
DEVELOPMENTS IN MULTI-RATE

PREDICTIVE CONTROL

J.A. Rossiter ∗ Tongwen Chen and Sirish L. Shah ∗∗

∗ Dept. of Automatic Control & Systems Engineering,

Sheffield University, Mappin Street Sheffield, S1 3JD,

email: J.A.Rossiter@sheffield.ac.uk
∗∗ University of Alberta, Edmonton, AB, Canada, T6G 2V4.

tchen@ee.ualberta.ca,sirish.shah@ualberta.ca

Abstract: Much of the work on predictive based multi-rate control has been based
on the GPC algorithm (Clarke et al, 1987). However academic practitioners in
single rate predictive control tend to favour approaches with better stability and
performance guarantees. This paper demonstrates how those approaches might be
deployed in a multi-rate framework and discusses some issues that arise.
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1. INTRODUCTION

A system is considered multi-rate (MR) when the
inputs and outputs of a system are sampled at
different rates. Typically this would be necessary
if there were no restrictions on the speed at which
the input is updated (denote this the fast rate
(FR)), but output measurements are available
only at a relatively slow rate (SR), for instance
where a laboratory test is needed. MR systems
take many forms depending on the system dimen-
sions and the sampling rates used. Although quite
common in industry, such systems have recieved
relatively little study from process control (Li et

al, 2001; Sheng, 2002) academics and hence this
paper is preliminary work and we will adopt the
simplest case of a dual rate (DR) system where
only two sample rates are present. Moroever we
assume that the output sample period is a simple
multiple of the input sample period. The study of
more complex cases constitutes future work.

One reason why MR systems may have recieved
little attention is that one cannot easily use all the
tools of linear control design. Single rate control
assumes that an output measurement is available
every sampling instant, then using z-transform
theory one can analyse the behaviour of the nom-
inal loop. However, such linear theory is not ap-

plicable when output measurements are available
only periodically and hence at first appearances
conventional design approaches cannot be used.
There are two popular solutions to this difficulty:
(i) inferential control (IC) (Lee et al, 1992) and
(ii) lifting (Kranc, 1957).
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Figure 1: Internal model structure

IC makes use of an internal (see figure 1 (Garcia et

al, 1982)) process model which operates at the fast
rate (FR). This model is used to supply output
estimates at the fast sample rate much like a state
estimator supplies state values to be used in lieu of



the actual (and unknown) state. However, this ap-
proach needs more study as there are several ob-
vious weaknesses: (i) the state estimator/internal
model receives actual output updates very slowly
and this could have repercussions on accuracy and
(ii) the approach relies on knowledge of a fast
SR model which would have to be identified from
MR data; recent work (Li et al, 2001) has shown
that this is possible in some cases but a clear
understanding of the robustness of these models
constitutes work in progress.

A more popular alternative (Kranc, 1957) has
been to use lifting. In essence this transforms a
MR single input single output system (SISO) to
a single rate multi input multi output (MIMO)
system or if the system were already MIMO it
increases the dimension. As the lifted system is
SR (the slow rate at which the output is updated)
one can use linear design and analysis methods.
However: (i) there is the price of working in a
significantly increased dimension and hence the
design itself maybe far more complex and (ii)
there is the so called causality constraint (Chen
et al, 1994; Sheng et al, 2002) whereby one must
ensure that the structure of the controller does
not make current controls dependent on future
controls. This implies a structure constraint that
the feedthrough term in the controller is block
lower triangular. For both IC and lifting based
schemes there is also the issue of intersample rip-
ple (Tangirala et al, 2001); to avoid this requires
additional constraints in the controller structure.

This paper will contrast two alternative model
predictive control (MPC) methods in both the
lifted and IC frameworks with the aim of giving
the reader a clear summary of what they gain and
lose with each scenario. Section 2 will describe the
necessary notation and background information.
Section 3 will discuss a finite horizon algorithm
(denoted FHMPC) and section 4 will develop
and discuss an infinite horizon algorithm denoted
(IHMPC). Section 5 will discuss the impact of
constraints and section 6 presents the conclusions.

2. BACKGROUND AND OBSERVATIONS

2.1 Model predictive control

For simplicity of notation the following is re-
stricted to single input single ouput systems,
however the results are equally applicable to
MIMO processes. Assume for now a single rate
process. Design a finite horizon predictive con-
trol (FHMPC) law at the FR along the lines of
GPC (Generalised predictive control (Clarke et al,
1987)) or Dynamic matrix control (DMC,(Cutler
et al, 1980)), that is at every sample instant min-
imise a performance index of the form:

min
u0,...,unc−1

J =

ny∑

i=0

(r − yi+1)
2 +

nc−1∑

i=0

λ(ui − uss)
2

s.t.

{
ui = uss, i ≥ nc

constraints
(1)

where uss is the current estimate of the input re-
quired to remove steady-state offset 1 . The signals
u, y, x, r are the inputs, outputs, states and set
point respectively. The constraints include limits
on the input, input rate and states and are as-
sumed affine in the degrees of freedom (d.o.f.).

The weakness of FHMPC is that there are no
guaranteed a priori stability results, largely be-
cause of the mismatch between the prediction
assumption and the closed-loop behaviour. For
computational reasons one requires the no. of
d.o.f. (nc) to be small but as a consequence the
implied constraint (see (1), ui = uss, i ≥ nc, is not
close to the closed-loop evolution that is desired.
This inconsistency can result in the performance
being poor because the minimisation is ill posed;
that is one is minimising predicted performance
subject to an artifical prediction constraint that
is never invoked. Hence the minimum may lie
a good distance from the minimum that would
arise without the artificial constraint. The effect
is much less marked for larger nc but can cause a
significant degradation when nc is small.

2.2 Infinite horizon MPC

In order to improve the properties of MPC, many
authors have proposed the use of infinite costing
horizons. One of the most popular of the IHMPC
algorithms is given in (Scokaert et al, 1996). It can
be summarised as at every sample minimise a cost
w.r.t nc degrees of freedom (d.o.f.),

min
u0,...,unc−1

J =

∞∑

i=0

(r − yi+1)
2 + λ(ui − uss)

2

s.t.

{
ui − uss = −K(xi − xss), i ≥ nc

constraints
(2)

K is an optimal state feedback; that is the optimal
control minimising J in the absence of constraints.

The strength of IHMPC is that the open-loop
predictions match the expected closed-loop be-
haviour, for the nominal case. Hence the optimisa-
tion is well posed and one can guarantee, a priori,
stability and good performance. The main issue
with this method is a possible inconsistency be-
tween the terminal constraint ui−uss = −K(xi−
xss), i ≥ nc and constraints, but that is not a
topic of this paper.

1 The control law takes a slightly different form if one uses
input increments as the control variables.



2.3 Inferential control and lifting

The above algorithms were summarised for the
SR case. However the context of this paper is MR
systems or in particular dual rate (DR) processes
where the input is updated every T seconds, but
a measurement is taken every nT seconds. The
algorithms need modifying to fit into this scenario.
How this modification can be performed depends
upon what model is available.

Inferential control (IC) requires a FR model. This
assumption is a weakness but one should also
state that if such a model exists, then it is to be
expected that a control design using this model
should outperform one based on a slow rate model.

Lifting based approaches use a DR model. There
is a need to show how the IHMPC algorithm can
be reformulated for this scenario and moreover
to analyse its behaviour. In particular one should
note (Rossiter et al, 2003) as discussed in section
2.1 that the restriction to DR models can give
quite poorly performing control laws when one
uses FHMPC. It will be shown how the move to
IHMPC can overcome this weakness.

2.4 Dual rate and single rate models

Consider a FR state space model of the form

xk+1 = Axk + Buk; yk = Cxk (3)

The DR equivalent to this system could be written
down as

xk+n = Γxk+ΘUk; yk = Cxk ; Uk =






uk

...
uk+n−1






(4)
where Γ = An, Θ =

[
An−1B · · · AB B

]
. In

many scenarios (Li et al, 2001) one may be able
to identify Γ, Θ (or equivalent model form) from
input/output data fairly easily but not A, B.
Model (4) will be denoted the lifted model as
the input has been lifted from uk to Uk. Also the
output/state is updated only every n samples of
the FR. Effectively this gives a SR model with a
lifted input.

IC assumes knowledge of the FR model whereas
lifted control will make use of the lifted model and
assumes the FR model is unknown.

3. FINITE HORIZON MPC

3.1 FHMPC in the lifted environment

This section will illustrate how the FHMPC con-
trol laws must be modified to cope with DR sig-

nals. First define the performance index to take
the form:

min
u0,...,unc−1

J =

ny∑

i=1

(r − yk+ni)
2 +

nc−1∑

i=0

λ(uk+i − uss)
2

s.t.

{
uk+i = uss, i ≥ nc

constraints
(5)

Define the corresponding prediction vectors as:

y
→

=








yk+n

yk+2n

...
yk+nyn








; u
→

=

[
u
→1

Z

]

; u1
→

=








uk

uk+1

...
uk+nc−1








where Z is a vector of zeros and it is noted
that the output can only be predicted every nth
sample due to the limitations of the model (4).
However, the input can be updated every sample.
Assuming the state x is available (via an observer)
the prediction model takes the form

y
→

= [H1|H2]
︸ ︷︷ ︸

H

[
u
→1

Z

]

+ Pxk;

H =






Θ 0 0 . . .

ΓΘ Θ 0 . . .
...

...
...

...




 ; P =






Γ
Γ2

...






(6)

where the partition of H is conformal with that of
u
→

. One can now subsitute this prediction into (5)
to derive the first nc steps of the optimal control
trajectory as:

u
→1

− Luss = [HT
1 H1 + λI ]HT

1 P (x − xss) (7)

where L is an nc vector of ones and uss, xss

depend upon r and a disturbance estimate.

Remark 3.1. The main weakness of this approach
(Rossiter et al, 2003) is the assumption that in
the predictions uk+i = uss. This assumption
ensures the number of d.o.f. (nc) is small. Where
nc < n in particular the input signal has large
discontinuities which are not removed by the
usual receding horizon arguments as the receding
horizon update takes place only every n samples
in the lifted framework.

3.2 FHMPC with inferential control

In inferential control, one assumes that a fast
rate model is available. Hence one can update the
control optimisation at the fast sample rate, albeit
the estimates of uss, xss are only updated at the
slow rate. The advantage of such a change is that
one no longer has to deal with the discontinuites
within the input signal. What is not obvious is
how to compare IC and lifting based approaches.
One would expect IC control to be better simply
because the receding horizon update is faster and
this will be demonstrated. However this may not
be a logical comparison:



• Due to modelling restrictions, lifting based
MPC can only cost every nth value of
the predicted output (5). No account can
be taken of the unknown intersample out-
put behaviour and this may be oscillatory
(Tangirala et al, 2001).

• With IC one can estimate intersample out-
puts and hence it would be more appropriate
to use the cost function of (1).

For simplicity we compare lifting and IC FH
algorithms with the cost of (5). However it is noted
that in practice if one were to adopt IC methods,
then it would be better to use cost (1).

3.3 Example contrasting lifting and inferential

control with FHMPC

Consider an example with a fast rate state space
model

xk,l+1 =

[
0.3 0.5
0.1 0.9

]

xk|l+

[
0.1
0.2

]

uk|l; yk = [1 0]xk

(8)
For the lifted algorithm one would assume that
only the equivalent model of form (4) is known.
Assume that the output is sampled 4 times slower
than the input, i.e. n = 4. The FHMPC algorithm
of (7) and (5) is implemented for nu = 1 with ny =
8, λ = 1. The simulations are displayed in figures
2a,b for outputs and inputs respectively; circles
and dotted lines are used for the IC algorithm
and crosses and solid lines are used for the lifted
algorithm. The x-axis has units of the fast sample
rate so new output measurements are given only
every 4th sample. The corresponding closed-loop
runtime costs are given in table 1 for nu = 1.

Lifted algorithm 3.18
Inferential Control 2.21

Table 1: Closed-loop runtime costs J
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Figure 2: Simulations with nu = 1

It is clear both from the table and the figure
that the the use of a fast receding horizon update
allowed in IC has given a dramatic improvement
in performance, even though there has been not

new output measurements. The limitation of the
prediction assumption in FHMPC is very clear in
figures 2b where it can be seen that the input
moves to a poor default value, that is uss, during
the later intersample periods. If one uses a fast
receding horizon the negative effects of this poor
assumption can be alleviated, as the only pre-
dicted value actually implemented is the current
and the far future is continually updated. In the
lifted framework, the first n moves are used and
hence one is forced to use a poorly defined input
trajectory.

3.4 Summary of FHMPC

FHMPC algorithms typically use input predic-
tions which do not match the expected or desired
closed-loop behaviour. This limitation is over-
come by the use of the receding horizon concept
whereby one updates the predictions at every sam-
ple instant so that there is a continual improve-
ment on the initial assumption. Unfortunately in
a lifted framework, the receding horizon update
only takes place at a slow rate (every n samples)
and as a consequence a naive use of FHMPC
will cause the control law to inherit a poor input
prediction. One obvious solution to this is to use
IC, which was popular in some early papers on
MR systems (Lee et al, 1992). IC allows the use of
a fast receding horizon update to improve perfor-
mance. However it should be emphasised that IC
assumes the knowledge of a fast rate model which
is not always a realistic assumption. Alternative
ways around this are a topic of current research
(Rossiter et al, 2003).

4. IHMPC IN THE MULTI-RATE
ENVIRONMENT

4.1 The motivation for IHMPC

In conventional single rate MPC, there has been
a move towards infinite horizons because of the
attendant guarantee of stability that can be ob-
tained. However there has been less thought given
to understanding what underpins this guarantee
as typically it is assumed simply to be a conse-
quence of facilitating the definition of a Lyapunov
function. However, there is a more significant
change which was made use of in (Scokaert et

al, 1996) and mentioned in section 2.2.

