials of past outputs.

Subspace modeling can be cast as a reduced rank
regression (RRR) of collections of future outputs
on past inputs and outputs after removing the

1 Corresponding author (e-mail : cinar@iit.edu).

e�ects of future inputs. CVA performs this RRR.
In the case of a linear system, an approximate
Kalman �lter sequence is recovered from this re-
gression. The state space coeÆcient matrices are
recovered from the state sequence. The nonlinear
approach extends this regression to allow for pos-
sible nonlinear transformations of the past inputs
and outputs, and future inputs and outputs before
RRR is performed. The model structure consists
of two sub-models. The �rst model is a multi-
variable dynamic model for a set of latent vari-
ables, the second relates these latent variables to
outputs. The latent variables are linear combina-
tions of nonlinear transformations of past inputs
and outputs. These nonlinear transformations or
functions are found using CANALS (van der Burg
and de Leeuw, 1983). Using nonlinear CVA to �t
dynamic models is not new. ACE algorithm was
used to visually infer nonlinear functions for single
output additive models (Chen and Tsay, 1993).
This work di�ers in that the nonlinear functions
estimated are directly utilized for prediction. Also,
a collection of multiple future outputs is consid-



ered, which leads to the latent variables model
structure. The latent variables are then linked to
the outputs using linear projection type nonlin-
ear model structures such as projection pursuit
regression (PPR) (Friedman and Stuetzel, 1981)
or a linear model through least squares regression.

2. NONLINEAR MODEL STRUCTURE

Let yt 2 R
l, ut 2 R

m and xt 2 R
n represent

outputs, inputs and latent variables that are col-
lections of individual variables yit, u

i
t and x

i
t,

yt =

2
64
y1t
...

ylt

3
75 ; ut =

2
64
u1t
...
umt

3
75 ; xt =

2
64
x1t
...
xnt

3
75 : (1)

The model structure for a single latent variable is

xit+� =

�X
j=1

mX
k=1

h�i;j+k�1�
p
k;j

�
ukt+��j

�

+

�X
j=1

lX
k=1

h�i;�m+j+k�1�
p
k;j

�
ykt+��j

�
(2)

where h� are scalar coeÆcients, �p and �p are
nonlinear functions, and � is the past window
length. The model structure linking the latent
variables to a single output is

yit = yiss +

MX
j=1

ni;j j
�
lTj xt

�
; (3)

where ni;j are scalar coeÆcients, lj are n � 1
coeÆcient vectors,  j is some nonlinear function,
and yiss is a steady state operating point.

The structure for the latent variables model in (2)
is of a generalized additive model (GAM) (Hastie
and Tibshirani, 1990). But it is developed using a
nonlinear CVA method discussed in Section 4.

3. LINEAR MODELING

A number of methods fall under this framework
including CVA (Larimore, 1990b) and N4SID
(Van Overschee and De Moor, 1994). An esti-
mate of Kalman �lter states can be recovered
from a RRR of a collection of future outputs
on past collection of inputs and outputs, and fu-
ture inputs in linear systems (Van Overschee and
De Moor, 1994). "Past" and "future" discriminate
previously observed historical data used in the
estimation of a causal dynamic model.

De�ne the collection of past and future observed
outputs:

y�(t) = [yTt yTt+1 : : : yTt+��1]
T ; (4)

y
(t) = [yt+� y
T
t+�+1 : : : yTt+��1]

T ;

where � = �+
 and 
 is the future window length.
The collections of past and future inputs (u� and
u
) are de�ned in the same manner. Let t+�� 1
represent the present time. Observations of the
above collections are

Y� = [y�(1) : : : y�(N)] (5)

Y
 = [y
(1) : : : y
(N)]

Collections of observed past and future inputs
are U� and U
 , respectively. The objective is
to extract a causal model that predicts future
outputs using assigned future input values:

Y
 = L1U� + L2Y� + L3U
 (6)

where L1, L2, and L3 are coeÆcient matrices.

The RRR problem that leads to approximate state
variables sequence is formulated as

min
L1;L2;�


k Y
 � [L1U� + L2Y� + L3U
 ] k
2

W(7)

where k M kW= tr
�
MTWM

�
. The regression

problem has a reduced rank structure in that
[L1 L2] = �H, where � and H both have rank n.
The CVA RRR solution is derived by settingW =�
Y
�

?

Y

T



��1
(Jansson and Wahlberg, 1999).

Estimates of � and H are obtained from singular
value decomposition (SVD)

W
1

2Y
�
?


 P
T
�

�
P��

?


 P
T
�

�� 1

2 = Q�ST (8)

�?


 = I�UT



�
U
U

T



�
U
 ; P� =

�
U�

Y�

�
(9)

The real matrices Q and S contain the canonical
variate vectors, and � contains the canonical
correlations of the CVA decomposition (8). The
estimates become

�=W�
1

2 �
�
�rst n columns of Q�

1

2

�
; (10)

H=
�
�rst n rows of �

1

2ST
��
P��

?


 P
T
�

�� 1

2 :

The approximate state variables sequence is

X =H

�
U�

Y�

�
; (11)

with X = [x̂(� + 1) : : : x̂(� +N)]. With the esti-
mated state variables sequence (11) and the ob-
served inputs and outputs it is possible to estimate
the model coeÆcients of the linear state space
model including the Kalman �lter gain (Larimore,
1990b; Van Overschee and De Moor, 1994).

4. NONLINEAR MODEL IDENTIFICATION

The nonlinear model identi�cation is an extension
of the linear approach. First nonlinear transforma-
tions of observed data are sought in the regression



of future outputs (Y
) on past inputs and out-
puts, and future inputs (U� , Y� , and U
). This
leads to a set of latent variables that are nonlinear
functions of past inputs and outputs. Then, the
reduced rank structure and coeÆcient matrices
are estimated using CVA as in the linear case. Fi-
nally, the model structure between latent variables
and outputs is developed using projection pursuit
(Friedman and Stuetzel, 1981) or other methods.

4.1 Latent Variable Model Identi�cation

The nonlinear transformations are estimated by a
modi�ed version of the nonlinear CVA technique
CANALS (van der Burg and de Leeuw, 1983).
Once the nonlinear transformations are found,
linear CVA is used to �nd the linear combinations
that form the latent variable model. The regres-
sion model (6) is �rst generalized as

Z
 = L1V� + L2Z� + L3V
 ; (12)

where L1, L2, and L3 are coeÆcient matrices, Z
 ,
Z� , V
 , and V� are nonlinear transformations of
the past and future inputs and outputs:

Z
 = [z
(1) : : : z
(N)]
T

Z� = [z�(1) : : : z�(N)]
T

V
 = [v
(1) : : : v
(N)]T

V� = [v�(1) : : : v�(N)]
T

z
(t) =
h
�f
1 (yt+�)

T : : : �f

(yt+��1)

T
iT

z�(t) =
h
�p
�(yt)

T : : : �p
1(yt+��1)

T
iT

v
(t) =
h
�f
1(ut+�)

T : : : �f

(ut+��1)

T
iT

v�(t) =
h
�p
�(ut)

T : : : �p
1(ut+��1)

T
iT

� and � are vector valued functions of the form

�p
i (yt) =

2
64
�
p
1;i(y

1
t )

...

�
p
l;i(y

l
t)

3
75 ; �p

i (ut) =

2
64
�
p
1;i(u

1
t )

...
�
p
m;i(u

m
t )

3
75 :

The observed inputs and outputs have been cen-
tered around their means or some steady state
operating point of the process.

CANALS was originally developed for analysis of
categorical data (van der Burg and de Leeuw,
1983) and did not utilize a locally adaptive regres-
sion technique. A modi�ed version of CANALS
estimates the nonlinear functions with nonpara-
metric regression (DeCicco and Cinar, 2000). The
�nal nonparametric estimates are interpolated by
Chebychev polynomials to allow a smooth in-
terpolation. The modi�ed CANALS is used to
estimate the coeÆcient matrices and nonlinear
transformations. CANALS seeks to minimize

min
~L;L4;G;Z


k L4Z
 � ~LG k2 (13)

where L4 is a canonical variate coeÆcient matrix,
~L = [L1 L2 L3], and GT =

h
VT
� ZT� V

T



i
. The

loss function (13) is minimized such that the non-
linear functions have zero mean and unit variance
with the constraints:

L4 ~Z


�
L4 ~Z


�T
= (N + �� 1)I;

~LG
�
~LG
�T

= (N + �� 1)I;

where I is the identity matrix.

CANALS uses alternating least squares (ALS) to
estimate coeÆcient matrices and nonlinear trans-
formations. The ALS method works iteratively
until convergence of (13). L4 and ~L are esti-
mated by CVA RRR. The nonlinear transforma-
tions are estimated using a back-�tting approach
(Hastie and Tibshirani, 1990). The supersmoother
of (Friedman, 1984) is used to estimate the non-
linear functions in the back-�tting step.

The number of latent variables and linear combi-
nations of nonlinear functions that make up these
latent variables are determined by using linear

CVA between the Z
 and ~P� =
h
VT
� ZT�

iT
after

the e�ect of V
 is removed. Use SVD

�
Z
 ~�

?


 Z
T



�� 1

2

Z
 ~�
?



~PT
�

�
~P�

~�? ~PT
�

�� 1

2

= Q�ST ;

~�?


 = I�VT



�
V
V

T



��1
V
 : (14)

The linear combinations of estimated states are

H� =
�
�rst n rows of �

1

2ST
�
�
�
~P�

~�?



~PT
�

�� 1

2

:

The latent variable sequence becomes

~X(t) = H� ~P� ; (15)

where ~X(t) = [~xt+� ~xt+�+1 : : : ~xt+�+N�1]. This
leads to the latent variable model structure

~x(t+ �) = H�

�
v�(t)
z�(t)

�
(16)

where h�i is the ith column of H�, and (16) is
a generalization of (2). The number of latent
variables n is chosen by inspecting the singular
values of � in (14). Signi�cant latent variables
have relatively large singular singular values.

4.2 Link Function

The relationship between latent variables and out-
puts is generalized by a PPR model. This type



of model structure includes linear least squares
and GAM model structures. We build a linear
model estimated by CVA regression and a PPR
model, and compare their performances. The lin-
ear model is a special case of the PPR structure.
If a linear model is adequate the overall model
structure is simpler. The multivariable version of
(3) relating latent variables to outputs is

yt = yss +

MX
i=1

ni i
�
lTi xt

�
: (17)

PPR seeks to minimize the loss function

SSE =

lX
j=1

N+��1X
t=1

 
y
j
t �

MX
i=1

ni;j i(l
T
i xt)

!2

(18)

with respect to ni;j , li,  i, and M . A back-�tting
procedure is utilized to perform the regression.
First, li is found by minimizing (18) using nu-
merical optimization. Next,  i is found by non-
parametric regression and lastly ni is estimated
with CVA regression. The number of terms M is
chosen by using (18) (See Figure 1).

With the estimated latent variable sequence ~X(1)
of (15) the loss function (18) may be written as

min
N;	(Lx( ~X(1))

k Y
 [1; :]�N	
�
LTx

~X(1)
�
k2(19)

N = [n1 n2 : : : nM ] ; Lx = [l1 l2 : : : lM ] ;

	
�
LTx

~X(1)
�
=2

6664
 1(l

T
1 xt+�) : : :  1(l

T
1 xt+�+N�1)

 2(l
T
2 xt+�) : : :  2(l

T
2 xt+�+N�1)

...
...

