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Abstract: A methodology is proposed for the analysis and design of a robust
gain-scheduled PI controller for nonlinear chemical processes. The stability and
performance tests can be formulated as a finite set of linear matrix inequalities
(LMI) and hence, the resulting problem is numerically tractable. Input
saturation and model error are explicitly incorporated into the analysis. A
simulation study of a nonlinear CSTR (continuous stirred tank reactor) process
indicates that this approach can provide useful sub-optimal robust controllers.
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1. INTRODUCTION

This paper derives LMI-based tests, to test the
closed-loop stability and performance of gain-
scheduled Proportional-Integral (PI) controllers,
when applied to nonlinear processes.

The design of gain-scheduled controllers for
Linear Parameter Varying (LPV) systems has
been reported in a number of publications (e.g.
Shamma and Athans, 1992) and software is
available, e.g. Matlab, to design these controllers
using LMI. Two main problems in the application
of these techniques to chemical engineering
processes are: i- models of chemical systems are
often not available in LPV form ready for the
LMI’s tests, ii- The LMI-based methodology
results in controller structures that are
significantly more complex than the PI or PID
control forms, which are widely accepted by the
chemical industry.

Following these, Knapp and Budman (2001) have
proposed to model nonlinear processes with a
special class of state-affine nonlinear discrete

model. These state-affine models are in LPV form
where the manipulated variable fulfills the role of
the time-varying parameter. They showed that by
using these models in combination with a discrete
PI controller, the analysis of the closed loop
system can be reduced to the solution of a set of
LMI. These models are nonlinear with respect to
the manipulated variables and then, this input
nonlinearity is treated as model uncertainty with
respect to a linear nominal model. Then, the
robust stability and performance of the closed
loop system can be analyzed with respect to this
model uncertainty.

Using these state-affine models in combination
with the proposed gain-scheduled PI controller,
the closed-loop system can be represented by a
class of discrete-time systems state-space
equations with a state vector 1.

For time-varying real uncertainty, a quadratic
stability test seeks a fixed quadratic Lyapunov

function ¥V (t) =n(¢)" Pn(¢) that proves stability
for all admissible uncertainties. It is shown that
finding an adequate P, amounts to solving a
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convex problem involving a system of LMI. This
system of LMI can be extended to test robust
performance as well.

In the current paper we have expanded the work
of Knapp (2001) by considering a special class of
scheduled PI controllers, defined in section 2,
where the tuning coefficients of the controller are
linear functions of the manipulated variable.
These linear functions are defined in terms of 4
parameters. Then, this work also addresses the
optimization of these parameters. The
parameterization of the controller in terms of a
small number of parameters greatly facilitates the
optimization step.

The paper is organized as follows. Section 2
presents the state-affine model realization and the
gain-scheduled PI controller structure. Section 3
derives LMI-based stability condition. Section 4
develops the performance condition and addresses
the performance optimization problem. Section 5
integrates input saturation and modeling error into
the analysis. Section 6 illustrates the validity of
the design approach by a case study example.
Section 7 summarizes the conclusions and future
work.

2. STATE-AFFINE MODEL AND GAIN-
SCHEDULED PI CONTROLLER

Based on Knapp and Budman’s (2000, 2001)
work, a state-affine model for a nonlinear process
is obtained as follows

XD = By + 3 Fultf (0) + 4Gy + > G e
i=1 i=1
W(0) = Hox(t) +d(0) 1)

where F,G, H are polynomial matrices.

Disturbances of infinite frequencies can not be
effectively rejected unless an infinite closed-loop
bandwidth is used, because of robust stability
limitations. Therefore, the actual disturbance v(¢)

is filtered through a low-pass filter as follows:
dt+)=BWd@t)+(1-BW)(E) (2)

Where 0 < BW <1, which is a bandwidth related
weight.

A gain-scheduled PI controller of the form given
by (3) is used. When W, =W, =0, the control

law 1 reduces to a conventional discrete PI
controller with proportional gain K_.and reset
time 1 ;. Thus the coefficients C,and D, of the PI

controller are augmented in equation (3) by a
linear dependency with respect to the manipulated
variable u to allow for scheduling as a function of
u. u(t)stands for the control action calculated

without saturation whereas u(¢) is computed with
saturation limits.

C+1)=4L@)+B.e)
u(t) = (C, +Wau ()& (1) + (D, +Wau(t))e(t)

e(t) =y, ()= y(t), v, (1) =0 ©)
A, :1,BC =1,CC = K. ,D.=K_+ K.
Ty Ty

For a process represented by the state-affine
model (1), at the nominal operating point, it is
valid to assume that the process can be accurately
modeled by the linear part of the state-affine
model given by (4). It is also assumed that most of
the model uncertainty is due to the time-varying
nonlinearity of the state-affine model around this
operating point. It is therefore possible to describe
the model uncertainty §; in the form of (5).

x(t +1) = Fyx(t) + Gyu(r)
y(t) = Hyx(t)
8, =u(t),i=12,...,n (5)

“)

(5) represents the key advantage of the
methodology used here. In general it is very
difficult to quantify the uncertainty, J,, from
mechanistic first-principle models (Doyle, 1990).
In our case, since §; is equal to the powers of the
input, it can be easily quantified. Each input in a
process is known to lic between a lower and an
upper limit known during the design stage due to,
for example, actuator constraints or economic
considerations. According to (5):

utyelu ul->s,ep, 5| 6)

S= {(0)1,0)2,"',0),,):0)[ 6{8[55_i}}

Rewriting (1) using (5) gives:

X+ = {Fy+ S )+ G+ G ()
i=1 i=l

W) = Hox(t) +d(t)

(M



The closed-loop system of (7), (2) and (3) is then
put into a form given by (8) suitable for analysis.
The state  matrix A(0)depends on  the

uncertainties defined by (6).

Ay =Fy + 2B —(G +XG,0,)(D. + WS ) Hyy
Ay = (G + 260, N(C + W81 Wy

A3 =-(G, +ZGi+16i)(Dc W v

All A12 A13
A(S): _BCHOW ACW _BCW
0 0 BW
Mm@+ 1)} 3 {A(S) B"n(t)}
= =
| e(?) C Djv(@®
[ x(t+1) [ x(2)
S+D)| | A®) BJE®)
de+)| [ € D]d@
| e RiO)
B=p" of a-swy| c=[-m, o -1
D =[0],n(0)=n, ®)

3. QUADRATIC STABILITY
Consider the uncertain nonlinear system (8). This

system is quadratic stable if there exists a
positive-definite quadratic Lyapunov function

Vy=n®"Pn(t), P>0 )

such that V(¢)>0and V(t+1)-V(t) <0 for all
admissible uncertainties and for all initial
conditions my .

Definition 3.1(quadratic stability): The system
N +1) = 4@ m(@).n(0) =n, (10

is quadratically stable if there exists a symmetric
matrix P such that

P>0 (11)
AB) PAB)-P<0 (12)

hold for all admissible uncertainties.

When 6 ranges in a polytope with vertices in S,
it suffices to enforce (12) at the vertices, and so
(12) is equivalent to the following convex LMI
problem

A®) PA@)-P <0, for all weS (13)

A complete summary of LMI theory is given by
Boyd et al. (1994).

4. QUADRATIC H, PERFORMANCE

Definition 4.1 (quadratic H . performance):

System (1) with zero initial state has quadratic
H _ performance vy if there exists a symmetric
matrix P such that

P>0 (14)
AB) PAG)Y-P  4B®)' PR CT

BT PA®) BTPB—y2I DT |<0 (15)
C D -1

is satisfied for all admissible uncertainties.

This condition establishes that the closed-loop
system defined by (8) satisfies ||e|| L <y||v|| , for
2 2

all L, -bounded input v , that is (15) guarantees

Vie+1) =V () +el (De()—y 2T 6)w() <0
(16)

(15) is equivalent to the finite LMI as follows

A)" PA@)-P A)" PB CT
BT PA(w) B"PB—y?I DT |<0
C D —1
for all ®eS
(17)

Equation (17) is solved as a generalized
eigenvalue problem (GEVP), to optimizey .



5. INPUT SATURATION AND MODELING
ERROR

Input saturation would occur when the controller
outputs u(¢) exceeded the limits. The gain-

scheduled PI controller can be reformulated using
a variable gain Ec . Define:

1 1 1

i

(18)

c

i& +(1+L)e
Tr Tr

Then the gain of the controller is given by:

if 02y <1 ECZKCW

else yw>1 K, =K, =constant

These definitions ensure that |u| never exceeds the

saturation limit of 1 whereas |L?| can exceed the

limit.

A lumped error §,in the output is considered as

the modeling error so that the A matrix can be
rewritten as follows:

H=H,—>>H=H,+W35, (19

5, can be easily calculated from the difference

between the model prediction and the actual data
from the process (Budman and Knapp, 2000 and
2001). Limits of y and &,need to be taken into

account in the stability and performance analysis.

6. DESIGN CASE STUDY: CSTR

The case study under investigation is a CSTR
from Doyle et al. (1989). A state-affine mode is
first obtained, see (Budman and Knapp, 2000 and
2001). Input saturation with y e [0.4 1] and
8, =[-1 1 and
W, =0.025, will also be considered. In principle,

modeling  error  with

the lower limit of y should have been assumed to
be equal to zero for the case that the calculated
control action is infinite. When a lower limit of
zero was assumed, robustness could not be
achieved. Fortunately, the output in a real process
is always bounded due to sensor saturation or the
physical limitation of the process, e.g. conversion
cannot be larger than 1. Accordingly, following

equation (3), a finite upper limit for the control
action exists and consequently a lower bound of y
larger than zero can be assumed.

Fig.1 shows the robust stability and robust
performance (y =1) regions for linear PI

controllers, i.e. with W, and W,equal to zero,

defined in terms of the proportional gain and reset
time.

Stability and performance (:) of linear PI
20 T

10F

taui,reste time

N A o ®

o5 1 15 2 25 3 35
Kc,proportional gain

Fig.1. Stability and performance regions of linear

PI controller parameters. Stability region is

the area above the solid line including the

solid line as limit. Performance region for a

vy =1 is the areca above the dotted line

o

including the dotted line as limit.

For the purpose of comparison with the gain-
scheduled controller, a set of PI controller
parameters was selected in the neighborhood of
the robust performance boundary shown in Fig. 1.
as follows: K, =2 and t; =1.1545. This point

corresponds approximately to the Internal Model
Control (IMC) tuning parameters around the
nominal operating point based on the rules
available in the literature (Morari and Zafiriou,
1989). Using these linear PI controller parameters
in equation (3), gain-scheduled PI controller
weights W,,W, can be calculated according to

the stability and performance tests presented
above. Accordingly, regions of robust stability
and robust performance are computed in terms of
different combinations of the weights and the
results are shown in Fig.2 and 3. The circles
shown in Fig.2 and 3 represent the linear PI
controllers selected on the limit of robust stability
and performance, respectively, ie.
W.=0,W,; =0, also shown on the curves in

Fig.1.

In order to improve upon the performance of the
linear PI controller, a pair of gain scheduling



weight values can be sought inside the robust
performance region, corresponding to a point
indicated by a star in Fig.3, that will provide a
better performance. Since the performance of the
controller is directly related to the parameter y as
shown by equation (17) the objective is to
minimize this value.

Stability of gain-scheduled PI,Kc=2.42,taui=1.1545
0.6 T T T T T

N N N N
> o o o >

Wd,reste time (taui) weight

o
=)

-1 -05 0 0.5 1 1.5 2
We,proportional gain (Kc) weight

Fig.2. Stability region of gain-scheduled PI
controller weights, that is, the area inside the
solid box including the solid circle as limit.

Performance of gain-scheduled PI,Kc=2,taui=1.1545
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Fig.3. Performance region of gain-scheduled PI
controller weights, that is, the area inside the
dotted box including the dotted circle as limit.

The problem of searching for a vy, is not

convex in terms of the controller parameters. The
conditions result in a nonlinear matrix inequality
for the controller parameters. Branch and bound
methods have been proposed to solve LMI’s
systems of this type (Fukuda and Kojima, 2001;
Braatz, et al., 1997). For simplicity, it was decided
to limit the search to a sub-optimal design in the
neighborhood of the selected linear PI controller
using the FMIN optimization function in Matlab.
This was done by using K, andt; computed by

the IMC rules and by optimizing the values of the
weights W, and W, . The objective is to assess

the improvement in performance over that
obtained with this IMC-PI  controller.
Subsequently, an additional optimization was
conducted where all the parameters, i.e. K

co

t,and the weights, were allowed to change to
minimizey .