Ideally one wants the optimised open-loop predic-
tions to match the actual closed-loop behaviour.
Then the optimisation is well posed (unlike in
FHMPC where one minimises over a class known
to be different from the behaviour that will re-
sult). The consequence of this change is that the
input discontinuities apparent in Fig. 2b should



not occur, even in the lifted environment! To
rephrase this, in the nominal case, the optimum
input trajectory at time k will match exactly the
optimum computed at the previous sample (in
the absence of constraints). Hence whether one
updates the control law at the fast rate or the
slow rate, the control inputs will be the same.

We will illustrate this using the example of the
previous section and the control implied by the
optimisation of (2) 2 . Figure 3 below shows the
simulation plots with both a lifted control law
(crosses) and an IC control law (circles). Clearly
the plots are identical. This implies that if one sets
up the infinite horizon algorithm such that only
outputs at the same sample rate are costed, then
the use of lifting or IC will give the same closed-
loop behaviour (in the constraint free case). How-
ever this is confusing because one would expect IC
control to have more potential due to the faster
receding horizon update. This apparent anomaly
is discussed in section 5.
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Figure 3: Simulations with optimal control

4.2 Infinite horizons need not imply that IC is

equivalent to lifting

The example in the previous section made the
assumption that the performance index J was the
same for both the IC control and the lifting based
control, that is they costed the outputs at the
same sample rate, be it fast or slow. Of course
in a true multi-rate framework, one does not have
access to intermediate output estimates without a
fast rate model. So one would use IC if a fast rate
model were available and lifting otherwise. These
would be based on different performance indices
hence giving different control. Logically the lifted
approach could not give as tight control over the
unmeasured and hence uncontrolled intersample
outputs (Tangirala et al, 2001). However there is a
more noticeable difference which is discussed next.

2 Assume that the lifted algorithm has access to intersam-
ple output estimates. One also gets the same result if both
algorithms assume the cost of (5).

5. THE IMPACT OF CONSTRAINTS AND
COMPUTATIONAL LOAD ON ALGORITHM

SET UP

The conclusions of the previous two sections
are contradictory. They imply that if one uses
FHMPC then there are significant benefits from
using IC. However if one uses IHMPC, then there
are no benefits, that is one can obtain just as good
control with an algorithm updating the control
actions only at the slow rate. But, these conclu-
sions apply to the constraint free case only, that is
in the presence of constraints the global optimal
input trajectory may not be known.

A popular (Rossiter et al, 1998) reparameterisa-
tion of the IHMPC optimisation (2) is given as

min
ci, i=0,...,nc−1

J =

nc−1∑

i=0

cT
i ci

s.t.







ui − uss = −K(xi − xss) + ci, i < nc

ui − uss = −K(xi − xss), i ≥ nc

constraints
(9)

Typically the global optimal requires ci 6= 0, i ≥
nc that is the global optimal differs from the
unconstrained optimal for p steps where p > nc;
this is not allowed for in the prediction class so the
global optimal can be reached in the optimisation.
In this case it is evident that a fast receding hori-
zon approach will give benefits as the speed of the
receding horizon update governs the rate at which
new d.o.f., in this case ci, are introduced into the
optimisation. Although no new observations ap-
pear at “inter-observation” instants, nevertheless
the solution of the optimisation (2) does change,
moving closer to the global optimal with each
extra d.o.f., and hence there is a major advantage
in using IC where that is possible.

5.1 Numerical example

Next a simple simulation study is used to illus-
trate the point that a IHMPC using IC outper-
forms a lifting based approach in the presence of
constraints. Consider a model represented by the
state equation:

xk+1 =





1.4 −0.105 −0.108
2 0 0
0 1 0



 xk +





2
0
0



 uk

y = [0.5 0.75 0.5]xk

(10)
and n is taken to be 5. For a unit set point
change simulations are displayed in Figs. 4a, 4b
for the constraint free case and Figs. 4c, 4d with
constraints |u| ≤ 0.06 and |ui − ui−1| ≤ 0.03.
The solid lines are with a lifted algorithm and the
dotted lines represent the IC. The runtime costs
J are summarised in table 2.
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Figure 4: Simulations with optimal control

Algorithm Figs 4a,b Figs 4c,d
Lifted 1.11 1.946
IC 1.11 1.926

Table 2: Runtime costs

It is clear that IC has outperformed the lifted algo-
rithm when constraints are active, although in this
case by only a small amount. Larger differences
will occur when the prediction class available is
further from the global optimal, such as may arise
with non-minimum phase and unstable systems.

5.2 Conclusion

The differences between FHMPC and IHMPC

for MR systems: It was shown that the assump-
tion, usual in FHMPC, that the predicted input
move to a fixed value after nc steps does not mesh
well with MR control design. This is because the
assumption is made to reduce computation not
to improve control and does not match expected
closed-loop behaviour well enough. Good control
is recovered only by applying the receding horizon
concept at a fast enough update rate. Conversely
IHMPC techniques are setup to ensure a good
match between predictions and expected closed-
loop behaviour. Hence in this case the slow rate
algorithm moves across to the MR case with a far
smaller (zero for some algorithms) deterioration
in performance.

The advantages of updating control with

a fast receding horizon based on a FR in-

ternal model: IHMPC is identical with a FR
update or lifting only in the case where the global
optimal is in the class of allowable predictions.
Usually restrictions to the number of d.o.f. imply
this is not the case and hence one can improve
performance by introducing more d.o.f. Clearly
the faster the rate of receding horizon update the
more quickly extra d.o.f. can be introduced to
improve performance. Hence IC will always out-
perform lifting during constraint handling, even
for IHMPC in the nominal case.

The weakness of these conclusions is the implicit
assumption that one should use IC control as it
gives better control for FHMPC and IHMPC. Also
there is also an implication that IHMPC should
always be prefered. However this is a simplistic.
FR models are not always available and there
is still study required to analyse their reliability.
Also work in progress (Rossiter et al, 2003) is
looking at means of obtaining control of similar
quality to that obtained with IC, but based only
on a lifted model. The argument of finite or
infinite horizons is well known in the single rate
literature of MPC and will not be repeated here.
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1. INTRODUCTION 
 
MPC strategies have become the preferred control 
technique for many process control problems, most 
of the industrial MPC controllers using an internal 
linear dynamic model. Nevertheless, many common 
processes exhibit nonlinear behavior and they may 
be required to operate over a wide range of 
conditions, therefore, these controllers are often 
tuned in a conservative way, which can result in 
serious degradation of controller performance. An 
alternative is to use a non-linear internal model. 
Many controllers, using different types of internal 
models, have been proposed in the literature, but the 
number of non-linear MPC is still low in industry. 
 
In this paper we present an implementation of a non-
linear MPC to a challenging process, which requires 
to operate under strong requirements. It corresponds 
to the new particle accelerator, the LHC, which is 
under construction at CERN, Geneva. In its final 
form it will expand in a circumference of about 27 
Km in France and Switzerland. In order to test the 
proposed design some prototypes such as the String1 
(Casas et al., 1998) and the IT-HXTU (Byrns et al., 
1998) were built (Fig.1).  
 
The aim of the LHC is to accelerate particles at  
speeds close to the one of the light in order to study 
the results of its collisions. For this purpose, the 
particles are driven within the LHC accelerator using 
very strong magnetic fields, which requires high 
electrical currents of about 12 kA for its magnets. A 
practical operation of the magnets requires operating 
with no electrical resistance in the coils, 
superconductivity condition, that can be maintained 
only at extremely low temperatures of around 1.9K. 
The main aim of the control system presented in this 
paper is to maintain this temperature in a narrow 
range, 50 mK, in spite of the unknown disturbances 

acting on the process. This is required in order to 
avoid a “quench” that will stop the operation. 
 

 
 

Fig. 1 Inner Triplet Prototype (length: 30 meters) 
 
Several linear control strategies has been tested at 
String1, including PID and linear MPC (Blanco, 
1999; Cristea, 1998) but all of them suffer from the 
above mentioned problem: their performance is 
degraded when, due to different heat load charges, 
the unit must operate in different working conditions. 
This was the main reason to implement NMPC. This 
paper presents the non-linear approach, as well as 
state and disturbance estimations that were not taken 
into account in previous versions, and it is organized 
as follows: After the introduction, section 2 describes 
the String1 and its cryogenic system. Section 3 is 
devoted to the process model and section 4 to the 
non-linear controller including the state estimator. 
Experimental results are given in section 5. The 
paper ends with some brief conclusions. 
 



 

 

2. PROCESS DESCRIPTION 
 

The LHC 1.8 K Cooling Loop represents a structure 
of four magnets (four quadropoles in the IT-HXTU 
and one quadrupole and three dipoles in the String1 
prototypes) mounted at a slope of 1.4% to match the 
steepest inclination in the real accelerator tunnel. The 
superconducting magnets operate below 1.9 K in a 
bath of pressurized helium.  
 
 

 
 
Fig. 2. Process and Schematic Diagram (String1) 
 
Referring to Fig.2, the heat deposited on the bath is 
extracted by gradual vaporization of saturated 
superfluid helium flowing along the wetted length of 
a heat exchanger (HX) tube threading the string of 
magnets. The tube is only partially wetted, being the 
wetted length a main control variable. The liquid 
helium used for cooling at the 1.8K level is taken 
from the main reservoir (SFB) at 4.2 K and 1.15 bar 
(1). The helium is subcooled in the subcooling-heat 
exchanger (2) to 2.2 K, and then it is sent through the 
heat exchanger in the overflow pot (3). The 
subcooled liquid is then expanded to saturation at 17 
mbar and 1.8 K in the Joule-Thomson valve (4), 
where a vapor fraction is created as well. The helium 
is led to the end of String (5). Here, it is let out in the 
HX, and flows back towards the overflow pot that, in 
normal operation, is empty. The helium vapor at 
17mbar is taken out from the overflow pot (3) and 
through the subcooling-heat exchanger (6), thus 
providing the subcooling for the incoming 
pressurized liquid at 4.2 K. 
 
The regulation goal is keeping the temperature of the 
superconducting magnets as constant as possible 
within strict operating constraints imposed by the 
maximum temperature at which the magnets can 
operate, the cooling capacity of the cryogenic 
system, the heat loads, and at last, the accuracy of the 
instrumentation. A small margin of a few mK is 
allowed before the superconductivity of the magnet 
coils is lost. If this happens, a potentially dangerous 
situation (quench) is created because of the heat 
released in the new conditions and the sudden helium 
vaporization it implies. 
 
The Joule-Thomson valve opening is the 
manipulated variable, and the temperature sensors 
located in the cold mass (two per magnet) provide 
the controlled variables, the warmest temperature is 
taken as controlled variable at every time step. 

Disturbances are of two different types: general heat 
loads and variations in the flow through the Joule-
Thomson valve. Heat loads are produced mainly by 
heat inleaks from the higher temperature levels, 
current magnet ramping and particle beam losses 
(simulated by electrical heaters). The set point is the 
saturation temperature plus a certain ∆T, typically 
0.03 K. 
 
This process has shown difficult dynamic behavior, 
being a non-self regulating process (integrating 
response), with variable dead time (transportation lag 
between 6-12 minutes) and exhibiting inverse 
response. 
 

 
 
Fig. 3 - Advanced control motivation 
 
 
An additional aim in implementing MPC on the plant 
was optimizing its operation. As can be seen in Fig. 
3 reducing the variance in the magnets temperature 
will allow, either operating at a higher temperature 
setpoint without violating the upper constraints 
(which implies money savings because of the 
reduced demand on the cryogenic system) or 
admitting less instrumentation accuracy (which also 
implies savings in design and construction).  
 
The fact that trying to squeeze as much as possible 
the control band is a strong constraint and a full 
justification for the choice of a MPC technology. The 
violation of this constraint would imply an eventual 
high-cost shutdown during normal operation.  
 
 

3. PLANT MODELLING 
 
Nonlinear predictive control (NMPC) is a natural 
extension of the linear MPC technique. The 
algorithm is again based in the use of an internal 
plant model, this time a nonlinear one which captures 
the main process characteristics. A key element in 
NMPC is the nature of the internal model. Several 
alternatives are possible including first-principle 
models, neural nets, Volterra series, etc. In our case a 
physical model was used trying to balance the 
capture of the process dynamics under several 
operating conditions and the simplicity of the 
representation. 
 



 

 

A non-linear model based on physical laws and 
balances has been developed and validated using real 
experimental data obtained in the IT-HXTU 
installation. The implementation of this first 
principles model provides precise predictions over a 
very different operational conditions having into 
account changes in the saturation pressure and 
existing dynamic heat loads. Nevertheless, for 
control purposes, a simplified model is considered, 
based on some assumptions and equations (Blanco, 
2001). 
 
All magnets are assumed to operate at equal 
temperature T. Considering a single cold mass 
temperature simplifies the model and the heat 
transfer calculation through the interconnections. An 
energy balance leads to: 

cooltrsspcm qQQTTCm
dt
d −+=))((

          (1) 
where Q are heat loads and the cooling provided by 
the heat exchanger, qcool , is calculated through  
 

)( swscool TTHAq −=                    (2) 
where the heat transfer coefficient, H, is estimated 
experimentally, the saturation temperature, Ts, is 
obtained by direct measurement of the saturation 
pressure, and the wetted area Aws is estimated from 
the helium II mass accumulated in the heat 
exchanger tube by the following  calculation 

wsws LfA 1=                            (3) 
where Lws is the wetted length on the HX and it is 
calculated through. 