 M (lTMxt+�) : : :  M (lTMxt+�+N�1)

3
7775 :

4.3 Nonlinear Function Estimation

ALS and back-�tting approach in CANALS and
PPR algorithms for estimating �, �, and  in-
volve use of a regression technique capable of
capturing nonlinear relationships. There are sev-
eral regression techniques such as orthogonal poly-
nomials, neural networks, local polynomial re-
gression, smoothing splines, and kernel smoothers
that may be grouped in terms of their common
properties such as parametric/ nonparametric,
�xed/adaptive, or local/global. No one technique
is strictly superior to the others.

The modeling procedure requires a 
exible, auto-
mated, and robust regression technique. Kernel re-
gression, smoothing splines, and local polynomial

regression techniques are 
exible since they easily
adapt to data because they are not constrained
to any global parametric structure. Automating
such techniques is a diÆcult task especially for
serially correlated data. These techniques require
the selection of some parameter value which deter-
mines the degree of smoothing such as bandwidth.
Cross-validation is used frequently to determine
the degree of smoothing, but for serially correlated
data it may over-smooth or under-smooth. To
avoid such diÆculties, a �xed bandwidth is used
throughout the regression.

These techniques are also sensitive to outliers.
Robust techniques exist such as locally weighted
scatter plot smoothing (LOWESS) (Cleveland,
1979). LOWESS iteratively smoothes with local
polynomials. At each iteration, weights that are
inversely proportional to the magnitude of resid-
uals from the previous iteration are assigned to
data and the regression is repeated. This greatly
reduces sensitivity to outliers. In this work, assign-
ment of weights to data and iterative smoothing
are carried out by a supersmoother (Friedman,
1984) which is a local, adaptive, nonparametric
regression technique. The functions �, � and  

based on supersmoother estimates are local in the
sense they are only de�ned within the domain of
the data from which they are developed. Outside
this domain, a linear relationship can be assumed.
Let  (x) represent the estimated supersmoother
function where l � x � u. The �nal function
including extrapolation is '(x)

'(x) =

8<
:

al + blx : x < l

 (x) : l � x � u

au + bux : x > u

(20)

Initial estimates of al, bl, and au, bu are found
by regressing the lower and upper quartiles of
observed  (x) on x, respectively. The intercept
terms al and au are then adjusted such that al +
blmin(x) =  (min(x)) and au + bumax(x) =
 (max(x)). Shifting of the intercepts allows for
a smooth transition between domains. The func-
tions estimated by the supersmoother are not con-
sidered continuous functions. Interpolation is done
by regressing observed  (x) on x using orthogonal
Chebychev polynomials.

5. CSTR POLYMERIZATION MODELING

Data from a poly-vinyl acetate CSTR simula-
tion (Teymour, 1989) is used to illustrate model
identi�cation. The outputs are reactor tempera-
ture (yT ) and number average molecular weight
(MWn) of the polymer (yM ), and the manipulated
input is residence time. The steady state gain
of the system is not constant in the region of
operation selected.



The input and outputs are sampled at 5 min

intervals, and there is a time delay of 5min for the
input. The base input residence time levels are set
at random from a uniform distribution between 10
and 90 min with a switching probability of 0.95.
Added to this input is a signal with levels between
-5 and 5. The range of input was chosen to
exaggerate the nonlinearity of the system. Input
switch levels are based on a uniform distribution
with a switching probability of 0.95 and 0.80. 3000
samples of inputs and outputs are collected. To
avoid numerical round o� errors, MWn is divided
by 1000 before model development. A known
steady state operating point at a residence time
of 50min was used to center the data. Gaussian
random measurement noise was added to outputs
prior to model development.

Latent Variable Model Identi�cation. The
latent variable model identi�cation requires the
speci�cation of 
, �, and n. For this example,
future and past horizons of 10 is used (
 = � =
10). The number of latent variables n is chosen
by investigating the singular values of (14). For
comparison, a linear model is also developed by
linear CVA subspace identi�cation.

Figure 1 shows the canonical correlation squared
for linear and nonlinear models. The singular val-
ues for the linear and nonlinear model drop o�
signi�cantly after 5 and 10 latent variables, re-
spectively. The singular values can be interpreted
as the canonical correlation between the future
outputs and past inputs and outputs, after the
e�ect of future inputs is removed. The canonical
correlations of the nonlinear model are greater
than the linear model. This is expected because
the CANALS nonlinear CVA algorithm seeks to
�nd nonlinear transformations of the original vari-
ables that maximize the canonical correlation.
Model Comparison. A linear state space model
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Fig. 1. Latent variable and PPR order selection.

found with CVA subspace modeling was compared
to the nonlinear model with a linear or PPR link

function. In-sample and out-of-sample prediction
is evaluated by sum of squared error (SSE). Pre-
diction consists of initializing the models from
observed data then recursively simulating future
outputs based on actual measured inputs and ei-
ther past predicted states in the case of the state
space model, or past predicted outputs in the case
of the nonlinear model. To determine the form
of the link function PPR was compared to linear
least squares. The PPR model developed had 5
terms (M=5). The relative magnitudes of SSE in
Figure 1 indicates that 3 terms are suÆcient. A
plot of the in-sample prediction of reactor temper-
ature for various models (Figure 2) indicate that
nonlinear models outperform the linear model.
The SSE used for comparison is

SSE =
X
t

"�
yM (t)� ŷM (t)

�M

�2

+

�
yT (t)� ŷT (t)

�T

�2
#

where y and ŷ are the actual and predicted out-
puts respectively, and � is the standard deviation
of the observed variable. The SSE is 530 for the
nonlinear model with linear link function, 558
for the nonlinear model with PPR link function,
and 930 for the linear state space model. For the
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Fig. 2. Actual (-) and predicted (- -) reactor tem-
perature. Top: nonlinear model with linear
link; Center: nonlinear model with PPR link,
and Bottom: linear model.

out-of-sample comparison 20 runs with di�erent
inputs and noise sequences were simulated in the
same manner as the in-sample case. Nonlinear
models clearly outperform the linear model with
respect to SSE (Figure 3). The nonlinear models
with linear and PPR link function have compa-
rable performance with the linear link function
model with slightly better performance. Steady-

State Analysis. Numerical continuation is im-
plemented with AUTO (Doedel et al., 1998) to
determine the steady-state characteristics of the
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Fig. 3. SSE for 20 runs for (A) linear model,
(B) nonlinear model with linear link, and (C)
nonlinear model with PPR link.

empirical model. AUTO uses numerical continu-
ation to trace out the �xed point solution given
an initial steady state. The resulting steady-state
curve is then compared to the steady-state curve
of the physical model. For this comparison the
linear link model was used. Let yssM and yssT be the
steady state values of the outputs that correspond
to the input uss. For the case of a least squares
linear link function the model at steady state is

yssM =

�X
j=1

a1jy
ss
M +

�X
j=1

b1jy
ss
T +

�X
j=1

c1ju
ss; (21)

yssT =

�X
j=1

a2jy
ss
M +

�X
j=1

b2jy
ss
T +

�X
j=1

c2ju
ss: (22)

Figure 4 compares the actual and predicted �xed
point steady state solutions. The nonlinear model
predicts the �xed point solution inside the domain
of the experimental data and the linear approxi-
mation works well outside.
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Fig. 4. Fixed point steady state solution of the ac-
tual physical model (-) and nonlinear empir-
ical model (- -). The domain of experimental
data is inside the dashed box (:).

6. CONCLUSION
The multivariate nonlinear empirical dynamic
modeling technique is the extension of linear CVA
subspace identi�cation. A case study on model-
ing a polymerization in a CSTR illustrates the
modeling approach and the dynamic and steady
state performance of the nonlinear model which
are better than the linear model performance.
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1. INTRODUCTION 
 
Batch/semi batch processes are commonly used 
because their flexibility to manage many different 
grades and types of products. In these processes, it is 
necessary to achieve tight final quality specifications. 
However, this is not easily achieved because batch 
operations suffer from constant changes in raw 
material properties, variations in start-up 
initialisation, and in operating conditions, all of 
which introduce disturbances in the final product 
quality. Moreover, compensating for these 
disturbances is difficult due to the non-linear 
behaviour of the chemical reactors and to the fact 
that robust on-line sensors for quality variable 
monitoring are rarely available.  
 
Several approaches based on complex theoretical 
models and computationally intensive control 
strategies have been presented to control quality 
properties in batch processes (Kozub, 1989.) 
However, these strategies are difficult to implement 
because they require almost perfect model 
knowledge. Empirical modelling, on the other hand, 
has the advantage of using information routinely 
collected and of ease in model building. Yabuki and 

MacGregor, (1997) used empirical models for the 
control of product quality-properties. However, 
control action was restricted to only a few 
movements in the manipulated variables (injection of 
reactants) due to effective control action can only be 
applied at certain reaction stages.  
 
In batch operation is not uncommon to find processes 
in which the quality properties must be controlled by 
adjusting several manipulated variables trajectories 
(MVT) through most of the duration of the process 
(for example, reactor temperature or pressure). In this 
case, the conventional approach is to coarsely 
segment the MVT into a few intervals or decision 
points (usually 5-10) and characterize them by slope 
and level (stair-case parameterisation, Russell et al., 
1998). Therefore, in controlling a new batch, only the 
level and/or the slope of such intervals need to be 
adjusted because it is assumed that the MVT remains 
constant (same level/slope) until the next decision 
point. In this form, the number of parameters to be 
estimated from identification experiments remains 
relatively small. Studies involving this type of 
parameterisation can be found in Russell et al., 
(1998), and Lee, et al., (2001) among others. 
However, if fine trajectory segmentation is required 



     

or if smoother MVTs need to be implemented, a 
much more comprehensive experimental design need 
to be performed to allow for an adequate 
identification of the effect of MV’s on the controlled 
variables over the entire batch trajectory. Moreover, 
model inversion would be usually difficult because a 
large number of highly correlated control actions 
need to be determined at every decision point.  A 
solution to this dilemma is to project such highly 
correlated process trajectories (MVT and 
measurements) into lower-dimensional spaces and to 
perform the control computation in the reduced 
dimension space. By projecting the original 
correlated trajectories into a lower dimension we are 
obtaining a few orthogonal variables that summarizes 
the original information. In this form, the model 
parameter estimation is more efficient and the 
control computation easier. In spite of the inherent 
advantages in controlling the MVT’s of batch 
processes in the latent variable space, no literature 
has yet addressed this issue.  
 
Statistical controllers for continuous processes based 
on Principal component analysis (PCA) have been 
proposed (Cheng and McAvoy, 1996; Chen et al., 
1998), which also express the control objective in the 
score space of the PCA model. However, the 
approach taken here is different. 
 
The purpose of this study is to introduce a novel 
inferential control strategy that allows a much finer 
characterization and smoother reconstruction (model 
inversion) of manipulated variable trajectories than 
those obtained using staircase parameterisation, 
without increasing the complexity and number of 
identification experiments needed for model 
building. These objectives are made possible by 
formulating the control strategy in the reduced 
dimensional space of a latent variable model, and 
then using the model to invert the solution for the 
MVT’s. The contents of this work are as follow: in 
section 2 the methodology is introduced; in section 3, 
the control approach is illustrated with a 
condensation polymerisation case study for the 
production of nylon 6,6.  In section 4, conclusions 
are drawn. 
 

2. CONTROL METHODOLOGY 
 
2.1 Model building 
 
The proposed methodology uses historical-data bases 
and a few complementary identification experiments 
for model building. The empirical model is obtained 
using Partial Least Squares (PLS). However, other 
projection methods such as principal component 
regression may also be applied. 
 