The optimization of the controller weights using
the GEVP procedure produces the best robust
gain-scheduled PI controller in the neighborhood
of the IMC design, shown as a star in Fig.3. For

this design 7 opimar =0.5890 and this is an

improvement of 38.9% over Y ’opimat =0.9634 in

robust performance obtained with the IMC-PI
design. When all the parameters are optimized, an
additional improvement in performance is
obtained  with =0.3894. Table 1

summarizes the optimization results.

Y optimal

Table 1 Optimization design results

IMC-PI G-SPI1 G-SPI2
K. 2 2 1.3723
T 1.1545 1.1545 2.949
I
WC 0 0.6547 -0.004
Wd 0 -0.015 0.001
Y o 0.9634 0.5890 0.3894
optimal
0.3787 0.3495 0.202

Y simulation

To assess the conservatism of the analysis a
simulation study is conducted for the CSTR using
the different controllers synthesized in this work.
The performance is tested by investigating
through a large number of simulations how the
system rejects a bounded disturbance. ¥ g,z
is used to refer to the performance limit obtained
from the simulation.

Y simulaion  calculated  based ||e|| L <y||v|| L is

always bounded by Y,y in each case,
indicating that the analysis tests produce a worst-
performance bound as expected and it is not
exceeded. The difference betweeny ,,q and

Y simulation  ShOWs that the design procedure is
conservative to some degree.

Simulations were conducted for a large number of
different disturbances. A disturbance was sought
that would result in the worst performance for
each controller. Then for the worst case found



from simulation, Y guuion Was calculated.

Simulation results for the IMC-PI controller and
for the sub-optimal gain-scheduled PI controller
are shown in Fig.4. These simulations correspond
to a spike type disturbance also shown in Fig.4.
Worse performance than the one shown in Fig.4
may be also possible but there is no systematic
way to find the specific disturbance function that
will lead to it.

Disturbance that resulted in the worst performance
1

05

0

-0.5

-1

2 4 6 8 10 12 14 16 18 20

simulation output of State-Aaffine model
1

05

0

-0.5

-1

2 4 6 8 10 12 14 16 18 20

Fig.4. Closed-loop simulations of state-affine
model (lower two curves).
Linear PI  controller (dotted line),
K.=2,1; =1.1545,Y ginutation = 0.3787 .
Gain-scheduled PI  controller  (solid
line), K, =1.3723,1; =2.949 , W, =-0.004,

Wd =0.001 ,y simulation — 0202 .

Conservatism associated with the design approach
comes from two main facts. First, a possible
source of this conservatism is that simulation can
only be done on a limited period of time, while
the calculation of the performance condition
requires an infinite simulation interval. Second,
conservatism is obviously inherent to the robust
control approach where several scenarios included
in the analysis will not occur during actual closed-
loop operation.

7. CONCLUSIONS

An approach is proposed to design gain-scheduled
PI controllers for nonlinear processes using
process data. It is based on empirical state-affine
models of the process. Gain-scheduled PI
controller with sub-optimal performance is
obtained using a GEVP based optimization
algorithm. Simulations show that the gain-
scheduled controller provides better performance
than a conventional PI controller found for
robustness with IMC rules. A performance index
v , although conservative, has been found to be a

good indicator of the relative performance of the
different controllers.
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Abstract: In this paper, we present an adaptive extremum seeking control scheme for
continuous stirred tank bioreactors. We assume limited knowledge of the growth kinetics.
An adaptive learning technique is introduced to construct a seeking algorithm that drives the
system states to the desired set-points that maximizes the value of an objective function.
Lyapunov’s stability theorem is used in the design of the extremum seeking controller
structure and the development of the parameter learning laws. A simulation experiment is
given to show the effectiveness of the proposed approach.

Keywords: Extremum seeking, Lyapunov function, adaptive learning, persistence of

excitation

1. INTRODUCTION

The goal of extremum seeking is to find the operating set-
points that maximize or minimize an objective function.
Since the early research work on extremum control in the
1920’s (Leblanc 1922), many successful applications of
extremum control approaches have been reported (e.g.,
(Vasu 1957), (Astrom and Wittenmark 1995), (Sternby
1980) and (Drkunov et al. 1995)). Recently, Krstic et.
al ((Krstic 2000), (Krstic and Deng 1998)) presented
several extremum control schemes and stability analysis
for extremum-seeking of linear unknown systems and a
class of general nonlinear systems ((Krstic 2000) and
(Krstic and Deng 1998)).

1 Work supported by the Natural Sciences and Engineering Research
Council of Canada

2 To whom  correspondence  should  be
guaym@chee.queensu.ca

addressed;

In this study, we investigate an alternative extremum
seeking scheme for continuous stirred tank bioreactors.
The proposed scheme utilizes an explicit structure infor-
mation of the objective function that depends on sys-
tem states and unknown plant parameters. However, it
is assumed that the objective function is not available
for measurement. Furthermore, no explicit knowledge of
the microbial growth kinetics are assumed. A Lyapunov-
based adaptive learning control technique is used to ap-
proximate the unknown kinetics and to steer the system
to its unknown extremum. The technique ensures conver-
gence of the system to an adjustable neighbourhood of
its unknown optimum that depends on the approximation
error. We also show that a certain level of persistence
of excitation (PE) condition is necessary to guarantee
the convergence of the extremum-seeking mechanism.
The paper is organized as follows. Section 2 presents
some notations and the problem formulation. In Section
3, an parameter estimation algorithm is developed. Sec-



tion 4 presents the adaptive extremum seeking controller
and the stability and convergence of the closed-loop ex-
tremum seeking system. Numerical simulation is shown
in Section 5 followed by brief conclusions in Section 6.

2. PROBLEM

Consider the following microbial growth models

& =p(s)r —ux Q)
$=—kip(s)x + u(sg — s) 2
y=kap(z,s)x ®)

where states z € [0,+o0c) and s € [0,+o00) denote
biomass and substrate concentrations, respectively, © > 0
is the dilution rate, y is the production rate of the reaction
product, sq denotes the concentration of the substrate
in the feed, and &1,k > 0 are yield coefficients. We
consider the case where only s and y are measurable,
the biomass concentration x is not available for feedback
control.

In this work, we consider the extremum seeking problem
for plant (1)-(2) with an unknown substrate-dependent
growth rate expression u(s). One of the most common
growth rate model is Monod’s model given by

[
K, +s

where i, > 0 is the maximum value of the specific
growth rate, and positive constant K, K. and K, to K>
denote the coefficients for different growth rate models.
While this simple model form is very useful in practice,
a wide variety of growth patters and characteristics exist
where the Monod expression is not applicable.

iz, s) = pu(s) = (Monod)  (4)

The extremum-seeking control of plants described by
the Monod model have been investigated in (Zhang et
al. 2002). In this study, we extend the result to a broad
class of uncertain plants with unknown growth rate repre-
sentations. As in (Zhang et al. 2002), the control objective
is to design a controller, u, such that the production rate
y achieves its maximum.

The strategy developed in this paper consists in approx-
imating the growth rate expression using a neural net-
work approximation technique. In this paper, radial basis
function (RBF) neural networks presented in (Sanner and
Slotine 1992) shall be used to approximate a continuous
function ¢(z) : R — R

¢(2) = W*T'S(2) + pul(t) (5)

with NN approximation error y;(t), and basis function
vector

S(z) = [s1(2), 52(2), -, s1(2)]"

si(z) = exp [_(Z_%g;(z_%)} ;o 1=12,.(8

where ¢; is the center of the receptive field, and o; is the
width of the Gaussian function. The ideal weight W* in
(5) is defined as

W* .= arg Wmislzlw {sup ‘WTS(Z) - ¢(2)’} (7

where Q,, = {W ‘ ([W < wm} with positive con-
stant w,, to be chosen at the design stage. Universal
approximation results stated in (Funahashi 1989) (Sanner
and Slotine 1992) indicate that, if [ is chosen sufficiently

large, then W7 S(z) can approximate any continuous
function to any desired accuracy on a compact set.

We apply eq.(5) to develop an approximation of the
growth rate expression given by

w(s(®) =W*TS(s(t)) + pu(t) 8)

where W* and S are as defined in egs.(6)-(7). Addi-
tionally, we make the following assumption about the
approximation error p;(t).

Assumption 1: the NN approximation error satisfies
| (t)] < pmy with constant i; > 0 over a compact set
in the state space.

We first calculate the system’s equilibria corresponding
to a constant dilution rate u.. By setting the right-hand
side of (1)-(2) to zero, we obtain two equilibria. The first
isz. = 0 and s, = sg which is called the wash-out
equilibrium. The second is

T _SO_Se
e = ———
k1

where s, is a positive solution of the equation

Ue = p(Se).
At the steady-state, the production rate can be expressed
by

k

Ye = éﬂ(se)(so — Se) ©)

Following eq.(8), the steady-state production rate is ap-
proximated by

k
Ye = k—iW*TS(se)(so — S¢) (10)

From (2) and (4), we have



oy @W*T(ds(se)(so —50) = 5(s)) (A1)

356 o kl
and
82y€ k2 «T 2
5z = 1 (8 (s0) (50 = ) — 205(s.) ) (12

where dS = %—f and d?S = ‘?;T?. Assuming that the
parameter vector W* is such that 8825%6 > 0,Vse > 0
then y.(s) has a maximum

* * k * * *
Y = ye(s®) = k—fw TS(s")x (13)

with 2% = 2=~ at the system equilibrium.

The objective of this study is to develop a controller that
maximizes the steady-state value of the production rate,
y*. However, since the exact values of the ideal weights,
W, are not known a priori , they must be estimated. In
the next section, we propose an adaptive extremum seek-
ing algorithm is developed to search the unknown process
set-point where the production rate, y, is optimized. The
strategy attempts to estimate the gradient of the produc-
tion rate with respect to the substrate concentration, s. A
controller is then designed to bring the process to points
where the gradient vanishes and where the second order
derivatives of the production rate with respect to the sub-
strate is negative. The resulting technique provides a real-
time optimization techniques that can be used to a large
class of bioreactors and chemical reactors.

3. CONTROLLER DESIGN

In this section, we design a control strategy that tracts the
unknown optimum production rate. We first develop the
parameter estimation algorithm for the unknown parame-
ter vector WW*. Equations (1)-(2) can be re-expressed as

i=W*TS(s) + b))z — ux (14)
§=—ky(W*TS(s) + u(t))x 4+ u(so — s) (15)

We assume that the biomass and the substrate concentra-
tion are available for measurement.

Let T denote the estimate of the true parameter W * and
let $ and & be the predictions of s and y. The predicted
states § and z are generated by

=WTSz — uz + kper + c1 (t)TW (16)
§= ki WISz +u(so — s) + kses + ca(t) TW(LT)

&>

with gain functions &, k,, > 0, prediction errors e, = s—
sande, =z — Z and ¢ (¢), c2(t) time-varying functions
to be assigned later. It follows from (14)-(17) that

¢y =WTSz + w(t)x — kye, — cl(t)TW (18)
bs=—kaWT Sz — kypu(t) — kees — ca(t)TW (19)
where W = W* — W.

The objective of the extremum-seeking control is sta-
bilize the closed-loop system around a point where the
gradient of the production y with respect to s given in
eq.(11) vanishes while attenuating the effect of the mod-
elling uncertainty p;(¢). Since the parameter vector W* is
unknown, we first design a controller to make the system
states track points where the estimated gradient

_ %WT (45(s)(s0 — )~ S())  (20)
vanishes. In order to ensure that the estimated gradient
approaches the true gradient asymptotically, we have to
ensure that the parameter estimates approach the optimal
weight vector W*. To achieve this objective, an excitation
signal is designed and injected into the adaptive system to
ensure convergence of the estimated parameters to their
true value. The extremum seeking control objective is
achieved when the system systems are stabilized at the
optimal operating point x*, s*.

z

Define

2= WT (dS(s)(so _8) - S(s)) —dt) (1)
where Z—f > 0 has been removed for simplicity and

d(t) € C' is an excitation signal that will be assigned
later. In the remainder, the dependence of the radial basis
functions S on the substrate concentration s is implied
and we write S, dS and d2S.