)(2
s

HX
ws T

mfL
ρ

=                        (4) 

f1 and f2 being strong non-linear functions of mass 
depending of the geometry of the pipe. 
The accumulated helium II mass in the heat 
exchanger is calculated by 

FvFrlfjt
dt

dmHX −−=                 (5) 

where the lfjt is the liquid flow passing through the 
Joule-Thomson valve, Fr, the helium II liquid 
overflow and Fv the helium which evaporates in the 
HX, having also into account the vapour fraction, 
flash, produced by the Joule-Thomson valve. 
 

)1( vflashml fjtfjt −=                   (6) 
where mfjt represents the total mass flow passing 
through the JT valve which depends on the valve 
characteristic, and vflash the vapour fraction 
produced. This is computed from an enthalpy 
balance between the incoming high-pressure stream 
and the two coexisting phases at saturation pressure 
at the output of the JT valve. 
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Finally, the vapour on the heat exchanger is 
composed by two components, vapour fraction 

produced by the JT valve, and evaporation of the He 
II liquid. 

fg

cool
fjt h

qgFv +=                          (8) 

gfjt represents the gas flow produced by the JT valve 
and it is calculated by (9), being hfg the latent heat of 
vaporization of liquid helium. 
 

vflashmg fjtfjt ⋅=                       (9) 
The JT valve is characterized by a calibration curve 
and its opening represents the input of the model, 
vopen, and the constants, cti, give the valve 
characteristic. 
 

321 2 ctvctvctmfjt openopen +⋅+⋅=         (10) 
 

 
Fig. 4 Simplified vs. Complete first principles model  
 
A comparison between the simplified model versus 
the complete model shows the magnet temperature 
when the JT valve is moved (Fig.4). A good trade off 
between complexity and quality of the model is 
obtained. 
 
The value of some parameters, i.e. the cold mass and 
the heat transfer, was estimated by off-line 
optimization of the model errors.  
 
 

4. PREDICTIVE CONTROLLER 
 
The objective of the non-linear model predictive 
control (NMPC) is finding the future optimal 
manipulated variable sequence in order to minimize 
a function based on a desired output trajectory over a 
prediction horizon. The cost function is the integral 
of the sum of squares of the residuals between the 
model predicted outputs and the setpoint values over 
the prediction horizon N2, plus a penalty term. A 
typical formulation is 
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where y and u are the process output and input. The 
minimization (11) is done subject to the continuous 
model equations and the typical restrictions applied 
on the manipulated and controlled variables: 
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Of the Nu moves optimal control sequence, only the 
first component is implemented. The optimization is 
solved using the scheme of Fig.5. Within this 
schema, the model equations are not explicit 
restrictions to the optimisation problem, being the 
manipulated variables the only decision variables. 
The simulation package will integrate the model 
equations along the prediction horizon taking as 
initial conditions the current process state and 
evaluating the formulated objective at the end of the 
integration. Path constraints are implemented as 
penalty functions. A simultaneous solution approach 
was also tested, but convergence and computation 
time did not improve the sequential one. 
 
 

 
Fig. 5 Nonlinear controller – Continuous  

implementation framework 
 
 
4.1 Nonlinear State Estimator 
 
In our plant, the liquid helium II accumulated in the 
HX tube is not measurable. This is a critical factor of 
the model predictions, not only because it is a state 
but because it provides the wetted area in the heat 
exchanger from where the heat in the pressurized 
helium is removed. So, as we have an incomplete 
state vector, in order to apply the NMPC, a method 
of reconstructing the current state of the system from 
the measured outputs must be included. There are 
different approaches to the state estimation problem. 
We have chosen a receding horizon one (Muske and 
Edgar, 1997) because it match very well within the 
predictive control framework, it allows easy 
extensions to the non-linear case maintaining the 
same model as in the controller and with explicit 
inclusion of constraints in the variables and, finally, 
because state disturbances can be computed as a sub-
product of the estimation. In our case it is really 
important estimating the non measurable overall heat 
load because it highly influences the model 
predictions. LHC prototypes operation has shown the 
variance on this disturbance in short periods of time. 

 
In analogy to the model predictive control concept, 
the estimation problem is formulated as an optimal 
control problem on a finite horizon into the past. In 
the framework of the receding horizon estimation a 
quadratic cost function penalizing, among other 
things, model and measurement errors, is minimized. 
The optimisation problem is subject to model 
equations. Physical limits on the process variables 
are incorporated through inequality constraints.  
 
More precisely, the problem is to estimate the initial 
conditions at time instant t-N, and the state 
disturbances, which have driven the process to its 
present state applying the past control sequence, by 
minimizing the difference between the outputs given 
by the evolution of the system from its initial 
conditions and the actual measured outputs (Fig. 6). 
In our case this can be translated into estimating the 
liquid helium mass in the HX tube at time instant t-N 
and the heat loads in the range [t-N, t-1], so that, if 
the JT valve were operating as in the real plant in this 
time interval, the computed temperature would 
approach the measured one and the heat loads are as 
small as possible. 
 

 
Fig. 6 Receding Horizon State Estimation 
 
 
The standard approach can be synthesized as the 
optimization problem:  
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where N represents the receding horizon, one of the 
parameters to tune. yk-N+j is the real process output 
and ymk-N+j is the output of the model starting with 
m0=mHX at the time (k-N) when the past controls 
and the estimated process disturbances jNkQ +−  are 
applied. 
 
Once the initial state and disturbances are estimated, 
the unknown state at time t can be computed 
integrating the model with the optimal values 
obtained.  
 



 

 

Nevertheless, when applying (13) we realize that, 
due to the particular estructure of our process model, 
they were many solutions able to provide a perfect fit 
between the measured and computed temperatures. 
So, in our case,  instead of (13) an alternative criteria 
was formulated, where, on one hand, the model 
temperature was equated to the measured one in the 
interval, and a new cost function was defined based 
on: (A) minimize the initial difference between the 
mass and its estimated value in the previous iteration 
mHXk-N (B) penalization of the mass changes only if 
the JT valve was smooth during the horizon, in other 
case, where the JT was active, this contribution is 
cancelled, and finally (C) minimize the heat load 
change with respect to the value estimated in the 
previous iteration which provides a smooth JT valve 
moves.  
 
With this structure the objective becomes 
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where γi weights the contribution of each factor and 
A, B, C represent 
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where mcal

HXk-N represents the liquid helium II in the 
heat exchanger already calculated N periods before, 
mHXj

cal the mass calculated along the receding 
horizon, vopenj

rec  the manipulated variable (JT 
valve) moves recorded during the receding horizon, 
Qtrj

cal the calculated dynamic heat load and Qtrj
rec the 

previously calculated and recorded dynamic heat 
load during the horizon. 
 
Estimating only the initial state and heat load 
disturbances makes the problem tractable. The 
advantage of this solution is the smaller number of 
decision variables for any given horizon length, 
resulting in less computational time to solve the 
optimization problem (Gelb, 1974). In this case the 
state disturbance, the heat load present in the 
process, is included in the estimation procedure by 
means of the model equations. A good starting point 
helps in the estimation, which can be found if the 
process starts operating in a known steady state like 
helium overflowing. Besides (14), the optimization 
includes constraints on the values of the decision 
variables. 
 
The control structure designed for the nonlinear 
controller incorporates a nonlinear predictive 
algorithm and a state estimator. The solution 
proposed yields a new approach based of an initial 
state estimate and of a moving horizon algebraic 
estimator in a combined structure. The state 

estimator provides the optimal mass accumulated in 
the heat exchanger tube and the dynamic heat load 
valuation. A block diagram of the structure can be 
seen in Fig. 7. 
 

 
 
Fig. 7 NMPC proposed control structure 
 
4.2 Simulation results 
 
Simulation studies have been performed in order to 
verify the performance of the implemented estimator 
and the improvement on the control. An example is 
shown in the Fig. 8 where several steps of the heat 
load (12 Watts) were applied and the values of the 
estimated state disturbance are compared against the 
values given by the model showing good agreement. 
The only tuning parameter, apart from the weights, 
in the proposed objective structure, is the receding 
horizon value N (here, N=4). The process is 
represented by the full simulation model. 
 

 
Fig. 8 Performance of the Nonlinear State Estimator 
 
 
The complexity of the optimization problem is not 
growing proportionally to the length of the horizon 
due to the fact that only one initial value is 
considered as a decision variable and the remainders 
are algebraic calculations. N has not much influence 
on neither the controller nor the state estimator 
performance. In the test, only the parameter γ 0 
conditions the way the heat load is estimated, the 
greater the number, the faster the heat load 
disturbance estimation. 
 
4.3 Optimization: numerical solutions 
 
Both, the controller law solution and the state 
estimation problems, presented in the nonlinear 
predictive controller framework, lead to the same 
nonlinear programming problem, which could be 
formulated generically as a real time minimization of 



 

 

a nonlinear function subject to constraints. These 
constraints could be simple bounds on the variables 
and both, linear and nonlinear constraints. In the case 
of the LHC 1.8 K Cooling Loop the method used is a 
SQP one, due to its ability to solve problems with 
nonlinear constraints. 
 
 

5. EXPERIMENTAL RESULTS 
 
The validation of the state estimator module based 
on the receding horizon was done experimentally by 
powering the electrical heaters located in the cold 
mass. These simulate a change in the overall heat 
load due to a unknown disturbance, then data was 
stored corresponding to the electrical watts applied 
and the heat load estimation carried out by the state 
estimator. 
 

 
Fig. 9 . RHE performance. Heat load steps  
 
In Fig. 9 several step changes on the heat load were 
applied to the process. Performance of the state 
estimator is fast and precise, and the heat load is 
estimated immediately after its change despite the 
abrupt jump. This situation could be produced by 
several factors in the real systems, for example, a 
degradation of the insulation vacuum which leads to 
a higher existing overall heat load. The other state 
estimated, the accumulated helium mass in the HX 
tube is not shown because is a non-measured 
variable and no comparison are possible. 
Performance of the controller is also displayed in the 
same Fig. 9. The temperature excursions, due to the  
 

 
Fig. 10 NMPC vs. PI control: Tracking 

characteristics 

heat load applied, are cancelled around 1.99 K in all 
the different operational zones showing a robust 
behavior of the regulator. 
 
Once the state estimator was tested and validated, 
more experiments were performed in order to 
validate the nonlinear predictive controller. Changes 
in the set point were considered to check also for 
tracking features (Fig. 10). A comparison with a 
classical PI controller is done in order to show the 
improvements in terms of control performance and 
robustness. 
 
 

6. CONCLUSIONS 
 
The LHC full-scale prototypes were employed as a 
test-bed of what advanced nonlinear control can do 
for improving for cryogenic processes regulation. 
The nonlinear process model construction gave a 
better understanding of the process, provided the 
ideas to overcome the usual changes in process 
dynamics and helped to improve the regulation 
strategies by means of the simulation. The response 
has been improved and optimized by the use of the 
nonlinear predictive controller with a receding 
horizon state estimator. The regulation structure 
proposed is based in a nonlinear predictive controller 
algorithm combined with a state estimator with an 
initial state estimate approach and a moving horizon 
algebraic calculation for the disturbance. 
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Abstract: Exploiting the moving horizon strategy, we provide in this paper a
solution of the constrained L2-gain attenuation control problem that is less
conservative than a recently suggested switching approach based on off-line
controller computations. The main advantage of the presented scheme is its
capability of automatically relaxing or tightening the performance specification
in order to obey hard control constraints while achieving the best possible
performance in a suitable class of LMI-generated control gains.
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1. INTRODUCTION

In the past two decades H∞-control has received
considerable interest, in particular for the possibility
to beneficially manage the trade-off between high
performance requirements and high control action.
It is somewhat unfortunate, however, that the de-
signer has only influence onto closed-loop trans-
fer function shapes in the frequency domain and
that there is no direct way to enforce hard time-
domain constraints on the control inputs. To over-
come this drawback, a large variety of approaches
have been proposed in the literature such as anti-
windup techniques (Kothare et al., 1994), satura-
tion avoidance methods based on maximal output
invariant sets (Gilbert and Tan, 1991), model pre-
dictive control (Mayne et al., 2000) and switching
techniques (Hirata and Fujita, 2000). For a survey
we refer to (Scherer et al., 2002) and the references
therein.

In this paper, we provide a moving horizon scheme
for the L2-gain attenuation problem with hard con-
trol constraints, where a constrained H∞ problem
is solved on-line and updated by the new measure-
ment. The scheme has the capability to automat-
ically trade-off constraint satisfaction and perfor-
mance by relaxing or tightening the performance
specification, which leads to performance improve-
ments. The feedback gain is determined on-line
such that the ellipsoids, where constraints are re-
spected, are shaped according to the actual state and
hence performance can be further improved, whereas
the off-line controller construction in (Scherer et

al., 2002) is based on extremal solutions of the
Riccati equation corresponding to the H∞ problem.
Therefore, this paper can be viewed as a direct
extension of (Scherer et al., 2002) towards a non-
conservative solution of the constrained L2-gain at-
tenuation control problem. In a similar fashion, it is



suggested in (Kothare et al., 1996) to use the moving
horizon strategy in order to ensure robust stability
while minimizing an upper bound of a quadratic
cost, whereas our scheme explicitly strives for L2-
gain performance guarantees for the overall closed-
loop system.

The paper is organized as follows. In Section 2 we
describe an off-line solution to the constrained H∞

control, using the concept of state-space ellipsoids
and reachable sets (Boyd et al., 1994). In Section
3 we derive the crucial condition to guarantee dis-
sipation after briefly showing why the naive im-
plementation of the moving horizon strategy might
fail. Then, an extended LMI optimization problem
is formulated that will be solved on-line at each
sampling time to determine the feedback gain, up-
dated with the actual state. An algorithm for a
concrete implementation of the proposed scheme is
given in Section 4. Simulation results for the same
open-loop unstable continuous stirred tank reactor
as in (Scherer et al., 2002) are presented in Section 5.