The database from which the PLS model is identified 
consists of a regressor matrix (X) composed of k row 
vectors (xT) of on-line process variable trajectories 
(xon) and possibly off-line measurements (xoff), 
collected occasionally through the batch, 

]x[xx T
off

T
on

T
m = , full manipulated variable 

trajectories (MVT) uc, and the matrix (Y) of quality 

properties measured at the end of the batch. Full 
MVT’s are obtained through trajectory segmentation 
as illustrated in Figure 1. In this Figure is shown that 
the MVT’s are finely segmented and that decision 
points (θi, i=1,2,… ), where control action is taken, 
are chosen. Notice that the segment size is not 
necessarily uniform and that decisions points may be 
chosen arbitrarily. (However, the decision points will 
usually be selected using prior process knowledge.) 
In the limit, control action can be taken at every 
segment (i.e. every segment would represent a 
decision point). 

 
Fig. 1. Fine segmentation of MVT and decision 

points. 
 
Linear PLS regression is performed by projecting the 
mean centered and scaled variables onto lower 
dimensional subspaces:   

  
FTQY

ETPX
T

T

+=

+=                          (1) 

where T are new latent variables T=XW* that 
capture most of the data variability, PT is the loading 
matrix, and E and F are residual matrices. Non-linear 
PLS regression can also be used (Flores-Cerrillo, 
2003). However, for simplicity, through this 
presentation linear models will be assumed. 
 
The control methodology used in this work consists 
of two stages: 1) at predetermined decision times (θi, 
i=1,2,… ) an inferential end-quality prediction using 
on-line and possible off-line process measurements 
(xm) and the MVT’s (uc) up to the current time is 
performed to determine whether or not the controlled 
end-qualities (y) fall outside a non-control region, 
and if needed, 2) model inversion to obtain tne 
modified MVT for the remainder of the batch that 
will yield the desired final qualities. This two-stage 
procedure is repeated at every decision point (θi) 
using all available measurement and MVT’s 
information up to that time. The novelty of the 
proposed approach is that the model inversion stage 
is performed in the reduced dimensional space (latent 
variable or score space) of a PLS model rather than 
in the real space of the MVT’s. Due to the high 
correlation of measurements and control actions, the 
true dimensionality of the process, determined in the 
score variable space (ta, a=1,2,… ,A) of the PLS 
model, is generally much smaller than the number of 
manipulated variables points obtained from the MVT 
segmentation (uc). Therefore, the control 
computation performed in the reduced latent variable 
space (t) is much simpler than that performed in the 
real space. In the following the control methodology 



     

is described for one control decision point during the 
batch. This is repeated at each future decision point. 
 
2.2 Prediction  
 
For on-line end-quality estimation ( ŷ ), when a new 
batch k is being processed, at every decision point 
(θi, i=1,2,… ) 0≤ θi ≤θf, there exists a regressor row 
vector xT composed of, at least, the following 
variables

]uux[x

]u[xx

futurec,dimplementec,missingm,measuredm,

cm

TTTT

TTT

ii θθ ,,

)2(==

 
The regressor vector x consists of 1) all measured 
variables (xm,measured) available up to time θi (0≤ θ 
≤θi), 2), unmeasured variables (xm,missing) not 
available at  θi, but that will be available in the future 
(θi+1 ≤ θ ≤θf), implemented control actions 
uc,implemented (0≤ θ ≤θi-1), and future control actions 
uc,future, (θi ≤ θ ≤θf) which will be determined 
through model inversion. Note that at the model 
building stage, the xm,missing and uc,future vectors are 
available for each batch. 
 
To estimate whether or not the quality properties, for 
a new batch, will lie within an acceptable region, the 
prediction is performed considering uc,future = 
uc,nominal  (i.e. assuming that the remaining trajectory 
will be kept at their nominal conditions) using the 
PLS model: 
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W* and QT are projection matrices obtained from the 
PLS model building stage (Geladi et al., 1986). 

presentt̂  is the projection of the x vector onto the 
reduced dimension space of the latent variable model 
(scores) at time θi, and ŷ  is the vector of predicted 
end-quality properties. From the above equations, it 
can be noticed that changes in batch operation 
detected by process measurements (xm) or produced 
by changes in the MVT’s (uc) would produce 
changes in the scores ( presentt̂ ) and therefore in the 
end-quality properties (i.e. changes in the end-
qualities can be detected through changes in the 
scores). 
 
From equation (3), it can be noticed that in order to 
compute presentt̂  and ŷ , it is necessary to have an 
estimate of the unknown future measurements 
( missingm,x ) from (θi+1 ≤ θ ≤θf).  These can be obtained 
using efficient missing data algorithms available in 
the literature (Nelson et al., 1996). Alternatively, a 
multi-model approach in which a model is identified 
at every decision point can be used as discussed in 
Russell et al., (1998). The decision of one alternative 
over other depends on the number of decision points 
and/or performance of the missing data algorithm. In 
the example shown in this paper a single PLS model 

is used for control and the estimation of unknown 
future measurements is done by a missing data 
algorithm. 
 
The non-control region can be determined in several 
ways, such as the one that takes into account the 
uncertainty of the model for prediction (Yabuki and 
MacGregor, 1997), from product specifications or 
from quality data under normal (“in-control”) 
operating conditions. In this work a simple control 
region based on product quality specifications will be 
used (section 3). 
 
If the quality prediction is outside the non-control 
region, then model inversion to obtain the MVT is 
needed. Obtaining of the full MVT consist of two 
stages: 1) Computation of the deviation of the scores 
from the quality targets and 2) Model inversion to 
obtain the real MVT using the correlation structure of 
the PLS model. These two stages are explained in as 
follows.  
  
2.3 Control Computation 
 
At every decision point (θi), the distance that the 
scores need to be changed ( t∆ ) to track the end-
qualities closer to their set-points (ysp) can be 
obtained by solving the linear quadratic regulator (5): 
 

{

axmin

T
present

2
T

sp1
T

sp
t

ttt

Qtty

tQt)yy(Q)yy(

m

A

a a

apresent

TT

s
tΔ t

T

st

T
i

∆≤∆≤∆

+
=

+∆=

+∆∆+−−

∑
=

∆

)5(
)ˆ(

)ˆ(ˆ

ˆˆmin

1
2

2
2

2

)(
λ

θ

 

where TTT
present

ttt ˆ−=∆ , Q1 is a diagonal weighting 

matrix, Q2 is a movement suppression matrix, T2 is 
the Hotelling’s statistic, 2

as  is the variance of the 
score ta, and λ is a weighting factor. Hard constrains 
in the adjustment to the scores ( maxmin ttt ∆≤∆≤∆ ) 
are problem dependent and may or not need to be 
included. 
 
Equation (5) is a quadratic programming problem 
that can be restated as:  
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and whose interpretation is given in Figure 2 for a 
two dimensional space. As can be seen in this Figure, 
the aim of equations (6-7) is to reduce the distance of 

presentt̂ , by an amount ∆t, to get closer to the score 
value corresponding to the quality set-points 



     

( sp
T1T

sp yQQ)(Qt −= ). Due to the movement 

suppression matrix (Q2) and/or λ, the achieved t may 
not achieve tsp, but will be closer to it.  If we desire 
to obtain the ∆t that would force the calculated 

TT
sptt = , we could use a minimum-variance like 

controller. Under this situation equation (5), with 
Q2=I and λ=0, can be restated as:  
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and whose solution can be easily obtained as: 
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If we consider y to be deviations from ysp, then tsp=0 
and the last equation is reduced to: 
  
   QQQQtt TT

present

1))(ˆ( −−=∆ TT        (10) 

A detuning factor (δ) may be included for this 
minimum-variance like controller to achieve some 
robustness against model error:    
 QQQQtδt TT

present

1))(ˆ( −−=∆ TT       (11) 

where 0≤δ≤1. t∆ is computed at every decision point 
(θi). 
 
Notice that the matrix QQT has dimension m × m (m 
being the number of quality properties). Therefore, in 
order to do not have an ill-conditioned matrix 
inversion, the quality properties should not be highly 
correlated. This poses no problem since one can 
always perform a PCA on the Y quality matrix to 
obtain a set of orthogonal variables (τ) that can be 
used as new controlled variables, or perform 
selective PCA (Jackle and MacGregor, 1998) on the 
Y matrix to determine the best independent subset of 
quality variables to be controlled. Removal of a high 
correlated y variable should not be detrimental to its 
control since, by controlling the other quality 
variables, that quality variable will also be 
controlled. 
 
2.4 Inversion of PLS model to obtain the MVT’s 
 
Once the low dimensional (1×A) vector ∆t is 
computed via one of the control algorithms in the last 
section, it remains to reconstruct from it, the high 
dimensional trajectories for the future process 
variables ( missingm,x ) and for the future manipulated 
variables ( futurec,u ) over the remainder of the batch. 
These future trajectories can be computed from the 
PLS model (1) in such a way that their covariance 
structure is consistent with past operation. If there 
were no additional restrictions on the trajectories, 
such as might exits for a control action at θ=0, then 
the model for the X-space can be used directly to 
compute the x vector trajectory for the entire batch  
(Jaeckle and MacGregor, (1998)) as: 
 
  T]Pt[x TT ∆=∆        (12) 

 

 
Fig. 2. Control in the reduce space (score control). 

 
However for control intervals at times θi >0, there 
already exits observed trajectories for the interval 0 ≤ 
θ <θi, for the measured process variables ( measuredm,x ) 
and for the already implemented manipulated 
variables ( dimplementem,u ) that must be respected when 
computing their trajectories for the remainder of the 
batch (θi ≤ θ ≤θf). From equation (3) it can be seen 
that the changes in the score vector, ∆t, is related to 
the changes in the nominal trajectories according to: 

      
*]WΔ uxΔ ux[

]Wx[t

futurec,missingm,dimplementec,measuredm,

TTTT

TT

∆∆

=∆=∆      (13)                                      *

 

If one is currently at decision time θi, then clearly 
0x measuredm, =∆ and 0Δ u dimplementem, = , and the 

remaining trajectories to be computed for θi ≤ θ ≤ θf 
(i.e. missingm,x∆  and futurec,Δ u ) should satisfy the 
following relation: 

        (14)                                                      
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where ][

2

TTT
futurec,missingm,

uxx ∆∆=∆ is the vector 

representing the change in future measurements and 
remaining MVT (θi ≤ θ ≤θf), and *

2W its 
corresponding  projection matrix. Then, 
  *

2]Wx[t TT
2∆=∆        (15) 

Furthermore, in order for the MVT and missing 
values to keep their correlation structure according to 
the PLS model (equation 12) the following condition 
must hold: 
  T

2Pαx TT =2Δ            (16) 

This ensures that the relationship among all the 
process and manipulated variables trajectories that 
are being computed, will respect the nature of those 
trajectories in the data used to build the PLS model. 
 
α can be estimated by substituting (16) in (15) 
according to:    
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and by substituting (17) in (16), the MVT are 
obtained (θi ≤ θ ≤θf): 
                    T
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It is easy shown that this reduces to the relationship 
in (12) when θi =0 where there are no previous 
trajectory measurements or manipulated variables. 
 
The final control algorithm, in the case of linear 
models and no constrains, is obtained by substituting 
(11) in (18): 
 T

2P1)*
2WT

2Q(PTQQTQ
present

tδx −−
−=

1))(ˆ(
2

Δ TT   (19) 

This inferential algorithm (19) is then repeated at 
every decision point (θi) until completion of the 
batch. Inversion of the (A × A) matrix PTW* is nearly 
always well conditioned.  
 