Next we define the variables,

m=e;—cC1 (t)TW
e =es —co(t)TW (22)
ns =25 — c3(t)TW

where c3(t) is a vector of time-varying functions to be de-

fined in the design procedure. We propose the Lyapunov
function candidate

2 2 2
U 2 3
==+ =4+ =, 2
\%4 2+2+2 (23)

We pose the following equation for the dither signal, d(¢),

d(t) = e5(t)TW + TTW — (WTTy)2d(t)
+WTTsa(t) + k2 (24)

where a(t) is an external signal providing excitation to
the process and &, > 0 is a positive gain function to be
assigned. We then assign ¢1, ¢o and ¢3 as



= —kpel + 287
el = kel — kyaST (25)

I = kel — kyaWwTT,87

and we let the control be given by

u=r 1_ 3 (klvi/Tsa: +a(t)—WTTy). (26)

Taking the time derivative of V', we substitute egs.(24)-
(26) and we substitute e,, es and z, using eq.(22) to
obtain

V= w(t)an — keni — ki (t)nz — ki
—ky o (W Doz — knj. (27)

where I'y = dS(SO — S) —Sand I’y = d25(50 — S) —
2dS. Next, we complete the squares and assign the gain
functions

k
ky = kuo + 54:52

ks = ksO + %IQ (28)

ksk .
ke = ke + =2 (WIT)?

where k4 > 0, ks > 0, k¢ > 0, kyo > 0, kso > O
and k.o > 0 are positive constants. We finally obtain the
inequality

V < *kmoﬂ% - ksong - kzO”;%

111 ,
2 2 29
+<2k4+2k5+2k6)ul() (29)

Eq.29) establishes that the state, 7, converges to a small
neighborhood of the origin. It remains to show that the
original state variables, e,, es and z, and the parameter
estimation errors T¥ converge to a small neighborhood
of the origin. Note that it is not sufficient to check
that e;, e; and z; can be made small since the value
of z, depends on the parameter estimates, WW. To this
end, we derive a persistency of excitation condition that
guarantees the convergence of the parameter estimates to
the ideal weights, W*.

Consider the following matrix,

By construction, this matrix solves the matrix differential
equation

T (t) = —K(t)Y(t) + B(t) (30)
where
k: 0 O
Kt)=|0 k0
0 0 k,
and
xST
B(t)= | —kizST
—kleTFQST

A bound on the parameter estimates 1 can be ensured by
choosing the following parameter update law.

Yol if |W]| < wy, or
if|[ W = w,, and WIT < 0
wwT
Yw I — —
WTwW

>e

W= (31)

T" otherwise

where I' = T(t)Te.AEq.(?)l) is a projection algorithm
which ensures that ||| < w,,. The convergence of the
parameter estimation scheme is considered in the sequel.

By the property of the projection algorithm and for the
specific choice of basis function it is possible to show
that the norm of B(t) is bounded. Using the exponential
stability of system eq.(30)and the bound on B(t), an
explicit bound for the solution of eq.(30) can be obtained
as follows,

|7 (t)]| < CpeR2tt0) 0y =2 (32)

where Cy = ||T(to)|| > 0 and Ay > 0O is a positive
constant. Next, we want to show that the parameter es-
timation error W converges to a neighborhood of the
origin.

Substituting for e = 7 4+ Y ()T we obtain the perturbed
dynamics

W = =3 X0 TOW — 7,167
0 if |W| < wy, or
if| W = w,, and WIY(t)Te <0 33
WWT B ( )
Yoo (T(t)TT(t)W + T(t)Tn> otherwise

WTW

+

To establish the convergence of the parameter estimation,
we make the following persistency of excitation assump-
tion.

Assumption 3.1. The solution of eq.(30) is such that there
exists positive constants 7" > 0 and kx > 0 such that



t+T
/ ()Y (r)dr > knIn (34)

t

where Iy is the N-dimensional identity matrix.

By a standard adaptive control argument, the persistency
of excitation condition guarantees that the origin of the
differential equation

W = 7o T(6)TT ()W (35)

is an exponentially stable equilibrium. Since B(t) is a
bounded function, it is shown that the parameter estima-
tion error is guaranteed to decay exponentially as

||

vV2kmes (36)
Hence the parameter estimation error and the redefined
state variables, n, converge exponentially fast to an ad-
justable neighbourhood of the origin. By definition, con-
vergence of 1 and I to a neighbourhood of the origin
implies that [le]| < [|n]| + || X(#)||||"W||. Substituting for
|mll, [ (¢)|| and W, we obtain

W] < cge™ (000

le]| < ase™ 10 4 g5 (37)

where a5 > 0 and )5 > 0 are computable positive
constants.

The convergence of the error vector, e, implies that the
convergence of the prediction errors, e, and es; and the
exponential convergence of the closed-loop system to an
adjustable neighbourhood of the unknown steady-state
optimum. We summarize the result of the above analysis
as follows.

Theorem 3.1. Consider the two-state bioreactor model
egs.(1)-(2) with production rate, eq.(3) in closed-loop
with the state-observer eqgs.(16)-(17), the controller eq.(26),
the dither signal eq.(24) and the adaptive learning law
eq.(31). Assume that the signal a(¢) is such that

t+T
/ Y(r)IY(r)dr > kyIy (38)

t

for positive constants 77 > 0 and kx > 0 where Y(t) is
the solution of eq.(30). Then

e the error dynamics eqgs.(18)-(19) converge exponen-
tially to a small neighbourhood of the origin

o the parameter estimation errors 1% converge expo-
nentially to a small neighbourhood of the origin

o the tracking error from the unknown steady-state,
zs, converges exponentially to a small neighbour-
hood of the origin.

4. SIMULATION RESULTS

To show the effectiveness of the proposed design, a
simulation study is performed on three models.

In the first example, we consider a bioreactor with Hal-
dane kinetics,

(s) Hm? -
s)=\ ——————
H K(3+S+K182

The following parameters and initial states are used in the
simulation experiment.

Ky=0.2, pim =10, Y =05,
kg = 107 K] = 017 So = 100,
5(0)=0.1, #(0) = 0.5, 5(0)=0.5

ky = 2.0,
z(0) =1.0

The design parameters in the adaptive controller (26) and
the adaptive law eq.(31) are

Yo = 100.0, k.0 = kyo = keo = kg = ks = kg = 2.0

The NN radial basis function approximation is of dimen-
sion 6 with parameters ¢; = iand o; = 1 for1 < i < 6.
The initial conditions for the adaptive learning weights
are

Wi(0)=0,1<i<6

The dither signal was set to

6
a(t) = exp(—0.1) > (sin((0.50)t) + cos((0.5i)t))

i=1

We let d(0) = 0 and T(0) = 0.

Simulation results are shown in Figures 1-3. Figure 1
shows the value of the production rate y and its esti-
mated value. The closed-loop system converges quickly
to a small neighbourhood of the origin. Moreover, the
estimated production rate is shown to converge to the
a small neighbourhood of the true production rate. In
this case, the true optimum, 3.036, was recovered by the
adaptive learning scheme. The required control action of
the extremum-seeking control is shown in Figure 2. The
biomass concentration and the substrate concentration are
shown in Figure 3.



5. CONCLUSION

We have solved a class of extremum seeking control
problems for continuous stirred tank bioreactors repre-
sented by an unknown growth kinetic model. An adaptive
learning technique is used to derive an extremum seeking
controller that drives the production rate to an adjustable
neighbourhood of the unknown optimal production. It has
been shown that when the external dither signal is de-
signed such that the persistent excitation condition is sat-
isfied, the proposed adaptive extremum seeking controller
guarantees the exponential convergence of the production
rate of the bioreactor to an adjustable neighborhood of its
maximum.
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Abstract: A specific class of positive systems is considered, where the system
structure allows control of the distribution of “mass” in the system. Some
robustness properties of the controller are pointed out, and the applicability of
the model class is discussed. An example considering a CSTR modeled by mass-
and energy balances illustrates the presented concepts.
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1. INTRODUCTION

When modeling systems for control based on first
principles, one often obtains nonlinear ordinary
differential equations where the state variables
(mass, pressure, level, energy, etc.) are positive.
In addition, the control input will also often be
positive (valve openings, amount of inflow, heat
input, etc.). Hence, the class of positive systems
(systems with nonnegative states and inputs) is a
natural class of systems to consider in a control
setting.

In this paper, we will consider a class of posi-
tive systems with strong structural constraints.
Some of these constraints are natural from the
perspective that the dynamics consist of “mass”
flow between the different states, and other con-
straints are made to ensure controllability under
constraints. We will argue that a diverse range of
systems can be described by models in this class.

This is further funded by the fact that the inter-
section between the model class considered herein
and the widely studied class of compartmental
systems (Jacquez and Simon, 1993) is non-void.
The interpretation of states as“masses” of com-
partments holds for both classes of systems, and
similar assumptions (slightly stronger in the case

1 Corresponding author

of compartmental systems) concerning the flow of
“mass” between the compartments are made. On
the other hand, the controllability assumptions
made herein, do not have their counterpart in the
class of compartmental systems.

However, these controllability assumptions make
it possible to specify a controller that controls
the distribution of mass for the system class
considered herein. The controller is related to
the controllers in Bastin and Praly (1999) and
De Leenheer and Aeyels (2002), but with distinct
differences related to model class and controller
specification.

The paper is outlined as follows: In Section 2
the class of systems we look at are specified,
while the controller and the convergence result
is recapitulated in Section 3. Some robustness
properties are pointed out. The applicability of
the model class is discussed in Section 4. The
example in Section 5 illustrates the use of the
controller for a system described by both mass
and energy balances.

2. MODEL CLASS

We consider positive systems

z = f(z,u), (1a)



that is, the state is positive (z € R%), and the
input is positive and upper bounded, u € U :=
{u e R | 0 < u; < u;}. Each state can be
interpreted as the “mass” (amount of material, or
some measure of amount) in a “compartment”.
The controller we will propose exploits system
structure, thus we assume the model equations to
be on the following form:

flz,u) = () + ¥ (x) + B(x)u. (1b)

Loosely speaking, ®(z) represents “interconnec-
tion structure” between compartments, ¥(z) rep-
resents uncontrolled external inflows to and out-
flows from compartments and B(z)u represents
controlled external inflows to and outflows from
compartments.

Furthermore, we will assume that the state can
be divided into m different parts, which will be
denoted phases. Phase j will consist of r; states,
and have the control u; associated with it, cor-
responding to either controlled inflow or out-
flow to compartments of that phase. The states
in phase j will be denoted 27, such that x =
(N7, (z)T,...,(2™)T]7, and it follows that
necessarily, ;_n:1 r; = n. Corresponding to this
structure, the vector functions ®(x), ¥(z) and the
matrix function B(x) are on the form

O(x) = [¢'(2) ", ()T, .. 0™ ()T
U(z) = [H(2) " 2 (@) T, ™ ()T
B(x) = blockdiag (bl(a:), b2 (z),...,b™(2)).

Note that element j is (in general) a function of
z, not (only) z7. Also note that the partitioning
into phases need not be unique.

}T

]T

We will state the assumptions on these functions

on the set D C R”}. In the case of global results,

D =R,

Al. (Interconnection structure) The function
® : D — R" is locally Lipschitz, ¢!(z) > 0
for z/ =0, and

> ¢l(x)=0,j=1,...,m.
i=1

A2. (Controlled external flows) The block
diagonal matrix function B(z) : D — R®*™
is locally Lipschitz and satisfies:

a. Phase j has controlled inflow:

b/ () >0 for all z € D
bf(x) > ( for all z € D for at least one ¢
b. Phase j has controlled outflow:
b/ (z) <0 forall z € D
zg:O:>bg(x):O
bl (z) < 0 for all z € D with 2/ # 0

The uncontrolled external flows must satisfy some
“controllability” assumption in relation to the con-
trolled flows. Before we define this, it is convenient

to define the “mass” of each phase, being the sum
of the compartment masses of that phase:

M;(x) := Zzi

Our control objective will be to control M;(z)
to some prespecified desired mass of phase j,
denoted M, from initial conditions in D. For the
control proi)lem to be meaningful, the intersection
of the set where M;(z) = M7 and D should be
nonempty.