2. PRELIMINARIES

Consider a discrete system described by

x(k + 1) = Ax(k) + Bw(k) + Bu(k) (1a)

z(k) = Cx(k) + Dw(k) + Duu(k) (1b)

subject to control constraints

|ui(k)| ≤ ui,max, ∀k ≥ 0, i = 1, 2, · · · , m2. (2)

Here x ∈ R
n denotes the states, w ∈ R

m1 the
external disturbances, u ∈ R

m2 the control inputs
and z ∈ R

p the controlled outputs.

With state-feedback control u = Kx, the closed-loop
system is

x(k + 1) = Aclx(k) + Bw(k) (3a)

z(k) = Cclx(k) + Dw(k) (3b)

where Acl = A + BuK and Ccl = C + DuK. Let us
briefly recap the case without control constraints.
The discrete time closed-loop L2-gain from w to z is
smaller than γ if and only if there exists a symmetric
P > 0 such that







P 0 AT
clP CT

cl

0 γ2I BT P DT

PAcl PB P 0
Ccl D 0 I







> 0 (4)

It is easily seen that (4) implies Schur stability of
Acl, and with V (x) = xT Px one easily obtains the
dissipation inequality

V (x(k)) +

k−1∑

i=0

(
‖z(i)‖2 − γ2‖w(i)‖2

)
≤ V (x(0))

(5)

for any trajectory x(·), w(·) of the closed-loop sys-
tem (3). Due to V (x) ≥ 0, for x(0) = 0 we can
conclude that the discrete L2-gain of the closed-loop
system is not larger than γ. With the substitution
Q = P−1 and Y = KQ and by performing a
congruence transformation with diag(Q, I, Q, I), (4)
is equivalent to







Q ∗ ∗ ∗
0 γ2I ∗ ∗

AQ + BuY B Q ∗
CQ + DuY D 0 I







> 0 (6)

which is an LMI in γ2, Q, Y . Let γopt denote the
infimal value for which (6) with P > 0 is feasible.

Let us now come back to the case with control
constraints. For this purpose we assume that the
disturbance energy is bounded as

∞∑

i=0

‖w(i)‖2 ≤ α2. (7)

Due to (5), the output energy is bounded as

∞∑

i=0

‖z(i)‖2 ≤ r (8)

and the state trajectory remains in the ellipsoid

E1(P, r) := {x ∈ R
n : V (x) ≤ r} (9)

if the initial state x(0) is contained in the ellipsoid

E2(P, r, α) := {x ∈ R
n : γ2α2 + V (x) ≤ r}. (10)

Exploiting u = Y Q−1x, we infer (Boyd et al., 1994)

max
k≥0

|ui(k)|
2
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. (11)

Therefore the control constraints (2) can be enforced
by guaranteeing that Q and Y also satisfy

(1

r
X Y

Y T Q

)

≥ 0, Xii ≤ u2
i,max (12)

for some X . We note that (12) is an LMI in X , Y ,
Q for fixed r, and that the constraint ξ ∈ E2(P, r, α)
can as well be re-formulated as

(
r − γ2α2 ξT

ξ Q

)

≥ 0 (13)

which is an LMI in γ2 and Q for fixed α.
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This leads to an algorithm for solving the con-
strained L2-gain attenuation problem. For fixed α, r

and ξ = x(0) solve the LMI optimization problem

min
γ2,Q,Y,X

γ2 subject to (6), (12) and (13). (14)

Suppose that (γ0, Q0, Y0) is an (almost) optimal
solution of (14). If the system is controlled with the
state-feedback gain K0 = Y0Q

−1

0 , we conclude with
P0 = Q−1

0 from the above discussion that

• the control constraints (2) are respected for all
disturbances satisfying (7);

• the disturbances are attenuated in the sense of

∞∑

i=0

(
‖z(i)‖2 − γ2

0‖w(i)‖2
)
≤ x(0)T P0x(0).

Remarks.

• In this construction the bound α reflects the a
priori knowledge on the disturbance, whereas
both the output energy bound r and the corre-
sponding optimal value γ0 = γ0(α, r) are mea-
sures for disturbance attenuation. It is simple to
extract various limits of these two parameters
for feasibility of (14), such as r ≥ γ2

optα
2 (where

the choice with equality is too ambitious due to
control constraints).

• If ξ = x(0) = 0, the optimal value γc of problem
(14) satisfies γopt ≤ γc, reflecting a performance
degradation due to control constraints. More-
over it follows from (13) that γc ≤ γ0 which
relates to a further performance degradation
due to non-zero initial conditions.

The above construction is a pretty standard ap-
proach to guaranteeing disturbance attenuation by
constrained control. It clearly reflects an inher-
ent trade-off between satisfying the constraints and
achieving high controller performance. If having to
be prepared for unforeseen large disturbances one
has to choose a large value of α (and hence large r)
which leads to large γ or low performance, even if
the actual disturbance affecting the system is rather
mild and admits a smaller bound on its energy. On
the other hand, enforcing high performance levels
(small γ) requires to either reduce α or r, which
might result in control constraint violation in case
that the system is affected by unexpectedly large
disturbances. This motivates an on-line scheme to
trade-off the satisfaction of constraints and the level
of performance. To this end, the moving horizon
strategy, which is well-known in the literature of
model predictive control, serves as a candidate.

3. MOVING HORIZON STRATEGY

The basis of the moving horizon strategy in model
predictive control is solving an optimal control prob-

lem on-line at each sampling time, updated by the
new measurement (Mayne et al., 2000).

Exploiting the moving horizon strategy, one would
solve on-line the LMI optimization problem (14)
with the actual state x(k) at each time k, which
contains the past information on internal dynamics,
external disturbances and controls. In this scheme,
the current state x(k) serves as “feedback” not only
for the computation of control values but also for the
choice of the feedback gain. The latter provides an
opportunity to trade-off constraint satisfaction and
performance. By minimizing the performance level
γ on-line, one obtains the best possible performance,
while keeping constraints satisfied. Unfortunately,
this simple implementation of the moving horizon
strategy might fail to guarantee dissipation for the
controlled system, as shown in detail in (Scherer et

al., 2002). In the same reference it is also shown how
to recover dissipation, and we repeat in this paper
the key points for the discrete-time problem and
in view of its implementation in a moving horizon
scheme.

Assume that the LMI optimization problem (14)
admits a solution for the closed-loop state x(k) at
each sampling time k, denoted as (γk, Qk, Yk). The
feedback control is defined by

u(k) = Kkx(k), k = 0, 1, 2, · · ·

with Kk = YkPk and Pk = Q−1

k .

At time k = 0, according to the principle of moving
horizon strategy, u(0) = K0x(0) will be applied to
the system until the next sampling instant k = 1.
With the actual state x(1) as initial condition, the
LMI optimization problem (14) will be solved again.
Let us investigate whether the solution at time k = 1
keeps the closed-loop system dissipative. We first
observe that

‖z(0)‖2 − γ2
0‖w(1)‖2 ≤ x(0)T P0x(0) − x(1)T P0x(1)

‖z(1)‖2 − γ2
1‖w(1)‖2 ≤ x(1)T P1x(1) − x(2)T P1x(2)

and hence

1∑

i=0

‖z(i)‖2 − max{γ0, γ1}
2‖w(i)‖2 ≤ x(0)T P0x(0)−

−
[
x(1)T P0x(1) − x(1)T P1x(1))

]
− x(2)T P1x(2).

If
[
x(1)T P0x(1) − x(1)T P1x(1)

]
≥ 0, dissipation

holds with level max{γ0, γ1}. The solution of the
LMI optimization problem (14) at the time k = 2
with x(2) leads in a similar fashion to

2∑

i=0

[
‖z(i)‖2 − max{γ0, γ1, γ2}

2‖w(i)‖2
]
≤

≤ x(0)T P0x(0) −
[
x(1)T P0x(1) − x(1)T P1x(1))

]
−

−
[
x(2)T P1x(2) − x(2)T P2x(2))

]
− x(3)T P2x(3).

To guarantee dissipation one requires
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x(0)T P0x(0) −
[
x(1)T P0x(1) − x(1)T P1x(1))

]
−

−
[
x(2)T P1x(2) − x(2)T P2x(2))

]
≤ x(0)T P0x(0).

In general, just solving the LMI optimization prob-
lem (14) at times k = 1 and k = 2 with respective
initial conditions does not guarantee this inequality
to hold. Therefore, the naive implementation of the
moving horizon strategy will generally fail. However,
the discussion reveals the crucial strategy to guar-
antee dissipation as follows: Define

pk−1 := x(0)T P0x(0)−

−
k−1∑

j=1

[x(j)T Pj−1x(j) − x(j)T Pjx(j)]. (15)

For dissipation one has to enforce at iteration k that

pk−1 −
[
x(k)T Pk−1x(k) − x(k)T Pkx(k)

]
≤ p0.

(16)

Moreover pk can be recursively updated as

pk := pk−1 −
[
x(k)T Pk−1x(k) − x(k)T Pkx(k)

]
.

It is easy to include the dissipation constraint (16)
in the optimization problem (14) to end up with the
following extended LMI problem at time k with the
actual state x(k):

min
γ2,Q,Y,X

γ2 (17)

subject to (6), (12), (13) for ξ = x(k), and

(
p0 − pk−1 + x(k)T Pk−1x(k) x(k)T

x(k) Q

)

≥ 0. (18)

The implementation of this on-line scheme is pos-
sible since Pk−1 and pk−1 have been determined at
the previous time instant k − 1 and are held fixed.
Let us suppose that (17) admits an (almost) optimal
solution (γk , Qk, Yk) and define the feedback gain
Kk = YkQ−1

k as well as Pk = Q−1

k . Controlling the
system with u(k) = Kkx(k) then implies that

• the control constraints (2) are respected;
• the controller automatically relaxes the perfor-

mance requirement if necessary not to violate
constraints and it enhances the performance
level if possible and in such a manner that the
closed-loop system is guaranteed to obey the
dissipation inequality

l∑

i=k

‖z(i)‖2 − γ2‖w(i)‖2 ≤ x(k)T Pkx(k)

for 0 ≤ k ≤ l and with γ = max{γk, . . . , γl}.

Let us stress that the feature of automatic perfor-
mance adaptation is viewed to be the most rele-
vant progress over (Scherer et al., 2002). Moreover
we recall that the off-line controller construction
in (Scherer et al., 2002) was based on extremal

solutions of the Riccati equation corresponding to
the H∞ problem, whereas the present scheme picks
the solution (shapes of ellipsoids) depending on the
individual system state which leads to performance
improvements.

For the actual on-line implementation of this scheme
it is essential that the LMI optimization prob-
lem (17) is feasible at each time-instant k, which
gives rise to the need for an on-line adaptation of the
parameters α and r as suggested in the algorithm in
the next section. If the LMI’s are not feasible for
all combinations of α and r one could either relax
the control constraint to enforce feasibility (which is
always successful for stabilizable systems but which
might not be practically possible) or one could
switch to a standard MPC scheme with quadratic
cost which incurs a loss of guaranteed disturbance
suppression properties.

4. ALGORITHM FOR MOVING HORIZON
IMPLEMENTATION

Let us now discuss a concrete implementation of
the suggested scheme, together with one out of a
multitude of possibilities how to adapt the param-
eters α and r. In fact we keep α fixed while we try
to enforce feasibility of (17) by increasing r (from
a given r0) whenever necessary. Moreover, for the
given α, r0 and with x(0) = 0, we consider the con-
troller Kc = Kc(α, r0) - defined with Pc = Pc(α, r0)
- as the one with best performance, and at each time
k we first check whether this best gain guarantees
dissipation and constraint satisfaction in order to
avoid unnecessary on-line computations.

Algorithm

Step 1 Initialization. Let α and r0 be given. Solve
the LMI optimization problem (14) with ξ =
x(0) = 0 and compute Kc = Y Q−1 and
Pc = Q−1.

Step 2 At time k = 0, set r = r0. If x(0) = 0, set
K0 = Kc, P0 = Pc, p0 = 0 and go to Step
6. If x(0) 6= 0, solve the LMI optimization
problem (14) with ξ = x(0). If it admits
a solution, compute K0 = Y Q−1, P0 =
Q−1, p0 = x(0)T P0x(0) and go to Step 6.
If not feasible, increase r until feasibility is
retained.

Step 3 At time k, set r = r0. If x(k) ∈ E2(Pc, r0, α)
and pk−1 − x(k)T Pk−1x(k) + x(k)T Pcx(k) ≤
p0, then set Kk = Kc, Pk = Pc, and go
to Step 5.

Step 4 Solve the LMI optimization problem (17)
with ξ = x(k). If it admits a solution,
compute Kk = Y Q−1, Pk = Q−1, and go
to Step 5. If not feasible, increase r and
repeat Step 4.
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Step 5 Prepare for the next computation:
pk = pk−1−

[
x(k)T Pk−1x(k) − x(k)T Pkx(k)

]
.

Step 6 Apply u(k) = Kkx(k) to control the system.
Replace k by k +1 and continue with Step 3.