3. SIMULATION STUDIES 
 

In the batch condensation polymerisation of nylon 
6,6 the end product properties are affected by 
disturbances in the water content of the feed. In plant 
operation feed water content disturbances occurs 
because a single evaporator usually feeds several 
reactors (Russell et al., 1998). The non-linear model 
used in this work for data generation and model 
performance evaluation was developed by Russell et 
al., (1998). For a complete description of the model, 
and model parameters the reader is referred to the 
original publication.  
 
Russell et al., (1998) studied this system and 
proposed several control strategies including 
conventional control (PID and gain schedule PID), 
non-linear model based control and empirical control 
based in linear state-space models. In their data-base 
approach, control of the system is achieved by 
reactor and jacket pressure manipulation. These two 
manipulated variables were segmented and 
characterised by slope and level (stair-case 
parameterisation) leading to 10 control variables. A 
total of 7 intervals (decision points) were used. The 
empirical state space model was identified from 69 
batches arising from an experimental design. Several 
differences between the control strategy used by 
Russell et al., and the one proposed here can be 
noticed, the two most important being that: (i) the 
control is computed in the reduce latent variable 
space rather than in the real space of the MVT’s, and 
that (ii) a much finer MVT reconstruction is achieved 
without increasing the complexity and number of 
experiments to be used in model building. 
 
Control objectives and Trajectory segmentation. 
The control objective is to obtain nylon 6,6 with an 
end-amine concentration (NH2) of 49.33 and number 
averaged molecular weight (MWN) of 13533 (total 
reaction time 200 min), when the system is affected 
by changes in the initial water content (W). The 
MVT’s used to control the end-qualities are the 
jacket and reactor pressure trajectories. These 
trajectories are finely segmented every 5 min. 
starting at 35 min. (of the beginning of the reaction) 
until 30 min. before the completion of the batch, 
giving a total of 40 control variables. Two control 
decision points at 38 and 75 min. were found to be 
necessary to yield adequate control for the conditions 
used in this example. In order to predict NH2 and 

MWN, on-line measurements of the reactor 
temperature (Tr) and venting (v) are considered 
available every two minutes. 
 
Data Generation: In the example that follows, a PLS 
model with 5 latent variables (determined by cross-
validation) was built from a data set consisting of 15 
batches in which W was randomly varied and 30 
batches in which some movement in the MVT (at the 
two decision points) was performed (some of this 
data set may be available from historical data). 
However, adequate control performance has been 
achieved using only a total of 15 batches (Flores-
Cerrillo, 2003). 
 
3.1 Results 
 
To illustrate the control performance of the 
algorithm, some results are presented. The first step 
is to determine if the prediction of the PLS model at 
the decision points is adequate. In Figure 3, the final 
qualities are shown for the case in which the water 
content randomly varies for 15 batches in the range 
of ±10%. The end quality property prediction should 
be performed at every decision point to determine if 
the next control action should be implemented or not. 
In Figure 3 prediction results at 38 min are shown. 
As can be seen in this figure, the predicted quality 
properties (□ ) using the PLS model are in good 
agreement with the observed values (o).  Slight 
improvement in the predictions at high MWN and 
NH2 values could be obtained with a non-linear PLS 
model (Flores-Cerrillo, 2003). However, the linear 
PLS model is very good in the target region (mid-
values) and adequate in the extremes.  
 
In Figure 4 is shown the performance of the 
controller algorithm (equation 19 with δ=1.0) to the 
end-properties when the process is affected by the 
disturbances in the initial water concentration 
discussed above. In this Figure (o) represents what 
would happen if control action were not taken and 
(□ ) the qualities obtained after control is performed. 
As can be seen in this Figure, the proposed control 
scheme tracks on target all bad batches (inside the 
dotted box of quality specifications). Figure 5a and 
5b show the jacket and reactor pressure MVT 
respectively for runs 1 and 15 together with their 
nominal conditions.  
 

 4. CONCLUSIONS 
 
A novel control strategy for final product quality 
control in batch and semi-batch processes is 
proposed. The strategy recomputes on-line the entire 
remaining trajectories for the MV’s at several 
decision points.  However, in spite of the fact that the 
resulting controller consist of high dimensional 
manipulated variable trajectories (MVT’s) the 
control algorithm involves only the solution for a 
small number of latent variables in the reduced 
dimensional space of a PLS model. The strategy uses 
empirical PLS models identified from historical data 
and a few complementary experiments. The strategy 
is illustrated using a simulated condensation 



     

polymerisation process. Since smooth and 
continuous MV trajectories can be obtained, the 
approach seems well suited for use in processes and 
mechanical systems (robotics) where such smooth 
changes in the MV’s are desirable. 
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Fig. 3. Observed (o) and predicted (□ ) end-quality 

properties using PLS model. 

 
Fig. 4. Control results. (o) End-quality properties 

without control and (□ ) after control is taken. 
 

a) 

b) 
Fig. 5a, 5b. Manipulated Variable Trajectories. (- - -) 

set-point, () when the disturbance is – 10% in 
W, and (- − -) when disturbance is +10% in W. 
Reaction time 200min. 
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MODIFIED SUBSPACE IDENTIFICATION METHOD

FOR BUILDING A LONG-RANGE PREDICTION

MODEL FOR INFERENTIAL CONTROL
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Abstract: In a chemical plant involving a series of processing units, it is beneficial to have a model
that can accurately forecast the behavior of downstream variables based on upstream measurements.

Such a model can be useful in feedforward and inferential control of the downstream variables to
compensate for various upstream disturbances. However, creating such a dynamic model can be
very difficult. The conventional multivariable identification approach based on minimizing single-
step-ahead prediction error, can result in models leading to poor prediction and control in the
described context. To alleviate this difficulty, we propose a modification to the conventional subspace
identification method geared towards accurate k-step-ahead prediction, where k is a number chosen

according to the estimated dead time. It is shown that the modified subspace identification method
can be used in conjunction with the k-step prediction error minimization (PEM). Using an illustrative

examples involving six mixing units with a recycle loop, we demonstrate the improvement that is
possible from adopting the suggested modification.

1. INTRODUCTION

Most modern plants involve a large number of
interconnected processing units, thus raising the
need to consider the interactions and information
flows among them. A typical plant setup involves
measurements and manipulated variables located
at the upstream and downstream property vari-
ables that need to be controlled. For disturbances
occurring in the feed or upstream units, the up-
stream variables show more immediate responses.
Their quick responses, if measured, can be used to
manipulate upstream processing conditions in or-
der to keep the downstream properties in control
– as in feedforward control or inferential control.
To realize this, the upstream measured process
variables must be accurately related to the down-
stream property variables in a dynamic manner.
The same situation appears in distributed param-
eter systems with a large residence time, such as
a continuous pulp digester.

1 To whom all correspondence should be ad-
dressed. phone (404)385-2148, fax (404)894-2866, e-

mail:Jay.Lee@che.gatech.edu

Developing a model that accurately captures the
dynamic correlation between upstream and down-
stream variables presents a major challenge. Such
models are likely to involve large time delays and
dynamics of high order and possibly multiple time
scales (due to recycle loops commonly found in in-
dustrial plants). Any one of the above features can
pose difficulties for the existing system identifica-
tion approaches. Furthermore, inferential control
puts a higher demand on the model accuracy.

In the described problem’s context, it is obvi-
ous that long-range prediction performance of the
model is what ultimately matters. Since a large
dead time is involved typically, the short-term
predictions, however accurate they may be, are
not useful. The importance of emphasizing the
long-range prediction over the short-term predic-
tion becomes more clear when one considers the
significant model bias typical in most system iden-
tification carried out in practice. In the literature,
the minimization of k-step-ahead prediction er-
ror in the prediction error minimization (PEM)
method has been suggested and discussed [8][10]
. In addition to the time-domain interpretation,
Wahlberg and Ljung [6] formally showed that the



use of k-step-ahead prediction methods amounts
to emphasizing the accuracy of low-frequency dy-
namics more in distributing the bias, compared to
the conventional one-step-ahead error minimiza-
tion, which tends to put higher emphasis on the
high frequency behavior.

In spite of these developments, understanding of
where and how to use the more general k-step
PEM in process control’s context has been fairly
limited. The few exceptions include papers by
Shook et al [2], and Huang et al [3]. Still, a clear
link between the method and situations or types
of process applications, from which substantial
benefits of the method are likely to be realized, is
not there. Another reason for the lack of its use in
practice is the numerical difficulty associated with
using k-PEM for multivariable systems. In addi-
tion to the usual complexities (e.g., local minima)
associated with the standard PEM, the design
of the prefilter necessary to turn the multi-step-
ahead prediction error minimization into the one-
step-ahead prediction error minimization requires
the noise model, which is usually not known a

priori. In many works, such as the long-range pre-
dictive identification (LRPI) approach advocated
by Shook et al [2], the noise model is assumed
to be fixed a priori. In this case, the quality of
the identified model as well as the performance
of the final predictive controller can be strongly
influenced by the choice of the noise model.

For multivariable identification problems, the sub-
space identification method has many attractive
features, including the numerical robustness and
non-iterative nature of the algorithm [9]. However,
the conventional subspace identification method
is geared implicitly towards providing accurate
one-step-ahead predictions. It is shown in this pa-
per that, for those applications requiring accurate
long-range predictions, the conventional method
can perform poorly. Given the above-mentioned
merits of the subspace method, however, it is use-
ful to consider how the method can be extended to
give higher emphasis on the long-range prediction
performance.

The contribution of this paper can be two-fold.
First, we bring to attention a situation ubiquitous
in the process industries, for which the impor-
tance of fitting a model to optimize its long-range
prediction performance is very high. Second, we
present a modified version of subspace identifi-
cation, in which the emphasis is given to the k-
step-ahead prediction performance, where k is a
general number chosen according to the process
dead-time. We also show how a model obtained
from the modified subspace method can be further
improved through the k-step-ahead prediction er-
ror minimization (k-PEM). An example involving
6 mixing units with a recycle loop is chosen to

show the importance of emphasizing the long-
range performance through the proposed method.

2. PROPOSED MODIFICATIONS FOR
EMPHASIZING THE K-STEP-AHEAD

PREDICTION PERFORMANCE

Here we propose a modification to the conven-
tional identification method with the aim of ob-
taining more accurate k-step-ahead predictions.
We first show the modifications for the subspace
identification method. After that, we discuss how
the resulting model can be improved through the
PEM method.

2.1 Subspace Identification Based on Minimizing

the k-Step-Ahead Prediction Error

The conventional subspace ID approach, such as
the N4SID method described in [9], implicitly
assumes that the purpose of the model is to
provide accurate one-step-ahead prediction. This
is seen in the step where state space matrices
A,B,C,D are estimated through least squares.
In N4SID, data bank for one-step ahead Kalman
state estimate xt+1|t is first created from the
input/output data based on the following multi-
step prediction equation:
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Since we can write the optimal predictions in
terms of the Kalman state estimate (i.e., the es-
timate by the nonstationary Kalman Filterinitial-
ized at t− n̄ + 1 as
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Because state coordinates are not fixed a priori,
one-step ahead state estimate xt+1|t can be cre-
ated by estimating [L1 L2] through least squares



and then finding a set of basis that spans its range
space. In N4SID, this is done through a series
of oblique matrix projections [9]. Once data for
xt+1|t and xt+2|t+1 are created, the state space
matrices are obtained by solving the linear least
squares problem

xt+2|t+1 = Axt+1|t + But+1 + wt+1|t

yt+1 = Cxt+1|t + εt+1|t
(4)

where the residuals w and ε are minimized. Hence,
in this step of the subspace method, one-step-
ahead prediction error is minimized. The covari-

ance matrix for w and ε,

(
Rw Rw,ε

RT
w,ε Rε

)

, is esti-

mated from the residuals of the least squares and
the Kalman filter is designed with the calculated
system and covariance matrices to obtain the fol-
lowing innovation form of the model.

xt+2|t+1 = Axt+1|t + But+1 + Kεt+1|t

yt+1 = Cxt+1|t + εt+1|t
(5)

We may generalize N4SID to emphasize the k-
step-ahead prediction in the following manner. To
create k-step ahead state estimates, the optimal
multi-step prediction equation of (1) can be mod-
ified to
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As before, it follows that
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Following the same procedure as before, data
bank for k-step-ahead state estimates xt+k|t and
xt+k+1|t+1 can be obtained. Then, a state space
model can be obtained by performing least squares
on the following equations:

xt+k+1|t+1 = Axt+k|t + But+k + wt+k|t

yt+k = Cxt+k|t + εt+k|t
(8)

The residual εt+k|t represents the k-step-ahead
prediction error, which is minimized. Note that,

if the data-based Kalman estimates were perfect,
then

wt+k|t = Ak−1K
︸ ︷︷ ︸

K̃

εt+1|t (9)

Also,

εt+k|t =
k−1∑

i=0

q−iHi

︸ ︷︷ ︸

F̃k(q)

εt+k|t+k−1 (10)

where Hi is the ith Markov parameter of the noise
model (A,K,C, I).