A3. (Uncontrolled external flows) For given
M* = [M;,M3,...,M5]", U(z): D — R"
is locally Lipschitz and satisfies that 7 (z) >
0 for z/ =0, and in addition, if:

a. Phase j has controlled inflow:

L. For x € {x € D | Mj(z) > M;},
Sl (@) < 0 and the set {z €
D | 372, 9] (x) = 0 and M;(x) > M;}
does not contain an invariant set.

2. For v € {z € D | Mj(z) < M;},
=YL ] () < 3oL, bl (x)uy

b. Phase j has controlled outflow:

.For x € {z € D | Mj(z) < M;},
Sl (x) > 0 and the set {z €
D | 372, 9] (x) = 0 and M;(x) < M;}
does not contain an invariant set.

2.F0rac€ {z € D | Mj(z) > M},

Z ()< 2111()

It is straightforvvard to confirm that under the
above assumptions, x; = 0 implies @; > 0, that
is, the system is positive.

—_

3. STABILIZING STATE FEEDBACK
CONTROLLER

In this section, the state feedback controller is
defined, and a general convergence result is given
for a general invariant set D that (is a subset of
the set that) A1-A3 hold on. The set D could then
be considered a region of attraction.

3.1 The controller and a convergence result

As mentioned in the previous section, our control
objective is to control the total mass M;(x) of
each phase to a prespecified value M o

To this end, the following constrained, positive
state feedback control law is proposed:

0 ifae) <0
w(@) = dis(@) KOS i) < (2)
U j if ﬂj (33) > uj

where

fbj xTr)= J M;—Mj x

3)



and A; is a positive constant. Apparently, we
can run into situations where the control is not
defined if phase j is outflow controlled, since the
term Y77 | b (z) then might be zero. However, the
continuity of the involved functions and the upper
bound on the control ensures that the control in
these cases unambiguously are defined by u;(z) =
Uj.
Define the set

Q={z e R} | My(x)=M7,..., My (x)=M,,}.
Assumption 1. There exists a set D that is invari-
ant for the dynamics (1) under the closed loop

with control (2), and has a nonempty intersection
with Q.

Assumption 2. For x € QN D, 0 < 4;(x) < 4 .

Under the given assumptions, the convergence
properties of the controller are summarized in the
following Theorem, proved in Imsland (2002), see
also Imsland and Foss (2002):

Theorem 1. Under the given assumptions, the
state of the system (1), controlled with (2) and
starting from some initial condition z(0) € D,
stays bounded and converges to the set Q N D
which is positively invariant.

To use this theorem, we need to find invariant sets
D. In some cases, the assumptions hold globally
and we can use D = R’ . In other cases, it is
possible to choose sets of the shape D = D; or
D = D5, where

Dy: —{$€R |—C <M( ) M;SEJ‘, j=1,....,m

and

D, := {$6R1|£§§Z;§53, i=1,...,r; and
M;_QjSMj(l’)SM;—FEj, j=1,...,m}.

For further details and examples, we refer to Im-
sland (2002).

Note that the convergence result is convergence
to the subset Q, which often (somewhat inaccu-
rate) is referred to as set stability. This does not
imply convergence to an equilibrium. However, as
pointed out in Imsland (2002) (see also De Leen-
heer and Aeyels (2002) and Chabour and Kalitine
(2002) for similar issues), if the closed loop system
has an equilibrium that is asymptotically stable
with respect to €2, this equilibrium will have D as
an (estimate of) region of attraction.

3.2 Discussion of controller

The controller (2) can be seen as a generalization
of the controller in Bastin and Praly (1999). The
novelty is threefold:

a) The concept of phases allows to consider sys-
tems with multiple inputs. Furthermore, in

Bastin and Praly (1999) the function ¥(z) =
—Azx (A diagonal with nonnegative, at least
one positive, diagonal elements) and B(z) = b
(a constant nonnegative vector with at least
one positive element). Condition A3 (which in
this case amounts to A3.a.l) is replaced by
the system being zero state detectable through
the output [1 1...1]JAz, which has the same
effect as A3.a.1. The results of Bastin and
Praly (1999) are recently expanded in the di-
rection of single-input compartmental systems
in Bastin and Provost (2002).

b) Systems with controlled outflow can be con-
sidered.

¢) Sufficient conditions are given to allow upper
constraints on the input.

3.8 Robustness

The proposed feedback scheme is independent of
the interconnection structure and hence robust 2
to model uncertainties in ®(x) (as long as As-
sumption Al holds). This is the most important
robustness property. As mentioned in Bastin and
Praly (1999), the interconnection terms are in
practical examples often the terms that are hard-
est to model.

Assume in the rest of this section that the input
saturations are not met, that is, u;(z) = @;(x).
This will always hold in a neighborhood of €.
In this case, we can also show some robustness
properties with respect to bounded uncertainties
in ¥(z) and B(x).

First note that in the nominal unconstrained case,
the feedback (3) linearizes the dynamics of the
mass of phase j,

M;(x) = Xj (M] — M;(2)) . (4)
We assume further that the modeling errors in
U(z) and B(z) are bounded. Mark the “real”
values of the terms involved in the controller (3)
with a tilde, and assume that there exists norm-
bounded Aw Ad’(x t) and Ab = A?(x,t) (the
dependence onx and tis sometlmes suppressed for
notational simplicity in the following) such that
the nominal values (used in the controller) are
related to the real values as

Z&;‘- Zw
Zbl (1+ Ab(a,1)) Zbl
i=1

The real dynamics of phase j can then be written

)+ AY (1),

2 Robust in the sense that convergence to € still holds.
Note that changes in ®(x) will typically move the equilibria
on .



V(o) = 303 + 3 By ()
= \(MF — My(x)) + AY
+ A? <_ ijf(f) + )\](MJ* — M; (@))
=1

The last part is in general not bounded in terms
of z. However, we assume that we can define

8;(t) =AY (a(t), t)+ A (2(1), 1) (— > wla()
=1

(M~ M (1))

such that §,(¢) is norm-bounded, d;(¢) < §;. This
requires either that A?-(x(t)ﬂf) = 0, or that we
know that z(¢) is bounded (which is guaranteed
by initial conditions in a bounded, invariant set).

The mass dynamics can under the above assump-
tions be written

M;((t)) = =X (M;(a(t)) — M7) +6;(t).  (5)
Since this is linear, it is easy to solve this to find
M;j((t) = M +e~ N0 (M (2(to)) — M)

t
+ / e_)‘j(t_q')éj (T)dr
to
where the last element is bounded,

1— ef)‘j(tftD) _
R S
Aj I

S

t
| [ e N (r)dr| < -
to A]

We see that M;(z(t)) converges to the set {M; | | M;—

Mz < f\—j} which can be made arbitrarily close to

M?* by choosing \; large. Of course, in choosing
A; large, the system might become more vulner-
able to the influence of measurement noise and
unmodeled dynamics.

The above analysis is only valid as long as the
input is not saturated. What happens when the
input is saturated can be (conservatively) ana-

lyzed by examining if the “Lyapunov function” of

Theorem 1 is still decreasing under the allowed

perturbations. This can be done by checking if

assumptions similar to Assumption A3 hold for
the perturbed flows.

4. APPLICABILITY OF THE MODEL CLASS

The system class (1) and accompanying control
design method has wide applicability. Referring
to Imsland (2002) the class has been applied to
a number of different examples. We will briefly
summarize these results in the following.

e A system comprised of three tanks in series
(three states) was investigated using either the
inflow to the first tank, the outflow from the
third tank, or both as control input(s). In the
one control input cases the total mass in the

three tanks was controlled. In the two control
input case the masses in tank one, and tank two
and three; or the masses in tank one and two,
and tank three were controlled. Convergence
from non-local regions (in one case globally) to
a stable equilibrium was shown in all cases.

A compartmental description of the three
tanks would typically consist of three compart-
ments, each linked to one tank. The difference to
the phase notion is apparent. In the one control
input cases, the total mass is controlled meaning
that the single phase consists of the masses of
the three tanks. In the two control input case
the masses in one tank and the two other tanks,
respectively, define the phases.

The “interconnection structure” ®(z) includes
the internal flows between the tanks in the one
control input case while it includes the internal
flow between the two tanks within one phase
in the two control input case. The uncontrolled
external flows ¥(z) include the flow between the
two phases, i.e. between the two first tanks or
the two last tanks, in the two control input case.
In the one control input case ¥ (z) consists of the
inflow to the first tank when the control input
is defined by the outflow from the third tank,
or vice versa. The robustness with respect to
modeling errors in ®(z) and ¥(z) is obviously
important since these terms will contain errors.
An 2-dimensional food-chain (prey-predator)
system (Ortega et al., 1999) with one control
input corresponding to the creation of prey has
been examined applying the controller (2). The
(one) phase was defined by the total mass, of
prey and predator, in the system. Global con-
vergence to an asymptotically stable equilibrium
was shown. The system can be generalized to an
n-dimensional food-chain (prey-predators) sys-
tem again using the total mass, of prey and
predators, in the system as the controlled vari-
able. The controller guarantees convergence to
), and simulations show convergence to the
single desired equilibrium on €2, but Lyapunov-
based analysis of the dynamics of €2 did, how-
ever, not succeed in this case.

Gas-lifted wells are important as a means to
produce oil and gas from hydrocarbon reservoirs
with low reservoir pressure (Golan and Whitson,
1991). The well system consist of two volumes:
volume 1 holding gas, and volume 2 holding oil
and gas. The system is divided into two phases,
the mass of gas in the two volumes and the
mass of oil in volume 2. The two control inputs
are the gas inflow to volume 1, and the gas
and oil outflow from volume 2. Analysis on a
3-dimensional model showed local convergence
to an asymptotically stable equilibrium on 2.
Further, simulations using the controller on an
industry-standard simulator (Bendiksen et al.,
1991), gave nice results.

It should be noted that convergence to 2 does
not necessarily imply convergence to an equi-
librium. This was shown on a synthetic 3-
dimensional system where the analysis indicated



and simulations showed convergence to a peri-
odic orbit in €.

The theory has also been applied to a standard
test case in process control, the Van der Vusse
reactor. Details on this are given in the next
section.

5. EXAMPLE: VAN DER VUSSE REACTOR

We consider the van der Vusse reaction kinetic
scheme

A—B—C
2A — D

taking place in a CSTR. Application of the con-
troller on this reactor based on a mass balance
model was demonstrated in Imsland (2002). Here,
we will use a model consisting of both mass and
energy balance (the two phases) taken from Chen
et al. (1995), and control heat removal, and inflow
rate of substance A.

The first phase consist of a mass balance of sub-
stance A and B, on a concentration (¢4 and cp)
basis. The second phase consists of an energy
balance that describes the cooling that is caused
by the cooling jacket. The states are the tem-
peratures in the reactor, T and in the cooling
jacket, Tk. Energy is removed from the cooling
jacket by means of a heat exchanger. The rate of
energy removal is the second input to the system.
The mass and energy balance constitutes the two
phases according to the setup in Section 2, the first
phase being inflow controlled, the second outflow
controlled. The model taken from Chen et al.
(1995) is

éa=—ki(T)ca—ks(T)c4+ui(cas—ca) (6a)

éB:kl(T)CA—kQ(T)CB—Uch (Gb)
: AER(z)  kwAr
T=u(To—T)— Tx—T) (6c
ur(To=T) = ="F5 4+ EX (Tie=T) (60)
T — — s+ Ar(T—Tk)), d
K mKOPK( uz+kwAr(T—Tk)) (6d)
where

AER(ﬁ) = kl(T)CAAHRAB
+ k2 (T)CBAHRBC + k3 (T)C?LXAHRAD (68)

and the reaction kinetics are given from the Ar-
rhenius law

ki(T) = kipeP /T, i=1,2,3. (6f)

Nominal values of the physical and chemical pa-
rameters in the model (6) can be found in Chen
et al. (1995).

Since the reactor and the cooling jacket have
different heat capacities, the transfer of energy
between them leads to asymmetric temperature
changes. This means that the energy transfer does
not fulfill the interconnection assumption Al. This
is remedied by taking the energies pC,VrT and
migCprTK as states, in stead of the tempera-
tures.

The control problem (from Chen et al. (1995))
is to stabilize the system at the working point
ca = 21470 cp = 1.097 T = 387.2K and
Tk =386.1K.
The input is then defined in terms of (2) and
1
) = ———(k3(T) 3
Py (I
+ k2(T)ep + M (M7 — Mi(z)))
I~L2 = ul(To — T)pCpVR
— VRAER(z) — Aa(My — Ms(x))),

with saturations at 4 = 35+ and 4y = 9000%<.
The phase masses are M;(z) = ca + cp and

Ms(z) = pCoVRT + mgCprTk.