5. EXAMPLE: CONTROL OF AN UNSTABLE
CSTR

We take the same example as in (Scherer et al., 2002)
for demonstrating the proposed moving horizon
scheme. This is a continuous stirred tank reactor,
in which the substance B is produced from the ini-
tial reactant A in the main reaction, and unwanted
parallel and consecutive reactions form by-products
D and C, as A

r1−→ B
r3−→ C and A

r2−→ D. The
reaction velocities ri are assumed to depend on the
concentration and/or the temperature nonlinearly.
The inflow of the CSTR contains only the substance
A and is assumed to come from an upstream unit.
Therefore, the concentration and temperature in the
inflow can be viewed as external disturbances. The
control objective is to maintain the concentration of
the main product B despite these inflow variations.
As control inputs we may choose the inflow rate nor-
malized by the reactor volume and the heat removal,
which suffer saturation. A more detailed description
of the CSTR can be found in (Allgöwer, 1996).

We discretize the linearized model given in (Scherer
et al., 2002) with a sampling time of δ = 0.1min.
We obtain a system in the form of (3) with

A =





0.9739 −0.0942 −0.4378
−0.0012 1.0321 0.1567
−0.0162 0.0640 1.0648





(B1|Bu) =





0.0592 −0.0017 0.0022 0.0502
0 0.0006 −0.0008 −0.0103

−0.0005 0.0082 −0.0103 −0.0028



 ,

where x ∈ R
3 represent the normalized concentra-

tions of substances A and B, and the normalized
reaction temperature, respectively; w ∈ R

2 and
u ∈ R

2 denote the normalized disturbances and
controls, respectively. It is assumed that controls are
bounded as |ui(k)| ≤ 1, ∀k ≥ 0, i = 1, 2. We further
choose the same controlled output z = col(Hx, Eu)
as in (Scherer et al., 2002) with H = diag(0.5, 1, 1)
and E = diag(0.1, 0.1). An (almost) optimal atten-
uation level for the unconstrained H∞ problem is
γopt = 0.1819.

Let us assume that the disturbance could be oc-
casionally very large and the energy is bounded as
∑i=∞

i=0
‖w(i)‖2 ≤ 6. Following the algorithm given in

Section 4, we implement a moving horizon controller
with α = 0.1 and r0 = 200γ2

optα
2. A much smaller α

is chosen, since it is allowed for the moving horizon
controller and leads to better performance. Accord-
ing to the discussion in Section 3, the moving hori-
zon controller respects the control constraints while

keeping the closed-loop system dissipative. For rea-
sons of comparison, we design a fixed controller by
solving LMI optimization problem (14) with α2

f = 6,

rf = 4.6γ2
optα

2
f and ξ = x(0) = 0. The subscript f is

affixed for the fixed controller. This design ensures
that for any disturbance with energy bounded by 6,
the fixed controller satisfies the control constraints
and admits a performance level of γf = 0.3893.
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u1
u2
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0
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0.04

0.06

0.08

0.1

0.12

norm of controlled outputs

fixed
on−line

Fig. 1. Comparison of disturbance attenuation. Both
moving horizon and fixed controllers guarantee
dissipation and constraint satisfaction.

Fig. 1 shows the results of attenuating an impulse
variation in inflow concentration and inflow temper-
ature, respectively. The impulse is with a width of 50
sampling periods and an energy of about 6. For these
disturbances, no on-line adaptation of γ happens in
the moving horizon controller, nevertheless perfor-
mance improvement over the fixed controller can be
clearly seen in the bottom-right picture of Fig. 1,
which is achieved by allowing to choose smaller α.

When unexpected stronger disturbances affect the
systems, the fixed controller may violate the hard
constraints. In this case, we just clip the control
signals to keep them within bounds, which implies
the loss of dissipation guarantee for the fixed con-
troller. Fig. 2 and Fig. 3 present the results for
such disturbances, from both the moving horizon
controller and the fixed controller. The disturbances
consist of a sinusoidal variation and an impulse with
high intensity as plotted in the bottom-left picture
of Fig. 2 and as defined by

w1(k) =

{

s1 + w̄1(k) for 0 ≤ k ≤ 50

w̄1(k) for k > 50

w̄1(k) = a1 sin(−0.024(k + 100)) sin(0.2(k + 100))

w2(k) =







w̄2(k) for 0 ≤ k < 200

s2 + w̄2(k) for 200 ≤ k ≥ 250

w̄2(k) for k > 250

w̄2(k) = a2 sin(−0.024(k + 110)) cos(0.2(k + 110))
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with a1 = a2 = 0.02, s1 = −0.41 and s2 = 0.75.
Automatic performance adaptations are indicated
clearly in the bottom-right picture of Fig 2, which
leads to better performance of the moving horizon
controller as illustrated in the bottom-right picture
of Fig 3. More precisely, the moving horizon con-
troller makes the best of the control constraints to
achieve the improvement during the first impulse;
relaxing on-line performance so as to avoid actuator
saturation leads to the improvement during the sec-
ond impulse. Moreover, the performance improve-
ment around k = 100 and k = 300 is obtained by
tightening the performance specification when the
impulse variations in the inflow are removed.
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Fig. 2. Responses for moving horizon controller.
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Fig. 3. Responses for fixed controller and comparison
of disturbance attenuation with moving horizon
controller.

6. CONCLUSIONS

In combining the moving horizon paradigm with
dissipation theory, we proposed in this paper an on-
line optimization scheme to solve the L2-gain atten-
uation problem with hard control constraints. Tech-
nically, the feedback gain is determined on-line by

solving a constrained H∞ control problem updated
by the actual state, while a dissipation constraint is
introduced to guarantee disturbance attenuation for
the closed-loop system. This scenario automatically
manages the trade-off between satisfying constraints
and achieving high performance, which is viewed as
the most relevant progress over (Scherer et al., 2002)
with corresponding improvements of performance.

It should be pointed out that the tuning mechanism
for the parameters α and r in the proposed scheme
requires further investigation. If the disturbances
are not directly feed through to the outputs, it
is straightforward to include output constraints as
well, and other extensions pointed out in (Scherer et

al., 2002) are under consideration.
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 '�sl6t2´93Hµ�[%]u�wv-3A[x` 2 ´~áb Eµ
¦y�{zM´93|�}l�´/3Hµ�µ~[V` 2 ��v=3x[a` 2 ´~áb¦Pµ
ª�����´/3Hµ��g��´�zM´/3|�}l�´/3Hµ£µ�µ��g�£´/3|�}l�´/3Hµ£µ�N®âF�v=3x[a` 2 ´~áBªuµ
ÃB¯T±B«)³�¢�¸u«)¤,«|«)Ôq¯T¡£¢,¡4¥�Â^«K¥Y¡£¯T `¬T«�¡£©Y¬Qºq¢,¯Q©Y³#¢,©¶´ Û µ$¡�º`¾`¾u¬Q«)Ê
½2«K³>¢�«Kª » ¯Q¢�¸2¢,¸`«�¢�«K¤�½�¯T³u¥b¬E¦�©B³E¡z¢,¤,¥B¯Q³>¢�¥b³uª�¢,«)¤,½2¯T³u¥B¬
¦�©Y¡£¢K¿FzM´/3|��	Vµ�G@?�3�0gB�	�ªq«K³`©b¢,«K¡�¢�¸`«6¡�¼q¡z¢,«)½Ç¡£¢,¥@¢,«
¢�¤
¥b³u¡�¯�¢,¯Q©Y³�Â^º`³u¦�¢�¯T©B³�Á��£´/3|��	�µ�ª`«)³`©B¢�«K¡-¢�¸u«�¦�©>¡z¢�Â^º`³u¦�Ê
¢�¯T©B³A3 , 7 3�0�	 , . 	RÂ^©B¤-¥B¬Q¬���� Û �
á������������o� Û ¥B³uª��´93Hµ4¢�¸`«�¦�©>¡z¢�¢,«)¤,½P3 , 7 2 3�Â^©B¤�¢�¸`«-¢�«)¤,½�¯Q³E¥b¬E¡£¢,¥b¢�«Y¿
Ü*©b¢,«�¢�¸u¥b¢6¢�¸`«P¡£«¶¦)©B³uª`¯�¢,¯Q©Y³u¡�¥b¤,«�¡£ºF��¦)¯Q«K³>¢� `ºq¢#³`©B¢
³`«K¦)«K¡,¡�¥B¤�¼Y¿|¨�©>¡z¢�¡£¢,¥b u¯Q¬T¯Q×K¯Q³uÃÌ¨�­|²(¡,¦
¸`«)½�«P¡�½�¥BÆB«
ªq¯���«)¤,«)³>¢�¦
¸u©B¯°¦�«K¡2Â^©Y¤�` 2 ¥b³EªHn ¢�©Ë¡,¥@¢,¯T¡£Â^¼<¢,¸`«K¡�«¦�©B³Eªq¯�¢,¯Q©Y³u¡K¿��È¸`«)³Ö¢�¸u«)¼Í¥B¤�«�¡,¥@¢�¯°¡£Óu«Kª �|�
 �'½�¯T³ � 
¦)¥b³� H«�¾`¤,©@±B«K³�¢,©¶ E«#½2©Y³`©b¢,©B³`¯°¦)¥B¬Q¬T¼�ªq«P¡�¦)«)³uª`¯Q³`Ã�¢,©
â`Á�¡�©·¯�¢�¦K¥b³Ò E«�ºu¡�«KªÌ¥Y¡�¥·É�¼Y¥B¾`º`³`©@±UÂ^ºu³u¦m¢,¯Q©Y³®¢,©
¾`¤�©@±Y«�¥Y¡£¼X½�¾q¢,©b¢�¯°¦Ä¡z¢
¥b `¯T¬T¯�¢z¼Y¿
Àt³(¢�¸`«�ºu³u¦�©Y³u¡z¢,¤,¥B¯Q³u«Kª(¦)¥Y¡£«Ç´8³`©Ç¯T³`¾`ºq¢Ñ©Y¤Ñ¡£¢,¥@¢,«
¦�©B³E¡z¢,¤,¥B¯Q³>¢,¡
µmÁ�¢�¸`«�¥B E©@±Y«R¦�©Y³uªq¯Q¢�¯T©B³u¡¶¦K¥b³È H«R«K¥Y¡£¯T¬T¼
¡�¥b¢�¯°¡zÓu«Pª� X¼�¦
¸`©X©Y¡�¯Q³`ÃX` 2 �H�Ç¥b³uª%n��Hn�� �Y�m¿XÏx¸`«
¡£©Y¬Qºq¢,¯Q©Y³V�Ö¢,©�¢�¸u«�¦)©B¤,¤�«P¡£¾H©B³uª`¯Q³`Ã�Ú*¯T¦K¦)¥@¢�¢�¯�«K¹>ºu¥b¢�¯T©B³
´ Ø ¥b¬T½�¥b³�´ ÛPçBè âYµ£µ�¦K¥b³�¢�¸u«)³� H«�ºu¡�«Kª6¥Y¡�¢�«K¤�½�¯T³u¥b¬B¦)©Y¡£¢
´/�|¯�¢,½�«K¥Bª/«)¢-¥b¬w¿�´ ÛKçYç â>µ£µm¿
� ¿�ÞM��Ï���Ú*¨RÀzÜ*ÀzÜM�ãÏ���Ú-¨�ÀzÜ-��É·²�Ý �`Ïåß��XÀzÜM�

É�¨�Àmê��
Ïx¸`«�Â^©Y¤�«K½2«K³>¢�¯T©B³`«PªÄ½2«)¢�¸`©qª�¢�©-¦K¥b¬°¦�º`¬°¥@¢,«�¥x¢,«)¤,½2¯T³u¥B¬
¦�©Y¡£¢�¦)¥B³`³`©B¢� E«�ºu¡£«PªÌ¯Q³Ì¢,¸`«Í¦)©B³u¡£¢�¤
¥b¯T³`«PªÒ¦K¥B¡�«BÁ�¯T³
» ¸`¯T¦
¸·¦K¥B¡�«�¢�¸`«�¦)©B³u¡£¢�¤
¥b¯T³>¢,¡Ä¸u¥G±Y«2¢�©� H«�¥B¦K¦�©Bºu³Y¢,«Kª
Â^©B¤#«)Ôq¾`¬Q¯°¦�¯Q¢�¬T¼B¿F�-¡�¾`¤,©B¾H©Y¡�«KªÖ¯Q³��|©@¼qªU«�¢2¥b¬w¿�´ ÛPçBç � µ
¥b³uª Ø ©B¢�¸u¥B¤�«·«)¢Ö¥b¬w¿�´ ÛKçYçBè µ�Á-¥È¬T¯Q³u«K¥b¤PÁ-¡£¢,¥B `¯Q¬T¯T×)¯T³`Ã
Â^«)«Kª` u¥B¦
ÆÖ¦�©B³>¢,¤�©Y¬Q¬T«)¤PÁ » ¸`¯T¦
¸U¯°¡6©B¾`¢�¯T½�¥B¬�¯T³U¥B³·ÉFÙ�Ú
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ÕF¯QÃE¿ Û ¿FÏ$©b¢
¥b¬�¦)©B³>¢�¤,©B¬�¦�©Y¡£¢�´^Â^º`¬Q¬|¬T¯Q³`«Gµ6©BÂ*¤�«P¦�©@±B«K¤�¯T³`Ã/Â^¤,©B½ ¥b³·¯T³`¯�¢,¯T¥B¬|ª`¯T¡£¢�º`¤, u¥B³u¦�«�3 + Â^©Y¤�¥�¢z¼X¾`¯°¦)¥B¬�¡�¼X¡£¢�«K½�Á
¯T³�Â^º`³u¦�¢�¯T©B³Í©bÂ �3U¥b³uª�Â^©Y¤�ªq¯T��«)¤,«)³>¢�ªq¯°¡£¢�º`¤, u¥b³E¦�«�¡�¯T×)«K¡K¿EÞ�¯T�H«K¤�«K³Y¢Ä¤,«)ÃB¯T©B³E¡�©bÂ�©Y¾E«K¤,¥b¢�¯T©B³R¥b¤,«#ªq«K¬Q¯T½�¯�¢,«Kª� >¼
ª`¥Y¡£¸u«Kª�¬T¯Q³u«K¡K¿EÀn¢�¯T¡�¦�¬T«K¥B¤*¢�¸E¥@¢�¾H«)¤�Â^©B¤,½�¥b³u¦)«�¯°¡-±Y«)¤,¼�ªq«K¾E«K³uªq«)³>¢Ä©B³�¢,¸`«�¦
¸u©B¯°¦�«�©BÂ �3�¿V�"¦)©B½�¾`¤,©B½�¯T¡�«�¸u¥Y¡
¢,©� E«6½�¥Bª`«� H«�¢ » «)«K³�Â^«P¥B¡�¯Q u¯Q¬T¯�¢z¼Ö´^¬°¥b¤,ÃB«K¤ �3�µx¥b³uª/©Y¾q¢�¯T½�¥b¬T¯�¢z¼�´~¡£½�¥B¬Q¬T«)¤ �3�µm¿