Based on these, the procedure for extracting
(A,B,C, ) and K are as follows:

(1) Solve the least squares problem for the out-
put equation to find C that minimizes yt+k−
Cxt+k|t in the 2-norm sense. The residuals
represent the data for εt+k|t.

(2) Solve the least squares for the state equation
to find A,B. The residual can be viewed as
wt+k|t.

(3) On the generated residual of εt+k|t, use a
whitening filter to obtain one-step-ahead pre-
diction error εt+k|t+k−1. A convenient way to
do this is to apply subspace identification to
the data. The ouput residual from this will
be εt+1|t.

(4) Calculate the covariance matrix for w(t+k|t)
and using the whitened residual ε(t + 1|t).
According to (9), the covariance matrix for
the residual wt+k|t and εt+1|t) has the form
of

[
Ak−1 0
0 I

] [
Rw Rw,ε

RT
w,ε Rε

] [
Ak−1 0
0 I

]T

(11)

where

(
Rw Rw,ε

RT
w,ε Rε

)

represents the covari-

ance for wt+1|t and εt+1|t. With the calcu-
lated system matrices and the extracted co-
variance matrix for w and ε, one can proceed
to design the Kalman filter to put the model
in the innovation form. The k-step ahead
predictor can be easily derived from it.

It should be obvious to those familiar with the
subspace identification method that the asymp-
totic properties of N4SID such as unbiasedness
and consistency remain intact with the above
modifications.

2.2 k-Step Prediction Error Minimization

Although the modified subspace ID method puts
higher emphasis on the accuracy of the k-step
ahead prediction in obtaining state space matri-
ces, it does not directly minimize k-step-ahead



prediction error for a finite data set. It has been
suggested in Ljung [1] that the subspace method
be used to initialize PEM, which generally re-
quires a special parameterization and a good ini-
tial guess to be successful. Here we propose to use
the model from the proposed k-step subspace ID
method to start the k-step PEM.

A MIMO state space model,

xt+1 = Axt + But + Ket
yt = Cxt + Dut + et

(12)

can be represented in the following input/output
form:

yt = G(q)ut + H(q)et (13)

where

G = C(qI −A)−1B + D

H = C(qI −A)−1K + I
(14)

The optimal one-step ahead predictor is given by
Ljung [1]

ŷt|t−1 = H−1Gut + (1−H−1)yt (15)

If parameterized models Gθ and Hθ are used,
then the optimal one-step-ahead predictor can be
written as

ŷt|t−1 = H−1
θ Gθut + (1−H−1

θ )yt (16)

Optimal k-step-ahead predictor is

ŷt|t−k = WkGθut + (1−Wk)yt (17)

where

Wk = FkH
−1
θ (18)

and

Fk =

k−1∑

i=0

Hiq
−i (19)

Here, Hi is a ny × ny matrix representing the ith

impulse response coefficient matrix of H(q). The
optimal k-step ahead predictor can also be viewed
as the optimal one-step ahead predictor associated
with the model

yt = Gut + HF−1k εt (20)

where εt is a white noise.

For a SISO system, Fk, if known, can be regarded
as a prefilter and the k-step prediction error min-
imization is the same as the one-step prediction
error minimization with the filtered I/O data.
However, for a MIMO system, because matrices

do not commute in multiplication, prefiltering the
data before applying the one-step ahead PEM
does not work. Therefore, Fk has to be embedded
into the model structure when applying the PEM,
resulting in a structured identification problem.
Let us use the state-space representation of

Fk = (ÃF , B̃G, C̃G, D̃G)
G = (A,B,C,D)
H = (A,K,C, I)

(21)

First, the inverse system F−1k is,

F−1k = (ÃF − B̃F D̃−1F C̃F , B̃F D̃−1F ,

−D̃−1F C̃F , D̃−1F )
(22)

Let us denote

F−1k = (ÃF−1 , B̃F−1 , C̃F−1 , D̃F−1) (23)

where D̃F−1 = I. Then, the combined model
structure HF−1k is,

HF−1k =
([

A KC̃F−1

0 ÃF−1

]

,

[
KD̃F−1

B̃F−1

]

,
[

C C̃F−1

]
, D̃F−1

)
(24)

Now, the final combined model structure of both
G and H is adopted as,

[G HF−1k ] =

([
A KC̃F−1

0 ÃF−1

]

,
[

B K

0 B̃F−1

]

,
[

C C̃F−1

]
,
[
D I

]
) (25)

To solve this structured system identification
problem, a grey box identification method, for
example ‘idgrey’ in Matlab, can be used.

The overall iterative procedure can be described
as follows.

(1) Use the proposed k-step-ahead subspace
identification method to obtain the initial
state space model (A,B,C,D,K).

(2) Obtain Fk from the noise model H = C(qI−
A)−1K + I.

(3) Apply the structured identification approach
to minimize the prediction error for (25) in
order to obtain new (A,B,C,D,K).

(4) Obtain a new prefilter Fk from the new noise
model H.

(5) Go back to step 3. Continue until the model
converges.

3. CASE STUDY

3.1 CST Tanks in Series with A Recycle Loop

The example chosen for illustrative purposes in-
volves a 6 CST mixers and 1 plug flow pipe con-
nected in series, as shown in Fig 1. In addition,



there is a recycle flow, from mixer 6 back to mixer
1. The flowrate of the secondary inlet, represented
by Fu, is assumed to be the manipulated input.
The concentration of the main inlet flow CAd, is
treated as an unknown disturbance variable. Out-
puts are CA1 and CA6. The steady state condition
is Fu = 20, Fd = 100, Fr = 200, CAd = 2, and
Cu = 20. The volume of each mixer is 1000. The
dynamics of the plug flow pipe between mixer 3
and mixer 4 are represented as a pure delay of 10
time units. We assume that CA1 is measured and
we are interested in using this measurement to in-
ferentially control the downstream concentration
CA6.

First identification data are generated by per-
forming simulations with random input variables.
Both the manipulated input and the unknown
disturbance variable are drawn from uniform dis-
tributions with standard deviations of 15 and 0.5
respectively and switching probability of 0.2. 50
data sets are generated for identification, each
with 4000 data points. First, to test the quality
of the deterministic part of the identified models,
two data sets are generated with manipulated in-
put movement only, one with a step input change
and the other with random input changes. Next,
to test the model-based inferential prediction and
control performance, additional 1000 data points
are generated with the same type of input and
disturbance variations as those used to generate
the 50 modeling data sets.

3.2 Simulation Results

The conventional subspace ID method (N4SID)
and the modified subspace ID method (k-N4SID)
are applied to each of the 50 data sets, which
resulted in 50 pairs of state-space models. For
the both identification approaches, models with
8 states are identified, and k is chosen to be 50 in
applying the k-N4SID algorithm.

The resulting 50 pairs of models are first tested on
the two data sets with MV movement only. After
that, the identified models are tested for their final
purpose, inferential prediction and control. These
are done with the validation data set involving the
stochastic disturbances. The control objective is
to regulate the concentration of the last mixer at
the steady-state value. For this, model predictive
controllers are designed based on the identified
models. The controllers decide the adjustments in
the MV based on the inferentially predicted values
of the concentration of the last mixer. For every
MPC controller, the prediction horizon is chosen
to be 200 time units and the control horizon is
chosen to be 10 time units. Also, the input and
output weighting parameters are chosen to be
10−7 and 1, respectively.

Table 1. Comparison of inferential pre-
diction performances of the k-N4SID
and N4SID models obtained from the

50 modeling data sets

1-step inference k-step inference

mean min max mean min max

N4SID 0.6259 0.1732 3.8915 0.7835 0.1593 6.6758

k-N4SID 0.4188 0.1812 0.9344 0.4183 0.1457 0.9691

The benefits of the proposed modification to the
subspace identification method are clearly seen in
the statistical comparison involving the 50 pairs
models obtained with N4SID and k-N4SID. First,
N4SID resulted in more unstable models, 28 com-
pared to 23 by the k-N4SID. Unstable models for
a stable system do not necessarily lead to bad
prediction and control performance as long as a
stable predictor is formed. However, depending on
the location of the unstable eigenvalues, extremely
poor prediction and control performance can re-
sult, even though the predictor may be stable. It
was observed that none of the unstable models
obtained by k-N4SID resulted in bad inferential
prediction and control, whereas many unstable
models obtained by N4SID led to very poor infer-
ential prediction and control results, implying the
unstable modes for the N4SID models were much
faster growing than those found in the k-N4SID
models. Table 1 shows the better performance by
the k-N4SID models over the N4SID models, in
terms of both one-step inferential prediction and
k-step inferential prediction. The subsequent in-
ferential control tests also confirmed the superior
quality of the models by k-N4SID over those by
N4SID.

To further scrutinize the differences, the identified
models were grouped in four categories according
to whether both or one of the N4SID and k-
N4SID methods resulted in an unstable model.
For all four categories, models obtained by k-
N4SID method showed better overall inferential
prediction and control performance than the cor-
responding models by the N4SID method. This
includes the cases, where N4SID gave a stable
model but k-N4SID gave an unstable model. Due
to space limit, only the result from the first cat-
egory, for which the data sets resulted in stable
models with k-N4SID but unstable models with
N4SID, is shown here. The unstable nature of
the models from conventional N4SID can clearly
be seen from Figure 2, which shows for one of
the data sets the open-loop predictions of the two
models for a step change in the MV. Figures 3
and 4 display the corresponding differences in the
inferential prediction and control performances.
We can see that significant improvements in infer-
ential prediction and control performances could
be achieved by using k-N4SID instead of N4SID.
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Fig. 1. The schematic for the example of 6 CST mixers in series with a recycle loop
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Abstract: In this paper we begin with a state space model of a generally non-
square process and derive the minimum achievable variance in a state feedback
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1. INTRODUCTION

With the initial success of minimum variance
single-loop performance assessment (Harris, 1989;
Desborough and Harris, 1992; Qin, 1998; Harris et

al., 1999; Kozub, 1996; Harris and Seppala, 2002)
and industrial case studies (Thornhill et al., 1999;
Miller et al., 1998; Harris et al., 1996b; Perrier
and Roche, 1992; Weinstein, 1992; Desborough
and Miller, 2002), research interest has shifted to
the assessment of MIMO control systems using
the minimum variance benchmark (Harris et al.,
1996a; Huang et al., 1997; Huang, 1997; Shah
et al., 2002) and a covariance-based benchmark
(McNabb and Qin, 2003)

Currently the MIMO performance monitoring
benchmark has been a straightforward extension
of the SISO variance ratio, which looks at only
the trace of the covariance matrix. However, trace

1 Author for correspondence. Email: qin@che.utexas.edu

Tel: (512) 471-4417 Fax: (512) 471-7060

based monitoring index is insufficient for assessing
the multivariate covariance of the control perfor-
mance. Another drawback of the existing litera-
ture is that research emphasis has been placed
on control performance assessment and little has
been done regarding diagnosis.