The “controllability Assumption” A3 for the first
phase holds (at least) for 0 < ¢4 + cp < 7, for
a reasonable temperature range. For the second
phase, A3 3 holds only for a rather small operating
range around the desired equilibrium. The reason
for this is related to the exothermic nature of the
reaction - for some initial conditions close to the
desired equilibrium, the energy produced by the
reaction is larger than the cooling jacket capacity,
such that the total energy is increasing. A remedy
for getting a larger guaranteed region of attraction
could be to choose another equilibrium, with lower
temperatures. This could also be seen as choosing
an operating point with better controllability.
However, simulations indicate that the controller
still works well even outside the region where the
controllability assumptions for the second phase
holds, since the system dynamics take the states
into a region where the assumption holds. This
illustrates the sufficient nature of A3.

3
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Fig. 1. Simulation of Van der Vusse reactor show-
ing the states, from initial condition ¢4 = 3.0,
cg = .70, T = 400 and Tk = 390. Nominal
parameter set is shown with whole lines, set
1 is dashed, set 2 is dash-dotted.

The simulations in Figures 1-3 show that the
controller is robust to the two “extreme” cases
of parameter uncertainty taken from Chen et al.

3 Note that the input u1 in (6¢) is taken as a function of
state while checking A3 for phase 2.
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Fig. 2. Simulation of Van der Vusse reactor show-
ing the masses of the phases. Nominal pa-
rameter set is shown with whole lines, set 1
is dashed, set 2 is dash-dotted.
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Fig. 3. Simulation of Van der Vusse reactor show-
ing the inputs. Nominal parameter set is
shown with whole lines, set 1 is dashed, set 2
is dash-dotted.

(1995) in the sense that stability and convergence
to close to €2 is preserved. However the desired
equilibrium is only approximately preserved. Note
that for parameter set 2, the second input reaches
its upper saturation at convergence, such that the
theory does not really cover this case. Physically,
the saturation says that heat removal is not nec-
essary at this working point, for these parameters.
Also the controller in Chen et al. (1995) saturates
at the equilibrium for this parameter set.

Since the “mass” of phase 2 is increasing initially
(Figure 3), the controllability assumptions A3
are not fulfilled for these initial conditions. The
controller still works well, as discussed above.

6. DISCUSSION AND CONCLUDING
REMARKS

The system class is potentially advantageous to
systems with positive state variables. Positive
state variables are common in dynamic model

based on first principles. The advantage is pro-
nounced for systems with an internal structure
that is susceptible to the presented system class
and that are hard to model accurately. We have
presented several quite different examples of such
systems.

An obvious limitation of the this paper is the
requirement of state feedback control. The natural
approach to the output feedback problem is in
this case to use observers to estimate the state.
Design of observers that can exploit positivity
and system structure in a similar manner as the
feedback design, is an interesting area for further
research.

To conclude we have presented a system class for
positive systems, an accompanying state feedback
controller with robust stability guarantees, and
argued that the theory has potentially wide ap-
plicability.
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Abstract: This paper treats stabilization of multiphase flow in a gas lifted oil well.
Two different controllers are investigated, PI control using the estimated downhole
pressure in the well, and nonlinear model based control of the total mass in the
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stabilize the well flow with or without a downhole pressure measurement available.
In both cases stabilization of gas lifted wells increases total production significantly.
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1. INTRODUCTION

The use of control in multiphase flow systems is
an area of increasing interest for the oil and gas
industry. Oil wells with highly oscillatory flow are
a significant problem in the petroleum industry.
Several different instability phenomena related to
oil and gas wells exist, in this study unstable gas
lifted wells will be the area of investigation.

Gas lift is a technology to produce oil and gas
from wells with low reservoir pressure by reducing
the hydrostatic pressure in the tubing. Gas is
injected into the tubing, as deep as possible, and
mixes with the fluid from the reservoir, see Figure
2. The gas reduces the density of the fluid in
the tubing, which reduces the downhole pressure,
DHP, and thereby increases the production from
the reservoir. The lift gas is routed from the
surface and into the annulus, the volume between
the casing and the tubing. The gas enters the
tubing through a valve, an injection orifice.

1 Corresponding author

The dynamics of highly oscillatory flow in a gas
lifted well can be described as follows:

(1) Gas from the casing starts to flow into the
tubing. As gas enters the tubing the pressure
in the tubing falls. This accelerates the inflow
of gas.

(2) The gas pushes the major part of the liquid
out of the tubing.

(3) Liquid in the tubing generates a blocking
constraint downstream the injection orifice.
Hence, the tubing gets filled with liquid and
the annulus with gas.

(4) When the pressure upstream the injection
orifice is able to overcome the pressure on the
downstream side, a new cycle starts.

This type of oscillation is described as casing-
heading instability and is shown in the first part
of Figure 5 and 6. More information can be found
in Xu and Golan (1989).

There are in principle two approaches to eliminate
highly oscillating well flow in gas lifted wells: The
first approach is to increase the pressure drop



caused by friction; either by increasing the gas flow
rate, reducing the opening of the production choke
or reducing the size of the gas orifice. The second
method is the use of active control to stabilize the
well flow, which is the subject of this study.

Figure 1 shows a conceptual gas lift production
curve. The produced oil and gas rate is a function
of the flow rate of gas injected into the well.
The curve shows under which conditions the well
exhibits stable or highly oscillatory flow. It is
important to note that the average production rate
may be significantly lower with unstable, see the
line "open loop production", compared to stable
well flow, see the line "theoretical production".
The region of optimum lift gas utilization may lie
in the unstable region.

Unstable Stable
—  —»
Optimal operating
Theoretical region
production

Surface oil rate

Open loop
production

Gas injection rate

Fig. 1. The gas lift curve with the region of
optimum lift gas utilization.

Large oscillations in the flow rate from the well
causes lower total production, poor downstream
oil/water separation, limits the production capac-
ity and causes flaring. A reduction of the oscilla-
tions gives increased processing capacity because
of the reduced need for buffer capacity in the
process equipment.

Control has to a limited degree been studied
for single well systems, see Jansen et al. (1999),
Kinderen and Dunham (1998) and Dalsmo et al.
(2002). In addition a two-well simulation study
was investigated in Eikrem et al. (2002).

The scope of this paper is to study the use of state
estimation and control as a tool for stabilizing
highly oscillatory well flow in gas lifted wells. Fur-
ther, earlier work with state feedback for nonlinear
positive systems is extended to a realistic output
feedback case.

This paper is structured as follows: The system
and models are described in Section 2 and 3. A
brief theoretical basis is outlined in Section 4 and
5, while the results are shown in Section 6. The
paper ends with a discussion and some concluding
remarks.

2. SYSTEM DESCRIPTION
2.1 Single Well System

The basis for this study is a realistic gas lifted well,
see Figure 2. Reservoir fluid flows through a per-
forated well, into the wellbore, upwards through
the tubing, through the production choke, before
it enters downstream equipment which typically
will be a manifold and an inlet separator. Gas is
injected into the annulus and enters the tubing
close to the bottom of the well. The gas mixes
with the reservoir fluid to reduce the density of
the fluid in the tubing.

Production
choke
Oil out

—

Gas lift
choke

o

° o © |
-

Annulus

0 l Tubing

Injection . l

valve__ | ',
=L

== §==|
Reservoir 1o \ova
£eservoir

=7/ N

~=

Fig. 2. A gas lifted oil well
The well is described by the following parameters:

e Well parameters

- 2048 m vertical well

- 5 inch tubing

- 2.75 inch production choke

- 0.5 inch injection orifice
e Reservoir parameters

- Pr = 160 bara

- Tr =108 °C

- PI = 2.47E-6 kg/s/Pa
e Separator inlet pressure

- 15 bara
e Gas injection into annulus

- 0.8 kg/s

- 160 bara

- 60 °C

The productivity index, PI, is defined by

m
PI = Ap
where m is the total mass flow rate from the
reservoir to the well and AP is the pressure
difference between the reservoir and the bottom
of the well. This index relates the mass flow from
the reservoir and into the well to the corresponding
pressure drop. The PI is assumed constant.



It is assumed that there is no water in the pro-
duced fluids, only oil and gas. The gas/oil ratio,
GOR, is 80 Sm?®/Sm3. GOR is defined by:

GOR = —ans
9oil
Hence the GOR is defined as the ratio between the
volumetric gas rate and the volumetric oil rate at
standard temperature and pressure.

The valve model for the production choke includes
limitation for the actuator speed, closing time for
the valve is 420 sec.

2.2 Simulator

The transient multiphase flow simulator OLGA
20002, commonly used in the petroleum indus-
try, is selected as a platform for the simulations.
The state estimator and the controllers are imple-
mented in Matlab?. OLGA 2000 and Matlab are
connected using a Matlab-OLGA link* .

OLGA 2000 is a modified two-fluid model, i.e.
separate continuity equations for the gas, liquid
bulk and liquid droplets are applied. Two momen-
tum equations are used, one for the continuous
liquid phase and one for the combination of gas
and possible liquid droplets. Entrainment of lig-
uid droplets in the gas phase is given by a slip
relation. One mixture energy equation is applied.
This yields six conservation equations to be solved
in each volume (Scandpower, 2001).

The OLGA 2000 model developed for the gas lifted
well is built upon the description given in Section
2. The OLGA 2000 model consists of an annulus
divided into 25 volumes, and a tubing divided
into 25 volumes. The fluid used in the simulations
consists of two phases, oil and gas. The inflow of
oil and gas from the reservoir is modelled by use
of the productivity index, as defined in section
2. The injection rate of lift gas to the annulus
is fixed, a fast and well tuned flow controller is
assumed used. Fixed boundary conditions for the
tubing is assumed, i.e. a fixed reservoir pressure
and a fixed separator pressure downstream the
production choke.

3. A SIMPLE GAS LIFT MODEL

To be able to develop a state estimator, a sim-
plified model of the gas lifted well is required.
This model uses the same boundary conditions as
the OLGA 2000 model, but has no mass transfer

2 Scandpower AS, Norway
3 The Mathworks Inc
4 ABB AS, Norway

between the phases, only one volume for the annu-
lus and only one volume for the tubing. The flow
between the volumes, into the system and out of
the system is controlled by general valve models:

else

w— { CvVpp2 —p1) if p2 >p (1)
0

where w is the mass flow, C is the valve parameter,
p is the density, while the py — p; is the pressure
drop across the restriction. C takes on different
values for each restriction.

The pressures in the system are calculated from
the mass in the volumes and the pressure drop
through the volumes. The pressure at the top of
the annulus is calculated by use of the ideal gas
law. The pressure at the bottom of the annulus
is given by adding the pressure drop from the gas
column to the pressure at the top of the annulus.
The pressure at the top of the tubing is calculated
by the ideal gas law. The volume of the gas in
the tubing is given by the volume which is not
occupied by oil. The pressure at the bottom of
the tubing is given by adding the pressure drop
from the fluid column to the pressure at the top of
the tubing. Based upon the pressure calculations
of the system, the mass flows in and out of the
volumes are given by the valve equation (1). The
model parameters are tuned based upon OLGA
simulations.

To summarize, the following mass balances are
assumed to describe the dynamics of the gas lifted
well:

Mass of gas in annulus
Mass of gas in tubing
Mass of oil in tubing

T = wiy () — wgc(x)
Ty = wgc(x) - U)pg(l', U)
&3 = wp(x) — Wpo(z, )

The symbols are described in Table 1.

Table 1. Symbols

Symbol Description

Wiy (x) Gas flow from source into annulus
wge(z) Gas flow from annulus into tubing
wpg(x,u) | Gas flow out of tubing

wy () Oil flow from reservoir into tubing
wpo(x,u) | Oil flow out of tubing

U Production choke

M Total mass in system

A Mass control parameter

Wref Setpoint for flow controller

The simplified model herein is a modified version
of the simplified gas lift well model given in Ims-
land (2002).