¡�«)³u¡�«Ë¥b³Eª » ¸`¯°¦
¸�¤�«P¡£¾H«K¦�¢,¡�¯Q³`¾uºq¢U¥B³uªÐ¡£¢,¥@¢,«®¦)©B³qÊ
¡£¢�¤
¥b¯T³Y¢
¡)Áx¦)¥B³ë H«RÂ^©Bºu³uªë X¼È¡£©Y¬Q±X¯T³`Ã®¥Ë¬Q¯T³`«P¥b¤�©Y¾q¢�¯QÊ
½�¯Q×P¥@¢,¯Q©Y³�¾`¤,©B u¬Q«K½ » ¯�¢,¸RÉ�¨�À|¦�©Y³u¡z¢,¤,¥B¯Q³>¢
¡�§

½�¯Q³; � <6� =F� >@? ´ b ¥Yµ
¡�º` �<z«K¦�¢�¢�©�¡£¢,¥b u¯Q¬T¯�¢z¼/¦�©Y³u¡z¢,¤,¥B¯Q³>¢
¡A Û �3#,�3CBED NÌâ ´ b  EµFGGH B ´�?IB�0�BKJ2µ , B 7MLN J , . LN?OB�0�BKJ B â â7PLN B â ?RQ â. LN J â â ?RQ

SUTTV NÒâ
´ b ¦KµBUKÒâF� ´ b ªuµ

¯T³`¾`ºq¢-¦)©B³u¡£¢�¤
¥b¯T³>¢,¡ AXW JJ , B D NÌâ ´ b «PµFGGGH 	ZY & � []\�^ 	 YY � []\�^ ¿ ¿ ¿ 	ZY_a` � []\b^
SUTTTV N W ´ b Â,µ

¥b³Eª�¡£¢,¥b¢�«�¦�©Y³u¡£¢�¤
¥b¯T³Y¢
¡A B ´/?OB�0�BKJ�µ ,dc�,ec e ´�?IB�0�BKJ2µ f"Ye � []\�^ D NÌâg � Û �����ihRjlk ´ b ÃXµ
¥@Âj¢,«)¤ » ¸`¯°¦
¸2¢�¸`«xÂ^«K«Kªq E¥B¦
Æ�½�¥@¢,¤�¯QÔ�¥B³uª�¢,«)¤,½�¯Q³u¥B¬u¦�©>¡z¢
¦)¥B³� H«�¦)¥B¬T¦)º`¬°¥@¢�«Pª�¥Y¡ n��mJnB $�& ´ � ¥Yµ7 2 � ? B $�& � ´ �  Eµ�3U¯T¡Ä¥B³�¥b¤, `¯Q¢�¤
¥b¤,¼/¡£¢,¥b¢�«BÁ�¤,«)¾`¤,«K¡�«)³>¢,¯Q³`Ã�¢z¼X¾`¯T¦K¥b¬M«�Ô`¦)¯�Ê
¢,¥b¢�¯T©B³u¡KÁX¢�©� H«�¦
¸`©>¡£«K³� X¼¶¢,¸`«6ºu¡�«)¤P¿

o-e)v�[bk�f��Y� Ïx¸`«(¤,«K¡�º`¬�¢,¯Q³uÃ ¬T¯Q³u«K¥b¤'Â^«K«Kªq u¥Y¦
Æ ¦�©Y³qÊ
¢�¤,©B¬T¬Q«K¤2½�¯T³`¯T½2¯T×)«P¡ �3 , 7 2 �3FÁ4¤�«K¾`¤�«P¡£«K³>¢�¯T³`Ã�¢,¸`«�¢�©B¢,¥B¬¦�©B³>¢,¤�©Y¬x¦)©Y¡£¢�©bÂ-¢,¸`«R¦�©Y³>¢�¤,©B¬T¬Q«K¤�¢,©·¥B¦
¸`¯T«)±Y«�«P¹Yºu¯Q¬T¯Q `Ê
¤�¯Tº`½ Â^¤�©Y½ ¯Q³`¯Q¢�¯°¥b¬�¦)©B³uªq¯Q¢�¯T©B³ �3�Á » ¸`¯T¬Q«Ò¤�«P¡£¾H«K¦�¢�¯T³`Ã
¯Q³`¾uºq¢-¥b³uª�¡£¢,¥b¢�«6¦�©Y³u¡z¢,¤,¥B¯Q³>¢
¡p�q 	�r � p�s 	 �9� []\�^ ��� Û �����ih �p c e 3 p�s f e � []\b^ g � Û �����bh jlk
Â^©B¤*¥b¬T¬V¯T³`¯�¢,¯T¥B¬�¡£¢,¥@¢,«K¡~3R¡,¥@¢,¯T¡£Â^¼X¯Q³`Ã� 3 �utwvxsy�"�3 �utwv ´{zYµ
» ¯�¢,¸|h � ªq«K³`©b¢,¯Q³uÃ�¢,¸`«�³>ºu½# H«)¤�©bÂ�¯Q³`¾uºq¢,¡�¥B³uª}hRjlk
ªq«)³`©B¢�¯T³`Ã2¢�¸`«6³Xº`½� E«K¤*©bÂM¡z¢
¥@¢,«�¦�©B³E¡z¢,¤,¥B¯Q³>¢,¡K¿o-e)v�[bk�f@~X� Õ`©Y¤Ç¡£ºF��¦)¯Q«K³>¢�¬T¼�¡�½�¥B¬Q¬Ñ±G¥B¬Qºu«K¡æ©bÂ �3FÁ
» ¸`«)¤,«�¯T³`¾`ºq¢6¥b³uª�¡z¢
¥@¢�«2¦�©Y³u¡z¢,¤,¥B¯Q³>¢
¡-¥b¤,«�³`©B¢�¥Y¦m¢�¯T±B«YÁ
¢�¸`«È¤,«K¡�º`¬Q¢�¯T³`Ã n ¥b³uª 7 2 ¦)¥B³æ E«ë¡�¸`© » ³'¢�©Ð H«¯Tªq«K³>¢�¯°¦)¥b¬X¢,©Ä¢�¸`©>¡£«x©Y q¢,¥B¯Q³`«Pª2 >¼�¦)¥b¬°¦�ºu¬T¥b¢�¯T³`Ã6¥b³�ÉFÙ�Ú
¦�©B³>¢,¤�©Y¬Q¬T«)¤ » ¯�¢,¸�¢,¸`«�¸u«)¬T¾�©bÂ|Ú�¯T¦K¦)¥b¢£¢�¯4«P¹>ºu¥@¢,¯Q©Y³u¡)¿HÀt³
¢�¸`¯°¡x¦)¥B¡�«BÁY¢�¸u«�¢,«)¤,½�¯Q³u¥B¬H¦)©Y¡£¢|«)Ô`¥B¦m¢,¬Q¼�¤,«)¾`¤,«K¡�«)³>¢
¡�¢,¸`«
¤�«K½�¥B¯Q³u¯Q³`Ã�¦�©B³>¢,¤�©Y¬�¦�©>¡z¢� E«K¼B©B³Eª/¢�¸`«�¸`©B¤,¯Q×K©B³ » ¸`¯°¦
¸
¬Q«P¥Bª`¡|¢,©�¥�¬T©q¦)¥B¬Q¬T¼¶©B¾`¢�¯T½�¥B¬�¦�©Y³Y¢,¤�©Y¬Q¬T«)¤P¿o-e)v�[bk�f¶�>� Õ`©Y¤F¡�º��¶¦�¯T«)³>¢,¬Q¼6¬°¥b¤,ÃB«�±@¥B¬Qº`«P¡�©BÂ �3�ÁG¯Q¢ » ¯T¬T¬
³`©b¢F E«�¾E©>¡�¡�¯Q u¬Q«�¢�©*ÓE³uª�¥-¡£¢,¥B `¯T¬Q¯T×)¯T³`Ã*¬T¯Q³u«K¥b¤$Â^«)«Pªq u¥Y¦
Æ
¦�©B³>¢,¤�©Y¬Q¬T«)¤ » ¸`¯°¦
¸�¡£¢�¯T¬T¬V¤�«P¡£¾H«K¦�¢,¡|¢�¸u«6¯Q³`¾uºq¢-¥b³uª/¡£¢,¥@¢,«
¦�©B³E¡z¢,¤,¥B¯Q³>¢,¡K¿BÀt³�¢�¸`¯°¡|¦)¥B¡�«-©Y¾q¢�¯T½�¯Q×P¥@¢,¯Q©Y³¶¾`¤,©B `¬T«)½ ´ b µ
» ©Y³�ê ¢�¸u¥G±Y«6¥#Â^«P¥B¡�¯Q u¬Q«6¡�©B¬Tºq¢�¯T©B³�¿o-e)v�[bk�f��H� ´{zYµ�¦K¥b³� E«Ä¡£¸u© » ³�¢�©�¡�¥b¢�¯°¡zÂ^¼�¦)©B³uªq¯Q¢�¯T©B³E¡
´~áb¥>µmÁ#´wá@ EµR¥b³uª ´wáb¦Kµ�Â^©B¤p` 2 Á�¡£©È¯Q¢Í¦K¥b³Ð H«<ºu¡�«Kª¥B¡�¢,«)¤,½�¯Q³u¥B¬$¦)©B³u¡£¢�¤
¥b¯T³>¢K¿E�"½�©B¤,«6¢�¸`©Y¤�©Yº`ÃB¸�¾`¤,©X©bÂ4¯°¡
ÃB¯T±B«)³Ë¯Q³Ì­�¬Tº`¼X½�«)¤
¡#«)¢�¥B¬~¿�´~áBâBâ b µm¿MÏx¸`¯°¡�¦�©B³E¡z¢,¤,¥B¯Q³>¢
¯T¡�³u©b¢*¬T¯Q³`«P¥b¤� `º`¢-¹YºE¥Bªq¤
¥@¢,¯T¦BÁ » ¸`¯T¦
¸�¦K¥b³�¦�©B½�¾`¬T¯°¦)¥@¢,«
¢�¸`«�©B¾q¢,¯Q½�¯T×K¥b¢�¯T©B³¶¾`¤,©B u¬Q«K½/¿>Ï » ©2¥b¤,ÃBº`½�«K³Y¢
¡�¦K¥b³¶ H«
ÃB¯T±B«)³U¸`© » «)±Y«)¤�¢�©�¤�«K¬T¥b¢�¯T±G¥b¢�«�¢,¸`¯T¡K¿$ÕF¯T¤,¡£¢#©BÂx¥B¬Q¬wÁ�¢,¸`«
¦�©B³E¡z¢,¤,¥B¯Q³>¢�¦)¥b³� E«�¥B¾`¾`¤,©GÔq¯Q½�¥@¢,«Kª� X¼¶¥�¡�«�¢�©bÂF¬Q¯T³`«K¥B¤