The control performance monitoring tehcniques
typically calculate a benchmark performance from
closed-loop operation data based on some minimal
knowledge, such as the time delay information.
Due to interaction, the performance suboptimal-
ity in each variable is not independent from each
other. Therefore, the suboptimality of a MIMO
control system necessarily occupies a subspace
instead of the entire output space. In this paper we
propose a subspace approach to extract the major
directions of suboptimality (MDS) and measure
the variance inflation in each of the directions. To
deal with the MIMO control performance diagno-
sis, we propose to use generalized eigenvectors to
diagnose the directions of suboptimality.



This paper is organized as follows. The extended
state space model is given in Section 2. The
minimum variance control solution in state space
is shown in Section 3. Section 4 introduces the
view of MVC as an optimal subspace and Sec-
tion 5 proposes covariance-based monitoring and
demonstrates the use of generalized eigenvector
diagnosis techniques in this new framework with
an industrial example. The paper ends with a few
concluding remarks.

2. EXTENDED STATE SPACE PROCESS
MODEL

We assume the open loop process is described
by the following state space model in innovation
form:

x(k + 1) = Ax(k) + Bu(k) + Ke(k)

y(k) = Cx(k) + Du(k) + e(k) (1)

where x ∈ <n, u ∈ <m, y ∈ <p , e ∈ <p are the
state, input, output and innovation vectors. A,
B, C, D, and K are matrices with appropriate
dimensions. Denoting
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where d is the time delay order of this multivariate
system. The notation yj(k) and ej(k) will be
used throughout this paper to represent j-element

vectors of y(k) and e(k) extending from time k to
k + j − 1.

We have the following extended equation:

yd+1(k) = Γd+1x(k) + Hd+1ud+1(k)

+Gd+1ed+1(k) (2)

3. STATE SPACE MINIMUM VARIANCE
CONTROL

Because of the time delay, not all elements of
yd+1(k) are affected by u(k). McNabb (McNabb,
2002) and McNabb and Qin (McNabb and Qin,
2003) present a new algorithm for deriving a mul-
tivariate time delay (MTD) matrix L ∈ <(d+1)p×d

for use with the extended state space model (2).

Denote

gd+1 ,















I
CK

CAK
...

CAd−1K















, hd+1 ,















D
CB

CAB
...

CAd−1B















Gd+1 =

[

gd+1
0

Gd

]

, Hd+1 =

[

hd+1
0

Hd

]

,

ed(k + 1) =







e(k + 1)
...

e(k + d)







To extract the multivariate time delay, the algo-
rithm proposed by McNabb (McNabb, 2002) uses
the first few Markov parameters or the {A, B, C,
D} matrices, which shifts the output y(k) forward
successively and forms a new output by a linear
combinations of the shifted outputs,

y(j)(k) = L(j)yj+1(k)

= C(j)x(k) + D(j)u(k)

The matrix L(j) ∈ RP×(j+1)P is chosen such
that D(j) keeps the maximum possible rank. The
algorithm will terminate when D(j) reaches full
column rank. At the end of the iteration, set

d = j

L = L(j) = L(d)

Λ = D(j) = D(d)

ỹ(k + d) = y(d)(k)

The output ỹ(k+d) is known as the MTD-filtered
output which has the following expression,



ỹ(k + d) = Lyd+1(k)

= LΓd+1x(k) + Λu(k) + Lgd+1e(k)

+L

[

0
Gd

]

ed(k + 1) (3)

The minimum variance control of system (1) is
achieved by

u(k) = −Λ+L(Γd+1x(k) + gd+1e(k)) (4)

where Λ+ is the Moore-Penrose pseudo-inverse.
The feedback invariant term or the output under
minimum variance control is

ỹmv(k + d) = L

[

0
Gd

]

ed(k + 1)

The filtered output shown in Equation (3) can be
interpreted as the combination of two independent
terms; an optimal d step ahead prediction of ỹ(k+
d) and the associated prediction error

ỹ(k + d) = ỹ(k + d|k) + ỹmv(k + d) (5)

where

ỹ(k + d|k) = LΓd+1x(k) + Λu(k) + Lgd+1e(k)(6)

represents the optimal d step ahead prediction of
ỹ(k + d).

McNabb and Qin (McNabb and Qin, 2003) show
further that L corresponds to a unitary interactor
and

E
(

ỹT (k)ỹ(k)
)

= E
(

yT (k)y(k)
)

In other words, the sum of the variance of each
original output variable is minimized by the MVC
law in Eq. 4.

4. CALCULATION OF MVC VARIANCE BY
SUBSPACE PROJECTION

The optimal prediction ỹ(k + d|k) under a time-
invariant controller is related to (McNabb, 2002),

ỹ(k + d|k) = Θryr(k − r + 1) (7)

where yr(k−r+1) =
[

yT (k − r + 1), · · · , yT (k)
]T

and r is sufficiently large. As a consequence,
Equation (5) can be rewritten as

ỹ(k + d) = Θryr(k − r + 1) + ỹmv(k + d) (8)

Again yr(k−r+1) depends on data before time k
and ỹmv(k + d) depends only on innovations from
time (k+1) through (k+d), which are independent

of yr(k− r + 1). Therefore, E{ỹmv(k + d) · yT
r (k−

r+1)} = 0. Formulating three data matrices with
column dimension N

ỸN =
[ỹ(k + d) ỹ(k + d + 1)

. . . ỹ(k + d + N − 1)]

Ỹmv,N =
[ỹmv(k + d) ỹmv(k + d + 1)

. . . ỹmv(k + d + N − 1)]

Zr,N =
[yr(k − r + 1) yr(k − r + 2)

. . . yr(k − r + N)]

we have 1
N Ỹmv,NZT

r,N → E{ỹmv(k + d)yT
r (k− r +

1)} = 0 as N → ∞. Therefore, defining Π⊥

Z = I −

ZT
r,N

(

Zr,NZT
r,N

)−1
Zr,N , we have

Ỹmv,N = ỸNΠ⊥

Z

The MVC covariance is

cov(ỹmv(k)) =
1

N − 1
Ỹmv,N Ỹ T

mv,N

as N → ∞ (9)

and the associated multivariate control perfor-
mance index is

η =
tr {cov(ỹmv(k))}

tr {cov(ỹ(k))}
=

tr
{

Ỹmv,N Ỹ T
mv,N

}

tr
{

ỸN Ỹ T
N

}

From the above derivation we demonstrate that:

(1) The output of the process under minimum
variance control can be calculated by a single
row projection of the MTD filtered output
data onto the row space of the normal closed-
loop output data, and

(2) The minimum variance output occupies an
optimal subspace of the general closed-loop
output.

The variance index has a value between 0 and 1,
with 1 corresponding to the minimum variance.
The limitation of η, however, is that it only con-
siders the trace of the covariance matrix, ignoring
the off-diagonal terms of the covariance.

5. PERFORMANCE MONITORING BASED
ON OUTPUT COVARIANCE

Most of the MIMO performance indices are based
on the sum of variances of each output, i.e., the
trace of the covariance matrix. This type of index
is adequate when all variables are fairly indepen-
dent. In practice, however, the output variables
are rarely independent, especially in the case of ill-
conditioned plants and highly interacting plants.
In these cases, it is more appropriate to use the
covariance of the output to monitor controller



performance. The benchmark covariance can be
the minimum variance benchmark, but it can be
any other benchmarks.

5.1 Covariance-based Indices and Suboptimality

Directions

To find a direction in ỹ(k) along which the worst
suboptimality occurs, we find the direction p with
‖p‖ = 1 and project ỹ(k) and ỹmv(k) to this
direction:

Πpỹ(k) = pT ỹ(k)/pT p = pT ỹ(k)

Πpỹmv(k) = pT ỹmv(k)/pT p = pT ỹmv(k)

The variance of the projections are, respectively,

var(Πpỹ(k) = pT cov(ỹ(k))p

var(Πpỹmv(k) = pT cov(ỹmv(k))p

The direction p along which the largest variance
ratio occurs is

p = arg max
pT cov(ỹ(k))p

pT cov(ỹmv(k))p
(10)

The direction of p after maximization shows the
direction with the most potential to improve the
performance. The solution to this problem is a
generalized eigenvector problem,

cov(ỹ(k))pi = µicov(ỹmv(k))pi

where pi is the generalized eigenvector corre-
sponding to the ith largest generalized eigenvalue
µi. The ”volume” of the suboptimality or variance
inflation due to poor control performance is:

l
∏

i=1

µi

where l is the number of selected directions. The
volume-based performance can be defined as

Iv(l) =

(

l
∏

i=1

µi

)−1

McNabb and Qin (McNabb and Qin, 2003) show
that for all possible projections Π,

cov (Πỹmv(k)) ≤ cov (Πỹ(k))

Therefore, µi ≥ 1 and Iv is between zero and one.
When ỹ(k) achieves the minimum variance perfor-
mance, Iv approaches one. On the other hand, Iv

close to zero indicates a very poor performance.

The volume based performance index can be very
small due to the multiplication effect of several

small numbers. To normalize this effect, we define
a radius-based performance index as follows:

Ir(l) = (Iv(l))
1/l

=

(

l
∏

i=1

µi

)−1/l

This index also ranges between zero and one. It
provides a geometric average of the poor perfor-
mance in all l directions. Note that Iv(l) and
Ir(l) consider the covariance matrices of ỹ(k) and
ỹmv(k), whereas the η index focuses on variance
only.

After a significant suboptimality is detected by
using Iv(l) or Ir(l), the major directions of sub-
optimality are already calculated as pi. These
directions can then be used to locate the main
sources of suboptimality.

5.2 Industrial Example

This example uses industrial data from a wood
waste (hog fuel ) burning power boiler. Five second
samples of process variables (PV) with their cor-
responding setpoints (SP) and controller outputs
(OP) were collected from the DCS over an eleven
day period. The process and instrumentation dia-
gram of the boiler process is shown in Figure 1. We
selected five PV’s with associated SP’s as shown in
Table 1. Full open loop testing was not possible on
the power boiler. We therefore assume that each
PV had a single time delay associated with the full
set of manipulated variables, corresponding to a
diagonal interactor. The individual time delays for
each of these loops (in units of sample periods)
were 1, 34, 1, 2 and 1, respectively. All analysis
was performed on data scaled to zero mean and
unit variance.

Table 1. Power boiler tags used in anal-
ysis

Variable # Tag Description

1 FC1 Total air flow

2 PC1 Boiler master (900# header pressure)
3 PC2 Forced draft fan pressure

4 PC3 Furnace pressure
5 PC4 Overfire air pressure

Time series plots of (PV −SP ) for each of the five
loops are shown in Figure 2 and are divided into
50 sequential 250 minute periods.

To apply the covariance based monitoring to this
problem we first select the significant number of
principal components of the five process variables.
We choose the number of PC’s to be four and
calculate the volumetric performance index (Iv)
and the radius-based performance index (Ir) as
shown in Figure 3. Both indices show a clear drop
from Period I to Period II. For Period I the Ir

index is around 0.6, which means on average each
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Fig. 2. Time series of setpoint error (PV − SP )
for five power boiler loops

variable is about 60% of its optimal performance.
For Period II the average performance drops to
about 40% of its optimal performance.