4. THEORETICAL BASIS
4.1 State Estimation

A standard extended Kalman filter based on the
simplified model is developed. Numerical deriva-
tion of the simplified model is used to derive a
linear model at each time step, corresponding to
the current operating point. The covariance ma-
trices for the process and measurement noise are
diagonal matrices. The measurement noise matrix
is designed based upon the uncertainty of the mea-
surement devices. This matrix is scaled to account
for differences in the range of the measurements.
The process noise matrix is tuned to obtain a
reasonable bandwidth for the state estimator.

4.2 Positive Systems and Feedback Control

Positive systems are dynamical systems which are
described by ODEs where the state variables are
non-negative. Since mass is an inherently positive
quantity, systems modelled by mass balances are
a natural example of positive systems, see e.g.
Bastin (1999). In Imsland (2002) and Imsland et
al. (2003) a state feedback controller that exploits
positivity is developed. Further, it is shown that
the controller exhibits robust stability properties.
This work is extended by applying this method in
a realistic output feedback setting.

The purpose of the controller is to stabilize the
total mass in the system. This is achieved by
linearizing the total mass dynamics and exploit-
ing the positivity of the system. The controller
calculates the setpoint for an "inner" PI mass flow
control loop, and this setpoint is given by:

Wres = max{0, w,(x) + w;y(z) + A[M™ — M(z)]}
(2)

where M* is the total mass setpoint. The symbols
are described in Table 1.

5. CONTROL STRUCTURES

Several control structures for stabilization of gas
lifted wells are available. The possibilities of sta-
bilizing a gas lifted well by use of the measured
downhole pressure or the measured casing head
pressure have been shown in e.g. Eikrem et al.
(2002).

5.1 Kalman Filter and Measurements
The Kalman filter uses the available process mea-

surements for correction of the states in the simpli-
fied model, in this case the masses in the system.

The selected measurements are the pressure at
the top of the tubing, the pressure at the top
of the casing and the pressure at the bottom of
the well. These are realistic measurements from
an industrial point of view. Since the downhole
pressure measurement is located in a harsh and
quite inaccessible location, the effect of failure of
this measurement will be investigated.

The Kalman filter includes a check on positivity of
the state variables in the sense that state estimates
always will be positive.

5.2 Pressure Control and DHP Measurement Failure

The first control structure uses the opening of the
production choke as the manipulated variable and
the estimated downhole pressure as the controlled
variable. The PI-controller is tuned on the basis of
process knowledge and iterative simulations. The
controller, including the state estimator, is shown
in Figure 3.

DHP estimate

DHP set!:-c:i-ﬂ‘I ...........

Kalman Filter with
Model of the
Gas Lifted Well

Fig. 3. Control structure for stabilization of a
gas lifted well, by controlling the estimated
downhole pressure.

5.8 Mass Control and DHP Measurement Failure

The second control structure uses the opening of
the production choke as the manipulated variable
and the total mass in the system as the controlled
variable. In a cascade-manner, the setpoint for the
"inner" flow control loop is given by w.f, see
(2). The controller including the state estimator
is shown in Figure 4.

5.4 Simulation Scenario

The simulations follow the same scenario:

e Timeslot 1, (0-4 h): The well simulator is run
in open loop with 50% choke opening.
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Fig. 4. Control structure for stabilization of gas
lifted well, by controlling the total mass in
the system.

e Timeslot 2, (4-10 h): The well is stabilized by
use of a small choke opening, 20%.

e Timeslot 3: (10-19h): Control using estimated
variable, with DHP measurement available.

e Timeslot 4: (19-25h): Control using estimated
variable, without DHP measurement avail-
able.

e Timeslot 5 (25-30 h): Open loop simulation.

6. SIMULATION RESULTS

6.1 Pressure Control and DHP Measurement Failure

The result from the stabilization of the gas lifted
well based upon estimated downhole pressure is
given in Figure 5.

The highly oscillatory behaviour is clearly ob-
served during Timeslot 1. The flow is stabilized
by closing the valve to 20%, i.e. by increasing
the pressure drop caused by friction. The flow is
well behaved during Timeslot 3. There is a major
disturbance due to the loss of the DHP measure-
ment at 19 hours. This is reasonable since the
DHP estimate is heavily influenced by the DHP
measurement. The important issue, however, is the
fact that the flow is stable. Moreover, the flow
becomes highly oscillatory after the controller has
been deactivated during Timeslot 5. It should be
mentioned that the controller showed a close-to-
identical behaviour during Timeslot 3, when the
DHP estimate was replaced by the DHP measure-
ment.

The values for the controller parameters for the PI
controller are K, = -0.1 and 7; = 7200 sec. The
pressure measurement is given in bara.

The production of oil and gas is given in Figure
6. The stabilization of the gas lifted oil well gives
a significant increase in the produced amount of

oil and gas. This is particularly pronounced by
comparing the production during Timeslot 4 and
5, and this agrees with Figure 1. In the unstable
region, the average production rate is 6 kg/s, while
the stabilized region gives a production of 15 kg/s.

Downhole Pressure of Well
180 T
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T 140 . — Setpoint
—— Estimated DHP pressure
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o \
80 1 DHP failure v
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Opening of Production Choke
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Fig. 5. The estimated and the OLGA downhole
pressure for the well. The OLGA well is sta-
bilized by stabilizing the estimated downhole
pressure.
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Fig. 6. The oil production from the well when the
well is unstable and when it is stabilized.

6.2 Mass Control and DHP Measurement Failure

The result from the stabilization of the gas lifted
well based upon mass estimation is given in Figure
7. The downhole pressure measurement fails after
19 hours. The description of the simulation results
is identical to the description in the previous case,
see Section 6.1. Note again the disturbance when
the DHP measurement fails.

Figure 7 reveals that the controller quickly takes
the system mass to the desired value, or close
to, due to model and estimation error. It can
be observed that the input continues to move
afterwards. This can be explained by the fact



that the point on the "constant mass"-manifold
which the system initially converges to, is not the
closed loop equilibrium. The slow dynamics on the
manifold takes the system to this equilibrium.

The controller parameters for the "inner" mass
flow control loop are K, = 0.004 and T; = 5 sec,
while the parameter for the "outer" total mass
control loop is A = 0.003. The mass is given in
kg.

The production of oil and gas for the system in
open and closed loop is similar to the results given
in Figure 6.

3 x10° Total Mass in System
T T : T
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—— OLGA total mass A
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Opening of Production Choke
T
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Fig. 7. The estimated and the OLGA total mass
for the well. The system is stabilized by con-
trolling the estimated total mass.

7. DISCUSSION AND CONCLUDING
REMARKS

This study shows how a low order model in a
Kalman filter can provide useful information for
control purposes. In particular it is shown how a
state estimator can alleviate the common situation
in which a difficult accessible downhole measure-
ment fails. It is further shown that stabilization
of gas lifted wells is important since it gives an
increased production, in this case the production
of oil and gas is more than doubled, see Figure 6.

The state estimator functions well both with the
traditional PI-controller and the nonlinear con-
troller for positive systems. In this paper the con-
trollers are not pushed to the limit to assess the
potential of the nonlinear controller. The possible
merit of the nonlinear controller has been showed
in a realistic output feedback application.

The simplified model needs to be well tuned to
reflect the dynamics of the real system as the DHP
measurement fails. The main challenge is related
to the estimation of downhole conditions upon
the loss of the DHP measurement. In practice the
tuning is done by adjusting the valve parameters,

see (1). Typically they have been changed +25%
compared to their original values. It should be
mentioned that the low order model is observable
at all times.

An alternative to the current approach is the use
of an augmented Kalman filter in which model
parameters are tuned online.

To re-iterate there are alternative control struc-
tures, that do not involve downhole measurements
nor estimation, that are able to stabilize the highly
oscillatory flow for this particular well. There is
still considerable value in the problem addressed
in this paper since other more complex well com-
pletions may require measurements or estimates of
downhole conditions.
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Abstract

In this paper the H,, control problem for de-
scriptor systems is considered. This problem
can efficiently be solved by specialization of a
recent solution of the general quadratic per-
formance control problem to the H,, case.
The solution is given in terms of strict lin-
ear matrix inequality (LMI) conditions. Con-
trary to previous solutions of the descrip-
tor Ho, control problem, these synthesis con-
ditions can easily be evaluated by standard
LMI solvers. The presented synthesis result
is applied to a S/KS Hy, control problem
from binary distillation control. The process
model of the underlying separation process
is given by means of a phenomenological de-
scriptor model which describes the movement
of concentration profiles in rectifying and
stripping section of the distillation column.
Keywords: Descriptor control; Mixed sen-
sitivity problem; distillation control; Lin-
ear matrix inequalities; Generalized Bounded
Real Lemma

1. Introduction

Descriptor systems (sometimes also referred
to as singular, semistate or differential-
algebraic equation (DAE) systems) describe
a broad class of systems which are not only of
theoretical interest but also have great prac-
tical significance. Models of chemical pro-
cesses for example typically consist of differ-
ential equations describing the dynamic bal-
ances of mass and energy while additional al-
gebraic equations account for thermodynamic
equilibrium relations, steady-state assump-
tions, empirical correlations, etc. [3]. In

Institut fiir Systemtheorie, Universitdt Stuttgart,
Pfaffenwaldring 9, D-70550 Stuttgart, Germany.

mechanical engineering descriptor systems re-
sult from holonomic and non-holonomic con-
straints [11]. Also in electronics and even
in economics modeling in terms of descriptor
systems is frequently encountered [5].

Descriptor systems are able to describe sys-
tem behaviors, that cannot be captured by
“non-descriptor” systems (i.e. systems gov-
erned only by differential equations) [1].
Therefore index reduction techniques (i.e. re-
duction of a descriptor system to an ODE)
necessarily are connected to a loss of infor-
mation for high index systems. Due to this
fact in recent years much work has focused on
analysis and design techniques for high index
descriptor systems (see [4] for an overview).
For linear systems many of the standard de-
sign techniques for state-space systems have
been extended to descriptor systems. Espe-
cially there has been a focus on LMI synthe-
sis techniques which guarantee bounds on in-
duced vector norms (e.g. Hs, Hy-norm) for
input-output descriptions of the form

&
2
—~

o~
N—r

Il

Ag(t) + Bw(t), t >0, £(07) =&,
z(t) = C&(t) + Dw(t). (1)

Here £(t) € IR™ denote the descriptor vari-
ables, w(t) € IR™ the external input vari-
ables, and z(¢) € IR™ the external output
variables. E, A, B, C, D are constant sys-
tem matrices of appropriate dimensions with
E being a possibly singular ng X ng matrix
with ng > rank(E) =: r. Usually the LMI ap-
proaches to this kind of problems (e.g. [6, 9])
assume an F-matrix in SVD form, i.e.

_ %0 _yT XT
E_[O 0]’ r=xT e R™". (2



Theoretically there is no loss of generality con-
nected to this assumption since a transfor-
mation to an F matrix of the form (2) is
always possible. However, this transforma-
tion may be ill conditioned. This is espe-
cially the case for mechanical descriptor de-
scriptions where point masses of extremely
different magnitudes are involved. Further-
more the approaches based on (2) result in
synthesis LMIs with all occurring system ma-
trices partitioned according to (2). This is
not only notational inconvenient but means in
fact that the standard case (regular E matrix)
is not included. These shortcomings are over-
come for the general quadratic performance
(GQP) output feedback control problem for
descriptor systems in [10].

In this paper the GQP synthesis result is spe-
cialized to the most important subproblem,
namely the descriptor Hy control problem.
The solution of the controller synthesis prob-
lem is based on congruence transformation
of a corresponding analysis result in descrip-
tor form. The analysis result basically is an
LMI based test (the generalized bounded real
lemma) which allows for a given closed loop
system to decide whether or not a prescribed
Hy, norm bound is met or not. This test is
given here for convenience of the reader. The
transition to the controller synthesis solution
is only briefly outlined. Details can be found
in [10]. The focus here is to show the appli-
cability of the descriptor H, controller syn-
thesis result to realistic control problems in
process control. To our knowledge, this is the
first application of a descriptor Hy, controller
synthesis result to a realistic control setup.