¦�©Y³u¡£¢�¤
¥b¯T³Y¢
¡)Á » ¸`¯°¦
¸Ë¥bÃ>¥b¯T³<¤�«Pªqºu¦)«K¡6¢,¸`«/¾`¤�©Y `¬T«)½ ¢�©
¥/Ù�­M¿��X«P¦�©B³Eªq¬Q¼YÁE H«K¦K¥bºu¡�«#©BÂ4¢�¸`«�Â8¥B¦�¢-¢,¸u¥@¢ 7 2 ¯°¡�¥¾H©Y¡�¯�¢,¯Q±Y«xª`«�Óu³`¯Q¢�«-½�¥b¢�¤,¯�ÔVÁG¢,¸`«x¢�«K¤�½�¯T³u¥b¬u¦)©B³u¡£¢�¤
¥b¯T³>¢F¯°¡
«)¬T¬T¯Q¾q¢,¯T¦BÁ>¢�¸Xºu¡|¦�©B³X±Y«�ÔVÁY¡�©6¢�¸u«�ºu¡�«-©BÂ�«j�¶¦�¯T«)³>¢x¦�©B³X±Y«�Ô
©B¾`¢�¯T½2¯T×K¥b¢�¯T©B³�¥b¬TÃB©Y¤�¯Q¢�¸`½�¡|¯°¡*¡z¢,¯Q¬T¬�¾H©Y¡,¡£¯T `¬T«B¿

zq¿-Ý�­�ÏxÀz¨��-É�ÀzÏed
Àt³Ä¢�¸u«�¾`¤,«)±X¯T©Bºu¡�¡�«K¦�¢�¯T©B³6¥b³�¥B¾`¾`¤,©Y¥Y¦
¸�¯°¡�«)ÔX¾u¬T¥B¯Q³`«Pª�¢�©
¦)¥B¬T¦)º`¬°¥@¢�«�¥�¡£¢,¥B `¯T¬Q¯T×)¯T³`Ã�¢�«K¤�½�¯T³u¥b¬F¦�©>¡z¢-¥B³uª�¢�«)¤,½�¯Q³E¥b¬
¦�©Y³u¡£¢�¤
¥b¯T³Y¢�Â^©Y¤�¬Q¯T³`«K¥B¤¶¨R­|² » ¯Q¢�¸Ì¯Q³u¾`ºq¢�¥B³uª®¡£¢,¥b¢�«
¦�©Y³u¡£¢�¤
¥b¯T³Y¢
¡xºu¡�¯Q³`Ã�É$¨�Àmê ¡K¿HÝ�³`«�¥Y¡£¾H«K¦�¢�¢�¸u¥b¢*¸u¥B¡*³`©b¢
 H«)«)³ë¦)¬T¥B¤�¯QÓu«PªVÁ�¸`© » «)±Y«)¤PÁM¯T¡¶¢�¸`«�¦
¸u©B¯°¦�«R©BÂ �3F¿�Àn¢�¯°¡
¦�¬T«K¥B¤6¢�¸E¥@¢KÁ$©B³Ö¢�¸u«�©B³u«�¸u¥b³uª�Á �3Ë¡�¸`©Bºu¬TªU H«�¦
¸`©>¡£«K³
¡�½�¥B¬Q¬�«)³`©Yº`ÃB¸æ¢,©�½�¥bÆY«ë¡£º`¤,«"´ b µ·¸E¥B¡<¥ÎÂ^«P¥B¡�¯Q u¬Q«
¡�©B¬Tºq¢�¯T©B³�Á » ¸`¯T¬T«BÁV©B³�¢�¸`«�©B¢�¸`«K¤6¸u¥b³uª�Á �3·¡�¸`©Bºu¬TªÖ¡z¢,¯Q¬T¬
 H«®¦
¸`©>¡£«K³Å¬°¥b¤,ÃB«·«K³`©BºuÃB¸Î¢�©å½�¥bÆB«<¡�º`¤,«Ñ´{zYµ�¯°¡£³�ê ¢
©@±B«K¤�¤,«K¡£¢�¤,¯°¦m¢�¯T±B« » ¸u¯T¦
¸Å¦)¥b³å¤�«P¡£ºu¬�¢�¯Q³Å¥b³å¯Q³qÂ^«P¥B¡�¯Q u¬Q«
¨R­x²Ì©B¾`¢�¯T½2¯T×K¥b¢�¯T©B³�¾`¤,©B `¬T«)½�¿
�*¾E¥b¤�¢�Â^¤�©Y½"Â^«P¥B¡�¯Q u¯Q¬T¯�¢z¼YÁ » ¸`¯°¦
¸¶¯°¡�¥6³u«K¦�«P¡�¡,¥b¤,¼�¦)©B³uª`¯�Ê
¢�¯T©B³�Â^©B¤4¡£¢,¥B `¯Q¬T¯Q¢z¼BÁb¥b³u©b¢�¸u«)¤F¯Q½�¾H©B¤�¢,¥b³>¢MÂ^«K¥b¢�º`¤,« » ¸`¯T¦
¸
¯°¡4¯Q³`äuº`«)³E¦�«Kª� X¼�¢�¸`«�¦
¸`©B¯°¦�«x©bÂ �3¶¯°¡M¢,¸`«*¾H«)¤�Â^©B¤,½�¥B³u¦�«
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Abstract: By now a series of NMPC schemes exist that lead to guaranteed stability of the
closed-loop. However, in these schemes the computation time to find a solution of the open-
loop optimal control problem is often neglected. In practice the necessary computation time
is often not negligible, and leads, since not explicitly considered, to a delay between the
state information and the input signal implemented on the system. This delay can lead to
a drastic performance decrease or even to instability of the closed-loop. In this paper we
outline a simple approach how the computational delay can be considered in nonlinear model
predictive control schemes and provide conditions under which the stability of the closed-
loop can be guaranteed. This allows to employ nonlinear model predictive control even in
the case that the necessary numerical solution time is significant. The presented approach is
exemplified considering the control of a continuous reactor.

Keywords: nonlinear predictive control, computational delay, stability

1. INTRODUCTION

In many process control problems it is desired to de-
sign a stabilizing feedback such that a performance
criterion is minimized while satisfying constraints on
the controls and the states. From an optimal control
point of view one would ideally like to solve the corre-
sponding Hamilton-Jacobi-Bellmann equations to ob-
tain an explicit solution of the corresponding feed-
back law. However, often the explicit solution of the
corresponding partial differential equations can not be
obtained. One way to circumvent this problem is the
application of model predictive control(MPC) strate-
gies.
The work presented in this paper is concerned with
nonlinear model predictive control (NMPC) for con-
tinuous time processes and the problems resulting
from the often not negligible on-line computation
time. While by now a series of NMPC schemes ex-
ist that guarantee closed loop stability (see for ex-
ample (Mayne et al. 2000, Rawlings 2000, Allgöwer
et al. 1999) for an overview), in these schemes the
necessary on-line computation time is typically not

taken into account.Even though that recent develop-
ments in dynamic optimization have lead to efficient
numerical solution methods for the open-loop optimal
control problem (See e.g. (Bartlett et al. 2000, Find-
eisen et al. 2002, Tenny and Rawlings 2001, Diehl
et al. 2002)), the solution time is often significant.
Neglecting the resulting delay is thus of paramount
interrest. Otherwise the performance might degrade
significantly or even instability of the closed loop can
occur.
One of the few works that take the delay into account
is the work presented in (Chen et al. 2000). In this
paper we outline a similar, rather simple method on
how the occuring delay can be taken into account
in sampled-data NMPC. In comparison to (Chen et
al. 2000), the derived results allow to stabilize a wider
class of systems and to consider more general cost
functions. We furthermore exemplify the importance
of the consideration of the delay via a small example
system.
The paper is structured as follows: In Section 2 we dis-
cuss the difference between the so called sampled-data



and the instantaneous approach to NMPC. Section 3
contains a description and the proof of stability for
the proposed NMPC approach that takes the delay into
account. The properties of this approach are discussed
in Section 4. Before we conclude in Section 6 we
present in Section 5 a small example considering the
control of a simple CSTR.

2. SAMPLED-DATA NMPC

We consider the stabilization of continuous time non-
linear systems described by

ẋ � t ��� f � x � t ��� u � t ����� x � 0 ��� x0 (1)

subject to the input and state constraints

u � t �
	 U � x � t ��	 X �
� t � 0 � (2)

where x � t ��	 X ��� n and u � t ��	 U ��� m denote the
vector of states and inputs, respectively. The set of
feasible inputs is denoted by U and the set of feasible
states is denoted by X . We assume that U ��� m is
compact, X ��� n is connected and � 0 � 0 ��	 X � U.
With respect to the vector field f : � n ��� m � � n

we assume that it is locally Lipschitz continuous and
satisfies f � 0 � 0 ��� 0.
Model predictive control is based on the repeated solu-
tion of an open-loop optimal control problem subject
to the system dynamics and the constraints. Based on
the system state at time t, the controller predicts the
behavior of the system over a prediction time Tp in the
future 1 such that an open-loop performance objective
functional is minimized. To incorporate feedback that
counteracts possible disturbances, the optimal open-
loop input is implemented only until the next recalcu-
lation instant. Based on the new system state informa-
tion, the whole procedure – prediction and optimiza-
tion – is repeated, moving the control and prediction
horizon forward.
Mathematically the open-loop optimal control prob-
lem that is solved at the recalculation instants can be
formulated as:

min
ū ��� � J � ū ������� x � t � � (3a)

s.t. ˙̄x � f � x̄ � ū ��� x̄ � t �!� x � t � (3b)

ū � τ �"	 U � x̄ � τ �"	 X � τ 	$# t � t % Tp & � (3c)

x̄ � t % Tp �"	 E (3d)

where the cost function J is typically given by

J �����'�)( t * Tp

t
F � x̄ � τ ��� ū � τ � � dτ % E � x̄ � t % Tp ����+ (3e)

The bar denotes internal controller variables, x̄ ����� is
the solution of (3b) driven by the input ū �,�-� : # 0 � Tp & �
U with initial condition x � t � . We assume that the
“stage cost” F : X � U � � is locally Lipschitz con-
tinuous with F � 0 � 0 �.� 0 and F � x � u ��/ 0 � X � U 0� x � u �21�3� 0 � 0 � . The end penalty E and the terminal

1 For simplicity we assume that the prediction and control hori-
zon coincide.

region constraint E are often used to enforce stability
of the closed-loop (Mayne et al. 2000, Allgöwer et
al. 1999, Fontes 2000).
In the following, optimal solutions of the dynamic op-
timization problem (3) are marked by �,�-� �

. For exam-
ple we denote the optimal input for x � t � by u

� ��� ;x � t ��� :# 0 � Tp & � U.
The input applied to the system in NMPC is based on
the optimal input u

�
. Depending on how “often” the

open-loop optimal control problem (3) is recalculated,
different concepts of NMPC exist. If the open-loop is
solved at all time instants, we refer to it as instanta-
neous NMPC. If the dynamic optimization is solved
only at disjoint recalculation instants and the resulting
optimal control signal is implemented open-loop in
between, the resulting scheme is called sampled-data
NMPC.
Instantaneous NMPC: In instantaneous NMPC the
input applied to the system is given by

u � x � t ����� u
� � t;x � t ����� (4)

leading to the nominal closed-loop system

ẋ � t ��� f � x � t ��� u � x � t ����+ (5)

Various instantaneous NMPC schemes exist, see for
example (Mayne et al. 2000). From a practical point of
view instantaneous NMPC schemes are not appealing,
since an open-loop optimal control problem must be
solved at all times, which is certainly not possible in
practice.

Sampled-data NMPC: In the remainder of the paper
we consider sampled-data NMPC. In difference to
instantaneous NMPC, in sampled-data NMPC, the
open-loop optimal control problem is only solved at
the discrete recalculation instants and the resulting
optimal input signal is applied open-loop to the system
until the next recalculation instant. Thus the applied
input is given by

u � τ ��� u
� � τ;x � ti � �
� τ 	4# ti � ti * 1 � (6)

where ti denotes the discrete recalculation instants.
The nominal closed-loop system under the feed-
back (6) is given by

ẋ � t ��� f � x � t ��� u � � t;x � ti � ���5+ (7)

For simplicity and clarity we denote the resulting state
by x � τ;x � ti ��� u � ��� ;x � ti � ��� , τ 	6# ti � ti * 1 � .
We assume that the recalculation instants ti are given
by a partition π of the time axis.

Definition 1 (Partition) Every series π �7� ti � , i 	98
of positive real numbers such that t0 � 0, ti : ti * 1 and
ti � ∞ for i � ∞ is called a partition. Furthermore,; π̄ : � supi <>= � ti * 1 ? ti � is the upper diameter of π

(longest recalculation time).; π : � infi <>= � ti * 1 ? ti � is the lower diameter of π
(shortest recalculation time). @

For a given t, ti should be taken as the nearest recalcu-
lation instant with ti : t. We denote the time between



two consecutive recalculation instants ti and ti * 1 as re-
calculation time δr

i � ti * 1 ? ti. Allowing for varying re-
calculation times, allows to re-optimize the input more
frequently if the system dynamics changes rapidly.
Sampled-data NMPC schemes leading to stability of
the closed-loop are for example given in (Fontes 2000,
Michalska and Mayne 1993, Chen and Allgöwer
1998, Jadbabaie et al. 2001, de Oliveira Kothare and
Morari 2000, Magni and Scattolini 2002, Chen et
al. 2000, Findeisen et al. 2003).
Even so that in sampled-data NMPC in principle the
recalculation time δr

i � ti * 1 ? ti is available for the so-
lution of the open-loop optimal control problem, most
of the existing standard NMPC schemes that guarantee
stability do not take the necessary solution time for (3)
and the resulting delay into account. One of the few
exceptions is the work presented in (Chen et al. 2000),
in which the computational delay is taken into account
by optimizing at every recalculation instant, based on
a prediction of the state at the next recalculation in-
stant, the open-loop optimal control problem for the
next recalculation instant. The purpose of this work
is to expand the results in (Chen et al. 2000) and to
outline rather general conditions that guarantee that
the closed loop is stable. Furthermore we underpin by
a simple example the importance of a correct consid-
eration of the occuring computational delay.
We assume in the following that the maximum time for
finding the solution to the open-loop optimal control
problem is known and denoted by δ̄c. Furthermore,
we assume that the lower diameter of the recalculation
instant partition π satisfies π � δ̄c and that Tp � π̄.

Remark 1 Note, that we do not necessarily sample
and hold the input in between recalculation instants.
The reason for this is twofold: First of all the use of a
fixed input does not allow to achieve asymptotic con-
vergence to the origin if it is not considered during the
optimization without decreasing the recalculation time
to zero. Secondly, in practice the recalculation time
is either predetermined by the time needed to solve
the open-loop optimal control problem or by an exter-
nal scheduling mechanism. It is typically significantly
larger than the sampling time of the process control
system. As sampling time δs we refer to the time the
process control system operates, i.e. the A/D and D/A
converter operate. Typically, the sampling time is in
the order of seconds, whereas the time needed for
solving the open-loop optimal control problem (which
often also defines the recalculation time) is typically
in the order of tenth of seconds, minutes or even tenth
of minutes. Thus the open-loop optimal input signal
that is applied to the system during # ti � ti * 1 & can be
sufficiently well approximated by a sample and hold
staircase related to the sampling time δs of the D/A
converters see Figure 1. Since the sampling time is
often significantly faster then the recalculation time,
the remaining approximation error can be seen as an
(small) input disturbance, which NMPC under certain
conditions is able to handle (Findeisen et al. 2003). @

applied input

u

trecalculation instantt1t0

u ��� ;x � t1 ���

u ����� ;x � t0 ���
u ��� ;x � t0 ���

sampling time δs

Fig. 1. Recalculation time, sampling time and sample
and hold.