In reality, however, it is usually the case that
some loops are worse performers than others.
To identify the directions of suboptimality and
the contributing variables, two 250 minute blocks
were chosen for more detailed analysis. The period
extending from 3500 minutes to 3750 minutes (the
15th analysis block) is used to represent the be-
havior before the shift in control performance and
the period extending from 10000 minutes to 10250
minutes (the 41st analysis block) is used to rep-
resent the system behavior following the shift in
control performance. The generalized eigenvector
analysis was performed separately on these two
periods as shown in Equation (10). The upper and
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Fig. 3. Trends of the Iv index (top plot) and the Ir

(bottom plot) index for 4 retained principal
components (l = 4)

lower plots on the left of Figure 4 show the eigen-
values for the two time periods (labeled as dataset
#1 and dataset #2). The middle plots show the
first eigenvectors and the right plots show the
second eigenvectors for both time periods. It is
clear that for both time periods, the major subop-
timality lies in two directions, although there are
five controlled variables. The first direction of sub-
optimality is dominant in both time periods, with
dataset #1 about 70-fold and dataset #2 about
110-fold for potential improvement. Since the sub-
optimality is adequately captured in two direc-
tions, the covariance-based MIMO performance
monitoring indicates that the suboptimality in
the five controlled variables is highly correlated.
It is possible that by improving the performance
of one loop, the other loops are improved due to
correlation or interaction. For both time periods
the directions of suboptimality point to variable 1
(FC1) for the most potential to improve and vari-
able 2 (PC1) for the least potential to improve. It
is likely that by improving the performance of FC1
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other loops will be improved due to interaction.
By examining the process diagram in Figure 1, it
is confirmed that this is likely because FC1 is the
total air flow which directly affects all other loops
except PC1, which is the steam header pressure.
A significant shift in the second direction occurs
between datasets #1 and #2. In dataset #1 PC2
dominates the second eigenvector but in dataset
#2 FC1 and PC3 dominate.

6. CONCLUSIONS

The main contributions of this paper are the use of
covariance based monitoring and the application
of a generalized eigenvector based technique for
identifying the major directions of suboptimality
of MIMO feedback control systems. This frame-
work provides a systematic performance diagnosis
method as well as covariance-based performance
assessment indices. Future work will focus on the
impact of sensor and actuator faults on control
performance.
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MULTIVARIATE CONTROLLER
PERFORMANCE ASSESSMENT WITHOUT
INTERACTOR MATRIX — A SUBSPACE

APPROACH

Ramesh Kadali and Biao Huang 1

Department of Chemical and Materials Engineering,
University of Alberta, Edmonton, AB, Canada T6G 2G6

Abstract: Several methods for multivariate control performance assessment (MPA)
with or without using the interactor matrix have been proposed in the literature.
They are all equivalent, one way or other, by certain transformations. In this paper
a subspace framework for MPA is proposed for the estimation of MVC-benchmark
variance for feedback multivariate systems. The merit of the new approach is that
we start straight from data, and a performance index is calculated directly from
subspace matrices without relying on a parametric dynamic model. In addition, a
proof that the proposed solution is exactly the same as that of the conventional
approaches is provided.

1. INTRODUCTION

Periodic performance assessment of the controllers
is important for maintaining normal process oper-
ation and to sustain the performance of controllers
achieved when the controllers are commissioned.
Minimum variance control is theoretically the
best possible control (Astrom and Wittenmark,
1984). Controller performance assessment using
MVC-benchmark involves comparing the current
process output variance with the output bench-
mark variance if a minimum variance controller
were implemented on the process. Although the
intention of many industrial controllers is not min-
imum variance control, MVC-benchmark is never-
theless used as a first step in the controller per-
formance assessment (Harris, 1989). Calculation
of the MVC-benchmark variance for univariate
systems from routine closed loop data requires a
priori knowledge of only the process time delay
(Harris, 1989; Huang and Shah, 1999). Calcula-

1 The author to whom all correspondence should be ad-
dressed. Phone: (780)492-9016, FAX: (780)492-2881. E-
mail:bhuang@ualberta.ca

tion of the MVC-benchmark variance for multi-
variate systems involves calculation of the interac-
tor matrix (Huang and Shah, 1999) for the system
from the first few process Markov parameters.
Furthermore, the concept of the interactor is not
well known in practice. Hence, estimation of the
MVC-benchmark without the interactor matrix
has been an active area of research.

(Ko and Edgar, 2001) proposed a method for the
estimation of the multivariate MVC-benchmark
using closed loop data, which does not require the
intermediate interactor matrix calculation. It is
shown that their result is equivalent to the result
of (Huang and Shah, 1999). Recent progress in the
subspace approach to closed loop identification
(Kadali and Huang, 2002) inspires an alternative
approach for the estimation of multivariate MVC-
benchmark. In the current paper we will show the
estimation of the multivariate MVC-benchmark
with neither the interactor matrix calculation nor
the Markov parameters. The only a priori knowl-
edge required is the deterministic subspace matrix
directly calculated from data. The important dif-
ference between the “calculation of the subspace



matrix” and subspace identification is that the
former does not extract an explicit “model” and
is also known as model-free approach in the lit-
erature. This will further simplify the procedure
for the calculation of the multivariate performance
index. No concepts such as interactor matrix,
Markov parameter, multivariate transfer function
matrix, state space model etc. are needed to apply
this technique and this will make the multivariate
controller performance assessment technique more
applicable in practice. (McNabb and Qin, 2001)
have also proposed another subspace approach to
multivariate performance monitoring by project-
ing delay-matrix filtered output data onto past
data.

In the subspace method, certain subspace matri-
ces are identified as a first step in the subspace
identification methods. The minimum variance
controller can be designed directly using these
intermediate subspace matrices, without a para-
metric model such as the state space model or
transfer function model. The closed loop subspace
identification method proposed in (Kadali and
Huang, 2002) allows a convenient identification of
subspace matrices from the closed loop data with
external excitations. The MVC-benchmark vari-
ance can be calculated with the knowledge of only
the deterministic subspace matrix and eliminates
the intermediate step of estimating the unitary
interactor matrix or extracting the Markov para-
meters.

We do not claim that the subspace approach
as proposed in this paper requires less a pri-
ori knowledge than other methods. In fact, the
equivalent information of the interactor matrix
or Markov parameters is implicitly buried in the
subspace matrices. However, avoiding direct use of
the interactor matrix and/or Markov parameter
matrices does have an advantage of easier accep-
tance by practitioners and reduces unnecessary
intermediate modeling step. Another merit of this
paper lies in the direct data based approach, i.e.
from process experiment data, a multivariate per-
formance index is directly calculated. Comparing
with the conventional methods such as that pro-
posed by (Huang and Shah, 1999), our method
is different in the sense of subspace approach
versus conventional transfer function approach.
The method proposed by (Ko and Edgar, 2001),
even though without using the interactor matrix,
is nevertheless following the transfer function ma-
trix approach and is an extension of (Harris et
al., 1996; Huang and Shah, 1999). Our approach,
which may be considered an extension to (Ko and
Edgar, 2001), adopts the subspace framework, and
further avoids the use of the transfer function
matrix and Markov parameters.

2. SUBSPACE MATRICES DESCRIPTION

Consider the following innovations state space
representation of a linear time-invariant system
with l-inputs (uk), m-outputs (yk) and n-states
(xk) as:

xk+1 =Axk +Buk +Kek (1)

yk =Cxk + ek (2)

where the state space system matrices A, B, C
and Kf are (n× n), (n× l), (m× n) and (n×m)
matrices respectively.Kf is the Kalman filter gain
and ek is an unknown innovation sequence.

The matrix input-output equations used in sub-
space identification (Overschee and Moor, 1994;
Overschee and Moor, 1995; Overschee and Moor,
1996) expressed using certain subspace matrices
Lw, Lu and Le (Overschee and Moor, 1996) as

yf =Lwwp + Luuf + Leef (3)

where

yf =


 yt+1

...
yt+N


 ; yp =


 yt−N+1

...
yt


 ; ef =


 et+1

...
et+N


 ;

uf =


 ut+1

...
ut+N


 ;up =


 ut−N+1

...
ut


 ;wp =

[
yp

up

]

The subspace matrices are estimated as an inter-
mediate step by data projections (Overschee and
Moor, 1996). Lu and Le are dynamic matrices
containing the estimated Markov parameters cor-
responding to the process and noise respectively.

Recent results in subspace closed-loop identifica-
tion (Kadali and Huang, 2002) allow the direct
estimation of two of the subspace matrices, Lu

and Le, from the closed loop data with set point
excitation. Note that although the determinis-
tic subspace matrix and closed loop noise ma-
trix contain process Markov parameters and noise
Markov parameters respectively, the two matrices
are directly calculated from closed-loop data by a
projection method and one never needs to know
what are inside these two matrices in order to
apply our algorithms. The only reason to mention
Markov parameters here and in the sequel is to
analytically compare our results with conventional
results available in the literature.

3. DESIGN OF MINIMUM VARIANCE
CONTROL USING SUBSPACE MATRICES

The minimum variance controller (MVC) is de-
signed to minimize the following quadratic cost
function J over the horizon N, as N −→ ∞:



J =
1
N
E{

N∑
k=1

[(rt+k − yt+k)T (rt+k − yt+k)]}(4)

=
1
N

N∑
k=1

[(rt+k − ŷt+k)T (rt+k − ŷt+k)] (5)

where E is the expectancy operator, rt is the
reference for output trajectory. ŷt+k is the k-step
ahead predicted output given the past inputs and
outputs upto time t.

Using equation (3), the optimal predictor equa-
tion can be written as ŷf = Lwwp + Luuf . The
notation in the cost function can be simplified for
regulatory control, by letting rt+k = 0 as:

J =min
u2

f

1
N
[ŷT

f ŷf ]

=min
u2

f

1
N
[(Lwwp + Luuf)T (Lwwp + Luuf)](6)

To obtain the minimum variance control law, we
differentiate J with respect to uf and set it to zero
to obtain the control law as:

uf =−L†
u(Lwwp) (7)

where, † represents pseudo-inverse. The above
control law is the minimum variance control law as
the number of block-rows in the subspace matrices
Lw and Lu tend to infinity.

4. ESTIMATION OF THE MULTIVARIATE
MVC-BENCHMARK

From the very first block-element of Yf in equa-
tion (3) we can write

yt+1 =Lyp


 yt−N+1

...
yt




+Lup


 ut−N+1

...
ut


 + L0et+1 (8)

where Lyp = Lw(1 : m, 1 : mN) and Lup = Lw(1 :
m,mN + 1 : (l + m)N). Equation (8) can be
transformed for an equivalent expression of yt+1

in terms of the past inputs and the past noise as

yt+1 =
[
G1 ... GN

] 
 ut

...
ut−N+1




+
[
L1 ... LN

]

 et

...
et−N+1


 + L0et+1 (9)

where Gi and Li are the i-th impulse response
coefficients (Markov parameters for multivariate

systems) of the process and noise models respec-
tively. In other words, we can express the past
(state) contribution term, Lwwp, as

Lwwp =



G1 ... GN−1 GN

G2 ... GN 0
... ... ... ...
GN 0 ... 0





 ut

...
ut−N+1




+



L1 ... LN−1 LN

L2 ... LN 0
... ... ... ...
LN 0 ... 0





 et

...
et−N+1


(10)

However, the controller output, ut+1 is calculated
using all the data available at time ‘t + 1’, i.e.,
{ut, yt+1, ut−1, yt, ...}. Hence the original subspace
predictor expression in equation (3) and the sub-
space based minimum variance control law in
equation (7) have to be modified to obtain the
closed loop expressions for uf and yf . First, define

LG =



G1 G2 ... GN−1 GN

G2 G3 ... GN 0
... ... ... ...
GN 0 0 ... 0


 ; ũp =




ut

ut−1

...
ut−N+1




LH =




L0 L1 ... LN−1 LN

L1 L2 ... LN 0
... ... ... ... ...