2. The Generalized Bounded Real
Lemma

In contrast to state space system descriptions
a descriptor system may allow non-unique so-
lutions which possibly contain impulses. This
certainly does not fit into the internal sta-
bility requirement which goes along with the
H,-norm bound requirement in the standard
H, control problem. As a generalization one
therefore considers regular (i.e. descriptor sys-
tems with a unique solution) and impulse-free
descriptor systems. Descriptor systems which
additionally are stable are termed admissible

[6]. An LMI based characterization of admis-
sible descriptor systems (E, A, B,C) (i.e. de-
scriptor systems (1) with D = 0) which are
H-norm bounded is given in the following
proposition:

Proposition 2..1 (Generalized bounded real
lemma, GBRL) A system (E, A, B, C) is a
stable index one system with

IGlloo <7, G(s):=C(sE~A)'B (3)

iff there exists a matrix X with

E™X =XTE>0 (4)
ATX + XA XTB 7T

B(v,X) := BTXx —~I 0 | <O.
C 0 —~I

(5)

Proof. See [10]. O

Remark 1. The consideration of the case
D = 0 in the previous proposition is not re-
strictive since every descriptor system (1) can
be reformulated as a descriptor system with
D = 0 if additional descriptor variables with
€,44(t) := Dw(t) are introduced.

Remark 2. The LMI (4) is non-strict. The
key towards a strict inequality is the symme-
try constraint ETX = XTFE expressed in (4).
All X fulfilling this constraint can be parame-
terized in terms of the fundamental subspaces
of F as

X=XE+E*wW, X=XT (6)

with E+ denoting a full rank matrix such
that ETE+- = 0 and X, U being matrices of
appropriate dimensions. The parameteriza-
tion (6) in X, W is valid since we may write
(4) as VETUTU-TXVT = VXTU-IUEVT
with Fy,q := UEVT being a SVD decompo-
sition of E. With X' := U TXVT we get

!

ET X' = X'"Eyg, ie. X' = [;}5 )?4] with
a block structure corresponding to E,,g. This
X' clearly can be parameterized as in (6). Fi-
nally we observe that the (1,1)-element in (5)
implies the regularity of X. In view of (4)
the parameterization (6) can be strengthen by
X > 0. A strict inequality characterization of
a H,,-norm bound < then can be derived by
substituting (6) into (5) and replacing (4) by
X >0.



AY; + YTAT + B,Cx + (BzéK)T
(A + BzﬁKcz)T + Ak

(A + BzﬁK02) + fi’}r{ B,
ATX, + XFTA+ BxCy + CTBY XTB1  CT | <0, (7)

yirer

BT BT X, —I 0
Clyvl 01 0 —’YI
Y, := RET+ETWy, R>0, R Et
_ L T+ >0 (8)
X, = SE+ E'wWyg, S >0, E S

Note that the matrix X is over-parameterized
by (6) with respect to the variables not af-
fected by the positive definiteness requirement
in (4). This may be used to put further con-
straints on X in (6).

The previous remark shows how to check H,-
norm bounds with standard strict LMI solvers
as e.g. the LMI toolbox in MatLab. However,
the main importance of this remark will be-
come clear in the context of the corresponding
H, controller synthesis problem for DAE sys-
tems which is addressed in the next section.

3. The H,, Control Problem for
Linear Descriptor Systems

Consider a generalized plant X g that is a de-
scriptor system

Ex(t) = Ax(t)+ Biw(t)+ Bou(t)
XE z(t) = Ciz(t)
y(t) = Carx(t)

(9)

where x(t) € IR™* denotes the descriptor vari-
ables, u(t) € IR™ the control input, w(t) €
IR™ the external input, 2(t) € IR™ the ex-
ternal output, and y(¢) € IR™ the measured
output. A, B;, C; are constant matrices of ap-
propriate dimension and E is a possibly sin-
gular matrix having the same dimension as
A. Notice that there is no loss of generality
in the descriptor setup in neglecting a direct
fed-through of control/external input to the
measured/external output since such a depen-
dency also can be expressed by means of an
augmented descriptor vector x [6].

The control problem is to find a linear output
feedback controller such that the undisturbed
closed loop (w = 0) is an admissible system
and such that the transfer matrix from the
external input w to the external output z is

Hy-norm bounded by a prescribed number
v > 0.

With a controller Kg,

k. PCWH=AkC(t)+Bry(t)
P u(t)=Ck((t)+Dxy(t), ((t) € R™

(10)

parametrized by Ax, Bk, Ck, Di the closed
loop system is given by
Eaé(t) = Aa(t) + Baw(t) (11)
z(t) = Cu€(t), &(t) € R,

B, — E 0 A, — A—i—BzDKCz BQCK
cl — O E ) c — BKC2 AK
B
By = |:0 ! :| y Co = [Cl Onzxnz] . (12)
Mg XNy

Then all controllers Kg solving the H,, con-
trol problem for descriptor systems are char-
acterized by the following theorem:

Theorem 3..1 Consider a plant (9) and a
controller (10). There exists a controller pa-
rameterization A, Bi, Ck, Dk such that
the undisturbed closed loop system (11) is ad-
missible with ||Gelle < 7 (with Gg(s) =
Cu(sEy — Ay)"'By) if and only if the LMIs
(7), (8) at the top of the pagel admit a solu-
tion {R, S, Wy, Wx, AK, BK, C’K, ﬁK}

Proof. The Theorem is a special case of the
GQP result in [10]. Here only a brief sketch
of the proof is imparted.

Application of the generalized bounded real
lemma (Proposition 2..1) to the closed loop

'Here ET denotes any generalized inverse with the
property EETE = E.



system matrices (12) renders the necessary
and sufficient LMI/BMI conditions

EYX = XTE,; >0, (13)
ATX XA, XTB, CT
cl + cl cl cl
BYX —~I 0 | <0. (14)
Cq 0 —~1

This matrix inequality is clearly nonlinear due
to products of unknown controller matrices
with the matrix X. The idea in the fol-
lowing is to introduce new matrix variables
(“linearizing change of variables”) such that
(13), (14) can be replaced by LMIs. This is
not possible directly but with an intermediate
step, i.e. a congruence transformation of (13),
(14). Then, new variables can be introduced
such that we get synthesis LMIs. These LMIs
are constructive since the new variables pa-
rameterize a system of linear equations which
uniquely can be solved for the controller ma-
trices. With Y := X! and

i X1 Xo _ i Y,
= el vl

X;,Yi € B>, (15)

non-singular transformation matrices
I X
o L I o

can be defined such that XII; = II, holds
true. Since II; is non-singular, a non-singular
congruence transformation

i ELXTL =TI XTELIO; >0 (17)

T
o7 Ach+XAC, XTB, CX
T BIX —I 0 |¥g, <0
Ca 0 —~I

with Upy, := diag(Tl;,I,I)  (18)

of (13), (14) is possible. The matrix inequality
(18) together with the linearizing changes of
variables

Dg:=Dg (19)

Ck :=Cg Y3+ DgCY;

By :=X3Bx+X{ByDg

Ag:= XT(A+ BaDgCo)Yi+ XTApYs+
+ X3 BgCyY1+X{ BoCk Y3

leads to (7). Inequality (17) becomes

= 2[R BT Y=o e

with R > 0, S > 0. The strict inequality in
(8) can be ensured by means of the degrees of
freedom in R, S (see Remark 2).

To show sufficiency an inversion of the con-
gruence transformation (17), (18) has to be
established. More precisely the validity of
XTIy = IIs with non-singular matrices Iy, Iy
as in (16) has to be shown. Some lengthy cal-
culations show that this condition always can
be established if

X1Y1+XoY3=1 (21)
XaYi + XaY3 = 0 (22)

hold true with non-singular matrices X3, Y3
(these equations correspond to the block ma-
trices of X, Y in (15) together with the sym-
metry constraints

E™,=XJE, EY, =Y, ET, E™X, = X E.
(23)

A detailed analysis shows that (21), (22) al-
ways can be established provided the synthe-
sis LMIs (7), (8) admit an solution. O
The preceding (conceptual) proof is construc-
tive: with a solution of the LMIs (7), (8) it is
possible to establish (21), (22) by simple fac-
torization techniques. Then the linear equa-
tions (19) can be solved for the controller ma-
trices DK, CK BK, AK

4. Descriptor Control of a Binary
Distillation Column

We consider separation of a binary mixture
in a 40 tray distillation column with one feed
stream. A schematic representation of the
process is given in Fig. 1 (a). Exemplary
we consider the separation of two alcohols
(Methanol,n-Propanol). The mixture is fed
in the column with the feed flow rate F'. Feed
flow rate F' and feed composition zp (mo-
lar fraction) are determined by upstream pro-
cesses. The stationary feed flow rate and feed
composition are corrupted by disturbances.
The feed stream separates the column into
rectifying- (upper part of the column) and
stripping section (lower part of the column).
Separation is achieved due to intensive heat
and mass transfer between liquid flow and
countercurrently rising vapor flow. At the
bottom of the column the liquid flow splits
up into a liquid product stream which is re-
moved with flow rate B from the column and
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Figure 1: (a) Distillation column (scheme)
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a stream which is, after being heated in the
reboiler, recirculated back to the column as
vapor flow with flow rate V. At the top of the
column the vapor flow with the accumulated
more volatile product is completely condensed
in the condenser. The condensate is partly
pumped back in the column with a flow rate
L (reflux stream) and is partly removed as
the distillate product with a flow rate D [2].
We consider the distillation column in “LV”
configuration, that is: liquid flow rate L and
vapor flow rate V are considered to be control
inputs. Measured variables are the concentra-
tions on trays 14 and 28.

The control objective is to stabilize the prod-
uct concentrations at the top and bottom of
the column at their stationary values. The
control relevant dynamics of the process can
be captured by a reduced model of the distil-
lation column [8]. This model assumes that
the concentrations of the lighter component
(molar fractions, denoted by z in the follow-
ing) in the rectifying and stripping section can
be described by the movement of a concentra-

*¥ ¥ X O O

* O
|

np

(b) Subsystems of the column

Azpg 0 = * %
As, 0 =* x %
Azpyr| + [+ = [ ] + [% * [ ]
Asg 00 AF * ok AV
Azp 00 0 =*

[Azp, As,, Az, Asg, Azp) " (24)

tion profile. A descriptor model with concen-
tration xp in the reboiler, position of profile
sy in the rectifying section, concentration s
for the feed tray, position of profile s; in the
stripping section, and concentration xp in the
condenser as descriptor variables is given in
(24). Here “¢” denotes numerical entries. A
detailed derivation of the model and numeri-
cal values are given in [7].

4.1. S/KS Mixed Sensitivity Prob-

lem Setup

The control problem is solved in terms of a
mixed sensitivity problem depicted in Fig. 2
with G representing the plant, K the con-
troller, and Wy, Wy, V frequency depen-
dent weighting matrices. Controller design
by “loop shaping” requires a selection of the
weighting matrices such that the solution of
the H, control problem
H Wi(I+GK) 'V (25)

!
—WoK(I +GK)™'V Hoo <7



results in a well behaved closed loop system.
In this setup V' can be interpreted as a filter

Yy u + ] *1
K %%
_ G n 1

Figure 2: A mixed sensitivity configuration

which models the disturbance considered to
be relevant for the problem at hand. With
S(s) := (I + GK)~! being the sensitivity ma-
trix of the closed loop the expression (25) with
v = 1 suggests to choose W; to be approxi-
mately the inverse of the wanted behavior for
S(s) and analogously Ws to be the inverse of
K - S. General indications on selecting these
weighting matrices can be found in [12].

In case of the distillation control problem at
hand an indirect approach is taken: with sta-
bilizing the measured concentrations x14, Z2g
also the stationary profiles are fixed and thus
approximately also the product concentra-
tions. In order to realize this idea the descrip-
tor S/KS Hy control problem depicted in
Figure 2 (with G being the descriptor model
(24)) is solved by the outlined descriptor H,
synthesis procedure. The synthesis LMIs are
jointly optimized with respect to 7. A final
value of 4y = 1.01 shows that the control ob-
jectives are approximately met. The result-
ing controller is tested in simulation with a
first principles model of the distillation pro-
cess and shows a good control performance
even for large input disturbances.