The next section outlines a simple approach to con-
sider the necessary solution time in the NMPC prob-
lem and gives conditions under which stability of the
closed loop can be guaranteed.

3. NMPC AND COMPUTATIONAL DELAY

The approach we propose is based on the idea to
continue applying the input from the last recalculation
instant ti also during the (maximum) time δ̄c needed
for solving the open-loop optimal control problem. In
comparison to (6), the open-loop input that is applied
to the system is thus given by:

u � τ ��� u
� � τ;x � ti ���
� τ 	$# ti % δ̄c � ti * 1 % δ̄c ��+

Since the input for the time # ti � ti % δ̄c � is now given
by the previous recalculation, it is not any longer
available as degree of freedom in the open-loop op-
timal control problem (3). Thus problem (3) must be
adapted to account for this new situation. In principle
one can add the additional constraint

ū � τ ��� u
� � τ;x � ti 	 1 � � τ 	 # ti � ti % δ̄c � (8)

to (3) or one can use u
� � τ;x � ti 	 1 � � τ 	�# ti � ti % δ̄c � to

predict x � ti % δ̄c � and solve the open-loop optimal
control problem for this “initial” state. For simplicity
of notation we follow the first approach. For this
reason we require additionally that Tp � π̄ % δ̄c, i.e.
the prediction horizon is long enough to at least span
to ti * 1 % δ̄c. The resulting open-loop optimal control
problem that is solved at every recalculation instant ti

is give by

min
ū � � � J � ū ������� x � ti ��� (9a)

s.t. ˙̄x � f � x̄ � ū ��� x̄ � t �!� x � ti � (9b)

ū � τ �!� u
� � τ;x � ti 	 1 ����� τ 	$� ti � ti % δ̄c & (9c)

ū � τ �"	 U � x̄ � τ � 	 X � τ 	$# ti � ti % Tp & � (9d)

x̄ � ti % Tp �"	 E � (9e)

with J given by (3e). Note that the notation u
� � τ;

x � ti ��� ti � ti % Tp � is not totally correct. The optimal input
u

�
now also depends on the input at ti 	 1.

In the following we state a theorem establishing con-
ditions for stability of the closed-loop. The theorem
is along the lines of the results in (Fontes 2000, Chen
and Allgöwer 1998), which do not consider the com-
putational delay.
Theorem 3.1 (Stability of sampled-data
NMPC considering computational delay)
Suppose there exists a set E and a terminal penalty E
such that



(a) E 	 C1 and E � 0 ��� 0,
(b) E � X is closed and connected with the origin

contained in E ,
(c) � x 	 E there exists a input uE : # 0 � π̄& � U such

that x � τ � 	 E � � τ 	4# 0 � π̄ & and

∂E
∂x

f � x � τ ��� uE � τ ��� % F � x � τ ��� uE � τ ����� 0 (10)

(d) the NMPC open-loop optimal control problem
has a feasible solution for t0.

Then the state of the nominal closed-loop system de-
fined by (9), (8), and (3e) converges to the origin
for all partitions π that satisfy π � δ̄c, Tp � π̄ % δ̄c.
Furthermore, the region of attraction R is given by the
set of states for which the open-loop optimal control
problem (9) has a solution.

Note that we achieve stability in the sense of conver-
gence to the origin (=steady state).
Proof.
As usual in predictive control the proof consists of two
parts: a feasibility part and a convergence part.
Feasibility: Take any time ti for which a solution exists
(e.g. t0). After solving the open-loop optimal con-
trol problem, the optimal input u

� � τ;x � ti ��� correspond-
ing to x � ti � is implemented for τ 	 � ti % δ̄c � ti * 1 % δ̄c & .
Since we assume no model plant mismatch and since
the open-loop input from the previous recalculation,
which is applied during the solution of (9) is taken into
account, the predicted open-loop state x̄ � ti * 1 � at ti * 1

coincides with x � ti * 1 � . Thus, the remaining piece of
the optimal input u

� � τ;x � ti ����� τ 	$# ti * 1 � ti % Tp & satisfies
the state and input constraints if “applied” to (9b),
and x̄ � ti % Tp;x � ti ��� u � � τ;x � ti � ���"	 E . According to The-
orem 3.1 (c) E and E are chosen such that for every
x � t � 	 E there exists at least one input uE �,�-� that ren-
ders E invariant over π̄. Consider the following input
candidate for ti * 1,

ũ � τ ��� �
u

� � τ;x � ti ����� τ 	$# ti * 1 � ti % Tp &
uE � τ ��� τ 	$� ti % Tp � ti * 1 % Tp & (11)

which is a concatenation of the remaining old input
and uE �,�-� . This input satisfies all constraints and leads
to x � ti * 1 % Tp;x � ti * 1 ��� ũ �,�-��� 	 E . Thus, feasibility at
time ti implies feasibility at ti * 1, i.e. if the open-loop
optimal control problem has a solution for t0 it also has
a solution afterwards. Furthermore, if one can show
that the states for which (9) has a (initial) solution
converge to the origin, it is clear that the region of
attraction R consists of the points for which (9) posses
a solution. This is established in the next part of the
proof.
Convergence: We denote the optimal cost at every
recalculation instant ti as value function V � x � ti � � �
J

� � u � �,� � x � ti ��� . We show that the value function is
strictly decreasing. This allows to establish conver-
gence of the state to the origin. Remember that the
value of V at the recalculation instant ti is given by:

V � x � ti � �!� ( ti * Tp

ti
F � x̄ � τ;x � ti ��� u � ��� ;x � ti ��� ��� u � � τ;x � ti ��� dτ

% E � x̄ � ti % Tp;x � ti ��� u � �,� ;x � ti ������+
Consider now the cost resulting from the application
of ũ a starting from x � ti * 1 � :

J � ũ �,�-��� x � ti * 1 ���!� ( ti � 1 * Tp

ti � 1

F � x̄ � τ;x � ti * 1 ��� ũ ����� ��� ũ � τ ��� dτ

% E � x̄ � ti * 1 % Tp;x � ti * 1 ��� ũ ����� ����+
Reformulating yields

J � ũ ������� x � ti * 1 � �!� V � x � ti � �
? ( ti � 1

ti
F � x̄ � τ;x � ti ��� u � �,� ;x � ti ��� ��� u � � τ;x � ti � ��� dτ

? E � x̄ � ti % Tp;x � ti ��� u � �,� ;x � ti � ��� �
% ( ti � 1 * Tp

ti * Tp

F � x̄ � τ;x � ti * 1 ��� ũ �,�-����� ũ � τ ��� dτ

% E � x̄ � ti * 1 % Tp;x � ti * 1 ��� ũ �,�-��� �
Integrating inequality (10) over τ 	 # ti % Tp � ti * 1 % Tp &
we can upper bound the last three terms by zero. Thus,
we obtain

V � x � ti � � ? J � ũ �,�-��� x � ti * 1 ���
� ? ( ti � 1

ti
F � x̄ � τ;x � ti ��� u � ��� ;x � ti � ����� u � � τ;x � ti ��� � dτ

Since ũ is only a feasible, but not the optimal input for
x � ti * 1 � it follows that

V � x � ti � � ? V � x � ti * 1 ���
� ? ( ti � 1

ti
F � x̄ � τ;x � ti ��� u � ��� ;x � ti ��� ��� u � � τ;x � ti ����� dτ (12)

This establishes that for any partition with π � δ̄c

(the time between two recalculations is sufficiently
long to allow the solution of the open-loop optimal
control problem) and with Tp � π̄ % δ̄c (the prediction
horizon spans sufficiently long into the future) the
value function is decreasing. Since the decrease in (12)
is strictly positive for � x � u � 1� � 0 � 0 � it is possible,
similar to (Fontes 2000, Chen and Allgöwer 1998), to
employ a variant of Barbalat’s lemma to establish that
the states converge to the origin for t � ∞.

4. DISCUSSION

The conditions for stability in Theorem 3.1 are, similar
to the results in (Fontes 2000), rather general. We do
not give specific details on how to obtain a suitable
terminal region or terminal penalty term, since most
NMPC approaches with guaranteed stability and do
not take the computational delay into account can
be simply adapted. Examples for suitable approaches
are the zero terminal constraint approach (Mayne and
Michalska 1990), quasi-infinite horizon NMPC (Chen
and Allgöwer 1998), control Lyapunov function based
approaches (Jadbabaie et al. 2001), and the so called
simulation approximated infinite horizon NMPC ap-
proach (De Nicolao et al. 1998).



In comparison to the scheme presented in (Chen et
al. 2000) that takes the computational delay into ac-
count, the outlined approach is applicable to a wider
class of systems and does not require to consider a
quadratic cost function. Furthermore, the presented
conditions even allow to design NMPC controllers
that can stabilize systems which can not be stabilized
by a feedback that is continuous in the state, com-
pare (Fontes 2000).
The key reason for including the computation time
into the open-loop optimal control problem is that if
it is neglected, it is strictly not possible to establish
stability, as also shown in the example in the next
section. Only if the delay due to the numerical solu-
tion is sufficiently small, it can be consider it as an
disturbance which NMPC under certain conditions is
able to handle (Findeisen et al. 2003).

5. EXAMPLE

To illustrate the outlined method and the general influ-
ence of a neglected computational delay, we consider
the control of classical continuous stirred tank reac-
tor (CSTR), for the exothermic, irreversible reaction
A � B as outlined in. The model under the assump-
tion of constant liquid volume takes the following
form (Henson and Seborg 1997):

ċA � q
V

� cA f ? cA � ? k0e � E
RT cA

Ṫ � q
V

� Tf ? T ��% ? ∆H
ρCp

k0e � E
RT cA % UA

VρCp
� Tc ? T ���

where UA, q, V , cA f , E, RT , ρ, k0, ? ∆H, Cp are con-
stants, cA is the concentration of substance A, T is the
reactor temperature, and Tc is the manipulate variable
– the coolant stream. The objective is to stabilize the
operating point Ts � 375K, cAs � 0 + 159mol/L via the
coolant stream Tc (Tcs � 302 + 84K), where Tc is lim-
ited to the interval # 220K � 330K & . As NMPC method
quasi-infinite horizon NMPC is applied. The terminal
penalty term E and the terminal region E are obtained
considering the quadratic “stage cost” F � xT

�
4 0
0 4 � x %

2 � T ? Tcs � 2, where x � � ca 	 cAs
T 	 Ts � , using the direct semi-

infinite optimization approach as outlined in (Chen
and Allgöwer 1998). For simplicity we assume that
the recalculation instants are equally apart, i.e. ti � iδr,
where δr � 0 + 15min. Furthermore we assume, that the
maximum required solution time δ̄c coincides with the
recalculation time, i.e. δ̄c � δr. The prediction horizon
horizon is set to Tp � 3min. The open-loop optimal
control problem is solved using a direct optimization
method (see e.g. (Biegler and Rawlings 1991)) that
is implemented in Matlab. For this purpose the input
signal is parametrized as piecewise constant with a
sampling time that also coincides with the time be-
tween the recalculation instants, i.e. δs � δr. Figure 2
and 3 show the simulation result for the initial condi-
tion cA � 0 �
� 0 + 5mol � L and T � 0 ��� 350K. Shown are
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Fig. 2. Resulting states considering an ideal NMPC
controller, an NMPC controller that does neglect
the delay, and an NMPC controller that accounts
for the delay.

the results for an ideal (theoretical) NMPC controller
(ideal NMPC), i.e. assuming that the optimal control
problem can be solved immediately, an NMPC con-
troller in which the computational delay is not taken
into account (NMPC delay neglected), and the scheme
outlined in Section 3 (NMPC delay considered). As
expected the best performance is achieved for the ideal
NMPC controller (which can not be implemented in
practice). The more realistic setups, in which a delay
occurs, show degraded performance. Clearly it can be
seen, that if the delay is not taken into account, that
the performance degrades dramatically (curve NMPC
delay neglected), i.e. no convergence to the desired
steady state is achieved, even so that the delay of
0 + 15min is rather small. This is also clearly visible
in implemented input as shown in Figure 3. Notably,
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Fig. 3. Resulting input signals.

the NMPC controller that takes the delay into account,
achieves very similar performance if compared to the
ideal NMPC controller. The remaining difference is
mainly due to the initial delay time up to t � 0 + 15min,
in which the old steady state input is applied to the
system. Overall it becomes clear, how important the



correct consideration of the never avoidable computa-
tional delay for stability and good performance.

6. CONCLUSIONS

In this paper we considered the sampled-data NMPC
of continuous time systems taking the necessary so-
lution time of the open-loop optimal control problem
directly into account. As shown, if the computational
delay is not taken into account, the performance of the
closed-loop can degrade or even instability can occur.
In the approach we outlined, the open-loop input from
the previous recalculation is applied until the solution
of the optimal control problem is available. Since the
“old” input is also taken into account in the open-loop
optimal control problem the predicted open-loop tra-
jectory and the closed-loop trajectory coincide in the
nominal case. Based on this and suitable assumptions
on the terminal region constraint and terminal penalty
term, we outlined conditions under which the closed-
loop is stable. The assumption on the terminal region
constraint and the terminal penalty term are rather
general and allow to obtain suitable candidates using
various methods such as quasi-infinite horizon NMPC.
Overall, the outlined method allows to employ NMPC
even in the case that the solution time of the optimal
control problem is not negligible.
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