LN−1 0 0 ... 0


 ; ẽp =




et+1

et

...
et−N+1




L̃e =




0 0 ... 0
L0 0 ... 0
... ... ... ...

LN−2 LN−3 ... 0


 ; ẽf =




et+2

et+3

...
et+N+1




Since LG and LH contain the process and noise
model Markov parameters, they can be formed
from the subspace matrices Lu and Le respec-
tively. Therefore the equation based on the first
column of Yf in equation (3) can be alternatively
written as

yf =LGũp + LH ẽp + Luuf + L̃eẽf (11)

Substituting equation (10) in equation (7), we can
write

uf =−L†
u {Lwwp} = −L†

u{LGũp + LH ẽp}(12)

The closed loop expression for yf can be written
as

yf = (I − LuL
†
u) (LGũp + LH ẽp) + L̃eẽf (13)

Now that we have derived closed-loop expressions
for both u and y, the next step is to calculate
their variance expressions which are actually the
H2 norm of the closed-loop expressions weighted



by the variance of e. A simple method to derive
the variance expression is given below.

Let a disturbance enter the process at time =
t + 1, i.e., ut = ut−1 = ... = ut−N+1 = 0;
et = et−1 = ... = et−N+1 = 0; and et+2 = et+3 =
... = et+N = 0. Then the cumulative effect of the
noise et+1 on the process output variance can be
obtained from equation (13), which simplifies to

yf = (I − LuL
†
u)Lh et+1 =


 ψ0

ψ1

...


 et+1 (14)

where Lh =


 L0

...
LN−1


, the vector of noise model

Markov parameters, and ψi represents the Markov
parameter of i-th lag of the closed loop noise
model if a minimum variance controller were
implemented on the system described in equa-
tions (1)-(2). The variance of the closed-loop sys-
tem can be calculated from the Markov parame-
ters/impulse response of the closed-loop system
and the minimum variance control variance ex-
pression for the process output is given by

var[yt]MV C =
∞∑

i=0

ψivar[et]ψT
i (15)

Note that estimation of the interactor matrix is
not required for obtaining the MVC-benchmark
variance. However the above result requires the

knowledge of Lh =


 L0

...
LN−1


, and hence it ap-

pears that estimation of the noise model in the
Markov parameters model is necessary.

However, we will show that the estimation of
 L0

...
LN−1


 is not required. The closed loop noise

model Markov parameters LCL
h =


 LCL

0

...

LCL
N−1


 (the

vector of closed-loop noise model which can be
estimated from the routine operating data) can

be used in the place of


 L0

...
LN−1


 and we can still

be able to obtain the MVC-benchmark variance,
where

LCL
h = (I + LuLc)−1Lh (16)

and Lc represents the dynamic matrix containing
the Markov parameters of the controller.

Lemma 1: Ψ can be obtained using the vector of
Markov parameters of the closed loop noise model,
LCL

h , in place of the Lh in equation (14) .

Proof: The above statement is equivalent to saying
that (I − LuL

†
u)Lh and (I − LuL

†
u)L

CL
h yield

the same result. Now, (I − LuL
†
u)L

CL
h = (I −

LuL
†
u)(I +LuLc)−1Lh. Therefore on observation,

we need to show that

(I − LuL
†
u) = (I − LuL

†
u)(I + LuLc)−1 (17)

to prove the lemma, which is equivalent to show-
ing

(I − LuL
†
u)(I + LuLc) = (I − LuL

†
u) (18)

Expanding the left hand side term in the above
equation

(I − LuL
†
u) (I + LuLc) = I − LuL

†
u (19)

The last equation follows since LuL
†
uLu = Lu.

Lemma 1 is essentially the subspace version of
the invariance property of the first few Markov
parameters of the interactor-filtered noise model
under the transfer function framework originally
derived in Huang and Shah (1999)(Huang et al.,
1997). This invariance property has also been
proved in (Ko and Edgar, 2001).

Hence the Markov parameters of the closed loop
noise model can be used in place of Markov para-
meters of the open loop noise model and we can
still get the same benchmark variance. Therefore,
we need the subspace matrix Lu (which contains
Markov parameters of the process and is esti-
mated from data) for the calculation of the min-
imum variance control benchmark. The subspace
matrix Lu can be estimated from closed loop data
with set point excitation as explained in (Kadali
and Huang, 2002). The Markov parameters of the
closed loop noise model (or noise subspace matrix)
can be easily estimated from the routine operating
data (Kadali and Huang, 2002).

5. EQUIVALENCE OF SUBSPACE
APPROACH AND THE CONVENTIONAL
TRANSFER FUNCTION APPROACH IN
OBTAINING THE MVC-BENCHMARK

In the transfer function approach,

D(z) =
[
Ddz

d + ...+D1z
]

represents the interactor matrix for a process rep-
resented by the transfer function matrixG(z−1) =[
G0 +G1z

−1 +G2z
−2 + ...

]
, then the condition

for the interactor matrix from theorem 3.2.1 in
(Huang and Shah, 1999) is

lim
z−1−→0

DG=K (20)



where K is a full rank matrix. The above expres-
sion can be alternatively expressed as two matrix
conditions

Condition-1

[
D1 ... Dd

] 
 G0 ... 0

... ... 0
Gd−1 ... G0


 =

[
0 ... 0

]
(21)

Condition-2

[
D1 ... Dd

]
G1

...
Gd


 = K (22)

with rank(K) = min{m, l}.
We need to show that the coefficients obtained in
the subspace approach are same as those obtained
in the transfer function domain approach, i.e. the
above two conditions are satisfied by using the
matrix

(
I − Lu L†

u

)
. Therefore we have to prove

the following theorem for the subspace approach:

Theorem 1:
(
I − Lu L†

u

)
contains interactor

matrix for the process. An interactor matrix can be
constructed directly from this expression. The sub-
space approach for the calculation of the minimum
variance control benchmark is equivalent to that of
the conventional transfer function approach.

Proof:

(
I − Lu L†

u

)

G0 0 ... 0
G1 G0 0 ...
... ... ... ...


=

(
I − Lu L†

u

)
Lu

= Lu − Lu L†
uLu = 0 (23)

since Lu L†
uLu = Lu. From the above equation

condition-1 expressed in equation (21) is satisfied.

Next, consider the transformedMarkov parameter

matrix


 Ĝ1

...

Ĝd


 = (I − LuL

†
u)


G1

...
Gd


. Note that

the matrices Lu and


G1

...
Gd


 are essentially disjoint

(see appendix A). Following the corollary 17.2.10
in ref.(Harville, 1997) :

rank


 Ĝ1

...

Ĝd


= rank


G1

...
Gd


 (24)

Now let

K = Ĝ1 + ...+ Ĝd =
[
Im ... Im

]
 Ĝ1

...

Ĝd


 (25)

The matrix
[
Im ... Im

]
is (m× dm) dimensional

with rankm. ConsiderA =
[
Im ... Im

]
m×dm

and

B =


 Ĝ1

...

Ĝd




dm×l

. Using the corollary 17.5.2 from

(Harville, 1997) we can write

rank{K} = rank[A] + rank[B]− (dm)

+rank
[
(Idm −BB†)(Idm −A†A)

]
(26)

We can expand

(I −BB†)(I −A†A)

= (I −A†A)−B†B(I −A†A) (27)

For using the item (3) in appendix B, we take,

R = (I −A†A); S = −B; T = B†; U = (I − A†A)

Using equations (26) and (B.2), we write,

rank[K] = rank[A] + rank[B]− dm− rank[B†]

+rank[(I −A†A)] + rank[(AB)†(AB)B†]

= rank[(AB)†(AB)B†] (28)

In the above equation we used rank[B] =
rank[B†] and rank[(I − A†A)] = (d − 1)m. Con-
sider the two cases,

(i) m ≥ l : In this case (AB)†(AB) = Il.
Therefore rank[(AB)†(AB)B†] = rank[B†] = l
and rank[K] = l.

(ii) m < l : In this case rank[(AB)†(AB)] =
m. Since B is a full rank matrix rank[(AB)†(AB)B†] =
m. Therefore rank[K] = m.

Hence K is a full rank matrix and condition-2
expressed in equation (22) is satisfied. Hence the
theorem is proved.

To summarize, the matrix
(
I − Lu L†

u

)
performs

the same function as an interactor matrix in the
transfer function domain. But the calculation of
interactor matrix is not required in deriving the
MVC-benchmark variance of the process output
for controller performance analysis. Therefore a
priori knowledge of only the subspace matrix Lu

or equivalently the first ‘d’ process Markov para-
meters is the requirement for obtaining the MVC-
benchmark, the same conclusion as obtained in
the previous literature, but expressed here in a
much more simplified notation..

6. CONCLUSIONS

Calculation of the multivariate performance index
without using the interactor matrix is an impor-



tant step toward practical application of multi-
variate performance assessment techniques. It is
shown in this paper the design of multivariate
minimum variance controller can be done using
subspace matrices. Using the subspace matrices
the MVC-benchmark variance for the process out-
puts is obtained from closed loop data without
having to first calculate the unitary interactor ma-
trix or knowing the first few Markov parameters of
the noise model. The equivalence of the subspace
approach to the conventional transfer function
approach for obtaining the MVC-benchmark vari-
ance is also proved.
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Appendix A. ESSENTIALLY DISJOINT
CONDITION

From (Harville, 1997)
Lemma 17.1.4. Let U and V represent subspaces
of Rm×n, then

(1) U and V are essentially disjoint if and only if,
for matrices U∈U and V∈V , the only solution to
the matrix equation

U+V= 0 (A.1)

is U = V = 0; and

(2) U and V are essentially disjoint if and only if,
for every non-null matrix U∈U and every non-null
matrix V∈V , U and V are linearly independent.

We assume that the process transfer function
G(z−1) is full rank with proper and stable trans-
fer functions. Therefore, the matrices Lu =
G0 0 ...
G1 G0 ...
... ... ...


 and


G1

G2

...


 are essentially disjoint.

Appendix B. COROLLARIES

(1) Corollary 17.5.2 Let A represent an m× n
matrix and B an n× p matrix. Then,

rank(AB) = rank(A) + rank(B) − n

+rank
[
(I −BB†)(I −A†A)

]
(B.1)

(2) Corollary 17.2.10 Let A represent an
m × n matrix, B an m × p matrix. Then
rank

[
(I −AA†)B

]
= rank (B) if and only if C(A)

and C(B) are essentially disjoint.

(3) From chapter 18 Let R represent an n× q
matrix, S an n × m matrix, T an m × p matrix,
and U a p× q matrix. Then,

rank(R + STU) = rank(R) + rank(Q) + rank(M)

+rank(N)− rank(T )

+rank
[
(I −MM †)XQ†Y (I −N †N)

]
(B.2)

where ER = I−RR†; FR = I−R†R; X = ERST ;
Y = TUFR; M = X(I − Q†Q) and N = (I −
QQ†)Y . Refer to (Harville, 1997) for proofs of the
above corollaries.