5. Conclusions

We presented a constructive solution to the
descriptor H,, control problem. Synthesis
conditions are given as numerically feasible
strict LMI conditions. The resulting con-
troller computation is successfully applied to
a realistic control problem from chemical pro-
cess control. To our knowledge this is in fact
the first application of descriptor Hy, control
to a control problem with real physical back-
ground. Future work is concerned with ro-
bustness considerations in case of descriptor

[1]

[2]

[3]

[4]

[10]

[11]

[12]

models of the distillation column with norm
bounded uncertainties.
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Abstract: The objective of almost all controller tuning rules found in the literature,
going back to the classic PID rules of Ziegler an Nichols (1942), is to get the
“fastest” possible closed-loop response, subject to maintaining stability with
reasonable robustness margins. This gives a maximum limit on the controller
gain. In practice, however, we often want control to be as smooth and “slow”
as possible, subject to satisfying some minimum performance requirements. This
gives a minimum limit on the controller gain, and the goal of this paper is to derive
this minimum limit, when the performance requirements is to achieve a specified
level of disturbance rejection. Together with the more traditional tunings rules
this results in a range for the acceptable controller gain.

Keywords: Process control, PID tuning, averaging control, measurement noise

1. INTRODUCTION

The objective of almost all PID tuning rules found
in the literature, e.g., (Ziegler and Nichols, 1942)
(Cohen and Coon, 1953) (Astrom and Hagglund,
1995), (Rivera et al., 1986), is to get the “fastest”
possible closed-loop response, subject to main-
taining stability with reasonable robustness mar-
gins. The model-based direct synthesis approaches
of Rivera et al. (1986) and Smith and Corripio
(1985) contain the closed-loop time constant 7. as
a tuning parameter, but also in these works the
emphasis is to obtain a lower bound on 7. (fast
response). To obtain stability and robustness, the
value of 7, is limited by the effective time delay
0 of the process, and typically a value 7. = 6 is
selected (Skogestad, 2003). For processes with a
small effective delay this may lead to an unneces-
sary fast response, and a larger value of 7. (slower
response) should be used. However, the response

! E-mail: skoge@chemeng.ntnu.no; Phone: +47-7359-
4154; Fax: +47-7359-4080

cannot be too slow, because otherwise we do not
achieve acceptable performance. In this paper we
assume that the main performance specification is
that the disturbance effect on the output should
be bounded.

In summary, the goal of this paper is the to de-
rive conditions for the “slowest possible” response
(upper bound on closed-loop time constant 7;
lower bound on controller gain K_.), subject to
achieving acceptable disturbance rejection. There
has been work along these lines in the literature on
controllability analysis and decentralized control
(Hovd and Skogestad, 1992) (Hovd and Skoges-
tad, 1994) (Skogestad and Postlethwaite, 1996),
but the implications of these results on controller
tuning have not been considered.
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Fig. 1. Block diagram of feedback control system.

2. DERIVATION OF LOWER LIMIT ON
CONTROLLER GAIN

The linear transfer function model in deviation
variables is written (Figure 1)

y = g(s)u + ga(s)d (1)

where wu is the manipulated input (controller out-
put), d the disturbance, y the controlled output,
g(s) the process transfer function, and g4(s) the
disturbance transfer function model. The Laplace
variable s is often omitted to simplify notation.

With feedback control we have u = ¢(s)(ys — v),
where ¢(s) is the feedback controller and we in
the following do not consider setpoint changes,
i.e. ys = 0. The effect of the disturbance d on
the control output y under closed-loop control is
then

y = %d = S(s)ga(s) -d 2)

where S = 1/(1 4+ L) is the sensitivity function
and L(s) = g(s)c(s) is the loop gain.

We consider the following performance require-
ment:

e The (steady-state) output variation y in (2)
should be less than |ymaz| in response to any
sinusoidal disturbance of magnitude |dp]|.

For simplicity we assume that the values of |ymqz|
and |dp| are constant, independent of frequency.
From (2) the performance requirement |y(jw)| <
Ymaz then gives

1S(jw)! - 19a(jw)| - |do] < [Ymae|
or equivalently

|9a(jw)] - |do

|ymaz|

1+ L(jw)| 2 = [Ga(jw)| (3)

where we have introduced the scaled disturbance
gain

d
Gddéfgd' | 0| (4)

|ymaz|

The requirement (3) is illustrated in Figure 2.

We define the bandwidth wp as the frequency
where |S| = 1/|1 + L] first crosses 1 from below,
and wy as the highest frequency where |G| crosses
1, i.e. |G4(jwq)| = 1. From (3) and Figure 2 we
must require wg > wy, that is, wy provides a lower
limit on the closed-loop bandwidth for acceptable
disturbance rejection.

10°

10° b

10}
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107 10~ 10° 10 10°
Frequency

Fig. 2. Performance requirement |1 + L| > |G4|
(3) is satisfied at all frequencies.
—0.25s
Data: gg = g = 4%, |Ymaz| = 1,|do| = 1, PI-

control with K, = 4.313 and 77 = 0.82.

At low frequencies w < wp [rad/s], within the
closed-loop bandwidth, we have |L| > 1 and (3)
gives |L| > |Gy4|, which gives the following lower
limit on the frequency-dependent controller gain
for acceptable disturbance rejection

. |9a(jw)| - |do|
c(jw)| > ————; w<w 5
1GN 2 19T Tmae] z O
which may be rewritten as
) = ULy cwn ()

- )
|yma:c |

where |ug(jw)| def % is the magnitude of

the input change needed to reject the disturbances
at frequencies where |L| > 1. This interpretation
follows since at low frequencies y ~ 0 and from
(1) the required input to reject the disturbance is
uo = —(94/9)do. From (6) we derive the following
useful rule at lower frequencies where control is
effective:

e The minimum controller gain at a given
frequency is approximately equal to input
change required for disturbance rejection di-
vided by the allowed output variation.

As expected, tight control (with |ymez| small)
requires a large controller gain |c|, as does a large
disturbances (with |ug| large).



2.1 Load disturbance

For the special (and very common) case of an
input (load) disturbance (g4 = ¢) the required
input change equals the disturbance magnitude,
|ug| = |dol|, and the bound (5) becomes

|do

Load disturbance : |c(jw)| >

)
|ymaw|

where |dy| is the magnitude of the input (load)
disturbance. This bound is illustrated in Figure 3
for a PI- and PID-controller.

10°

10" f

10"

10°

107 10~ 10 10 10°
Frequency

Fig. 3. Controller gain |c| as a function of fre-
quency for PI- and PID-controller.
Data Pl-controller: K, = 4.31,7;7 = 0.82; PID-
controller: K. = 4.31, 71 = 0.82,7p = 0.20.

Both for a PI-controller and for a PID-controller 2

1
CPID5(8) =K. (1 + — + TDS) (8)
TIS

the minimum value of the controller gain |c(jw)|
as a function of frequency is always equal to K,
(independent of the values of 7; and 7p) (see also
Figure 3):

min |cprp(jw)| = K.

For a well-tuned PI- and PID-controller, wpg is
about at the frequency where the controller gain
reaches it minimum, and from (7) we then get
the following bound in order to achieve acceptable
disturbance rejection with PI- and PID-control:

|do

Load disturbance :
|ymaw |

K. > (9)

For PID tuning rules that are parameterized in
terms of a single tuning parameter, like IMC-
PID(Rivera et al., 1986) or SIMC-PID(Skogestad,

2 In this paper we consider the “ideal” PID controller in
(8) and the ZN-settings are assumed to be given for this
form.

y w< wB(7)

2003), we can from the value of K. obtain the tun-
ing parameter (e.g. 7.) and from this obtain the
remaining controller parameters (77 and 7p). For
example, the SIMC PI-tunings(Skogestad, 2003)
for a first-order delay process

p 1
R (10)
are
1 1
p= 11
k 1.+86 (11)
77 = min (71, 4(7. + 6)) (12)

and with a given value of K., we can obtain 7,
from (11) and then obtain 7 from (12).

3. PI-LEXAMPLE

Consider a first-order with delay process with time
constant 71 = 6 and time delay 6 = 0.25:

6_0'253

6s+1

g(s) =4 (13)

The performance requirement is that the output
deviation should stay within +|ymez] = 1 in
response to a step input (load) disturbance of
magnitude |do| = 1, which from (9) requires K, >
|do|/|ymaz| = 1 (for a sinusoidal disturbance). It is
also desirable that control is as smooth as possible,
which means that we want K. as small as possible.

Tuning for fast response. The “closed-loop”
Ziegler-Nichols (ZN) settings for this process are

K, =4313, 7, = 0.82 (14)

We note that K. is 4.3 times the minimum re-
quired value, so we expect that the output re-
sponse is much better than the requirement. This
is confirmed both by the frequency plot in Fig-
ure 2, as well as the time response to a unit
step input disturbance in Figure 4. The output
deviation in Figure 4 is less than 0.2, well below
|Ymaz| = 1. However, because of the high con-
troller gain, the input usage and also the output
response is sensitive to measurement noise n on y
(dashed line in Figure 4).

Tuning for smooth response. The above re-
sponse is unnecessary fast so the controller gain
may be reduced. We choose K. = |do|/|ymaz| = 1.
With k=471 =6,6 = 2.5 we get from (11) that
K. =1 corresponds to 7, = 1.25, and from (12)
we obtain the following SIMC-settings:

K.=1, m7=6 (15)
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Fig. 4. Response to step load disturbance with
“fast” ZN-PI controller (14).
Dashed line: With measurement noise. Solid
line: No noise

The corresponding disturbance response in Fig-
ure 5 has a maximum output deviation of about
0.7, which is below |ymqez| = 1, and input usage
is smooth with no sensitivity to noise. Thus, this
tuning is preferred in practice.

Remark: We may reduce K. further below 1 and
still achieve an output deviation less than vy,,4, =
1. The reason why (9) is not tight in this case,
is mainly that the expression is derived for a
sinusoidal disturbance whereas we here consider
a step disturbance.
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Fig. 5. Response to step load disturbance with
“smooth” SIMC PI controller (15).
Dashed line: With measurement noise. Solid
line: No noise

4. DISCUSSION
4.1 Averaging level control

A well-known case where a low controller gain is
desired is for “averaging level control” where we
use a tank in order to smoothen flow disturbances.
Here the main control objective is to have smooth

input usage (smooth flow variations), subject to
the requirement of stabilizing the system and
keeping the level within bounds when there are
flow disturbances. In (9), |dp| is the magnitude
of the flowrate change (|Ag|) and |ymqz| is the
allowable level change (|Ahmeg|)- From (9) the
minimum controller gain for averaging level con-
trol is

|Aq|

K, > =4
- |Ahmaz|

(16)

which agrees with the value normally recom-
mended (e.g. (Marlin, 2000)). The process transfer
function g(s) from u (flowrate ¢) to y (level h) is
close to integrating (with 7 in (10) very large)
and can be written

_ kl —0s

9(s) = e

where k' = k /7y is the slope of the response. From
the SIMC-rule for the controller gain in (11) we
get 7. + 6 = 1/(K k'), which upon substitution
into (12) gives the integral time

4

~ KR an

TI

which agrees with the industrially recommended
value in Fruehauf et al. (1994).

4.2 Controllability implications

An approximate maximum value of the controller
gain is achieved by selecting the desired closed-
loop response time 7, in (11) equal to zero. This
gives the “maximum” controller gain
1 T1 1
Kc,mam = E ? = m (18)
If the “maximum” controller gain in (18) is
smaller than the “minimum” controller gain com-
puted above, then the process is not controllable
— at least not with PID control with reasonably
robust tunings. In words, the speed of response
required for disturbance rejection is faster than
what can be achieved with the given time delay.
For example, for a load disturbance the minimum
controller gain K. ,,.;, is given by (9), and requir-
ing K¢ maz > K¢ min for controllability gives an
upper bound on the allowed delay

|yma:c| 71
o< do| &
The right hand side represents the minimum re-
sponse time, and we note, as expected, that a
small response time is required if we have a tight
performance requirement (|Ymqe| small), a large
disturbance (|dp| large), or a “fast-acting” distur-
bance (k' = k/m large).




4.8 Generalization to multivariable systems

The results in this paper can be directly gen-
eralized to decentralized control of multivariable
systems by introducing the closed-loop distur-
bance gain (Hovd and Skogestad, 1992) (Hovd
and Skogestad, 1994) (Skogestad and Postleth-
waite, 1996).

5. CONCLUSION

The requirement of acceptable disturbance rejec-
tion (output deviation less than |y,q.| in response
to a sinusoidal disturbance of magnitude |dg|),
results in a lower limit (5) on the controller gain.
In words, the minimum controller gain at a given
frequency is approximately equal to input change
required for disturbance rejection divided by the
allowed output variation. For a load disturbance
and PI or PID control this requirement becomes

Kc Z |d0|/|ymaz| (9)
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