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Abstract

Feedback linearization is a nonlinear controller design
strategy that results in an explicit formulation of the
feedback control law. This method can result in excel-
lent performance if an accurate dynamic process model
is available. However, feedback linearization suffers
from a lack of robustness if plant-model mismatch ex-
ists. The approach presented in this work analyzes the
robustness properties of the closed-loop process with
specific regard to the controller tuning parameter. Due
to this, it is possible to tune the controller such that ro-
bustness over the entire operating region is guaranteed
even under the assumption of certain types of model
mismatch. This method is illustrated with an example
and conclusions about its applicability to more general
model and controller formulations are presented.

1 Introduction

Nonlinear process control has become increasingly pop-
ular in the chemical process industries. This is due
to the trend towards speciality products, tighter profit
margins, more stringent environmental requirements,
as well as advances in nonlinear systems theory and in
the numerical implementation of nonlinear controllers
(Bequette, 1991).

Feedback linearization is a nonlinear controller design
technique that can result in excellent performance if
an accurate model of the process is known. However,
the closed-loop performance can degrade significantly,
even up to the point that the process can become un-
stable, if the real model contains inaccuracies in the
parameters or includes unmodeled dynamics (Henson
and Seborg, 1991). There are several possibilities to
circumvent this:

e A simpler controller could be used. This ap-
proach can increase the robustness but will usu-
ally decrease controller performance, especially
when the operating region of the process is large.

e A robust nonlinear controller could be designed.
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However, this will result in controllers that are
even more complicated to design, implement, and
maintain than regular feedback linearizing con-
trollers.

This paper presents a different approach of dealing with
model mismatch for nonlinear controller design. The
model and its uncertainties are thoroughly analyzed by
performing bifurcation analysis on the closed-loop sys-
tem. Subsequently, the results from this analysis are
used to tune the controller. In particular, it is often
possible to tune a feedback linearizing controller such
that robust stability is guaranteed.

The procedure is illustrated using an unstable reac-
tor as an example. For this case study, uncertainty in
the model parameters will result in an upper bound on
the controller tuning parameter, while unmodeled dy-
namics will result in a lower bound. This upper and
lower bound on the tuning parameter correspond to,
roughly speaking, a lower and an upper bound on the
aggressiveness of the controller. From the bifurcation
analysis it can be inferred that the controller will guar-
antee robust stability over the entire operating region
for tuning parameter values between these bounds. In
addition to robustness, it is also possible to use these
bounds in order to achieve good performance even if
there exists mismatch between the real model and the
one that is used for designing the controller.

2 Feedback Linearization

Two main categories of designing controllers via feed-
back linearization can be identified: input-output lin-
earization and state-space linearization. The presenta-
tion in this paper will exclusively focus on the former
because it is more generally applicable and will result in
linear input-output behavior of the system if no model
mismatch is present.

Consider a single-input single-output (SISO) nonlinear
system with n states of the form

&(t) = f(2(t) + g(x(®))u(?)

y(t) = h(z(t). M



If this system has a well-defined relative degree r then
it can be transformed into normal form via a diffeomor-
phism [¢T,7T]T = &(z). The ¢ coordinates are defined
as

& = ®(z) = L 'h(z), 1<k<r (2)
and the n; = ®,4;(x),1 < j < n —r (Isidori, 1995;
Kravaris and Kantor, 1990) correspond to the internal
dynamics of the closed-loop process. The normal form
of the system is then given by

b=6&6

& =&

o 3)
& = Lih(z) + LyL} h(z)u

n=q(&n)

y=%&

The map between the input and the output can be

linearized by choosing a static state feedback control
law ,

y v — Lih(z)

LyL™'h(z)

such that the r-th equation of (3) becomes &, = v. It
is possible to place the poles of the closed-loop transfer
function for the linearized subsystem £ in the complex
plane by choosing an appropriate feedback v. For the
purpose of this paper only one tuning parameter, €,
which represents the time constant of the closed-loop
system is used to shape the closed-loop response. A
feedback linearizing controller in terms of the original
states is then given by

(4)

—ppn) = ) rtn) — - e

LyL7™ h()
+ = (ysp — M(2))
Ly L 'h(z)

u =

(5)

When this control law is applied to the process, the
closed-loop transfer function between the system out-
put y and the set point y,, becomes

Y _ % (6)
Ysp (es+1)
under the assumption that y(0) = y,,(0).
It is also possible to include integral action in the con-
troller in order to compensate for possible inaccuracies
in the model. The feedback linearizing controller with
integral action is given by

—uin) - Cpth) - = () Lnge)
LyL} 'h(z)

u =

@(ysp — h(2)) + 24 [y Wep — h(@))dr
Ly L} "h(z)

+ (7)

resulting in the closed-loop transfer function

y  (r+1es+1
Ysp  (es+1)r+t

(8)

under the condition that y(0) = y,,(0).

The transfer functions shown in equations (6) and (8)
only represent the closed-loop system behavior if the
matching conditions are satisfied up to a degree of at
least r. Since this investigation specifically focuses on
controller tuning under the influence of model mis-
match, the controller implementation shown in equa-
tion (7) will be used. Due to the model mismatch it
will not be possible to exactly achieve the closed-loop
response shown in equation (8). However, the integrat-
ing term in the controller will ensure that the desired
set point can be reached and appropriate tuning of the
controller can still result in good performance for many
cases.

For the implementation of feedback linearizing con-
trollers it is usually postulated that the internal dy-
namics of the process is stable and that the values of
the states are exactly known. While this investigation
also uses the latter assumption, it will be shown that
the validity of the former assumption can easily be an-
alyzed as part of the proposed tuning method.

3 Bifurcation Analysis

Bifurcation theory allows to systematically identify
critical points on the steady state manifold of a
parametrized ODE or DAE system. The term critical
point refers to a point at which the dynamic behavior
of the system changes qualitatively. For example, at
Hopf and saddle-node bifurcations, stable and unsta-
ble steady states meet. Therefore, stability boundaries
in the process parameter space can be investigated by
locating these critical points for the system of interest.
The use of bifurcation theory in conjunction with
parameter continuation is well established. As one-
parametric curves of steady states are calculated by
parameter continuation, critical points can be detected
by monitoring sign changes of appropriate test func-
tions (Beyn et al., 2002). Once a bifurcation point
has been detected, a curve of bifurcation points can
be calculated by continuation from this point, just as
a curve of steady states was calculated starting from
a known steady state in the first step. The sequence
of continuation, detection of critical points, and subse-
quent continuation of a critical point can be repeated
for critical points of higher order, e.g. for a cusp point
found on a curve of saddle-node bifurcations. While
many higher order critical points are related to exotic
dynamic behavior, some reveal information which can
be exploited for engineering purposes. Most notably in
the present context, sets of cusp points bound regions
of the process parameter space in which no saddle-node



bifurcations occur. Similarly, sets of a particular type
of degenerate Hopf point bound regions in which no
Hopf points occur. Since Hopf and saddle-node points
mark the stability boundary, knowledge about the lo-
cation of degenerate Hopf and cusp points will be ex-
ploited in section 4 to identify regions in which no loss
of stability can occur for any value of the parameters.
Remarkably, bifurcation analysis has rarely been ap-
plied to closed-loop processes to the authors’ knowledge
(Cibrario and Lévine, 1991; Littleboy and Smith, 1998).
The relation of the present paper to bifurcation theory-
based design methods will be briefly discussed in sec-
tion 6.

4 Robust Controller Tuning

During controller tuning a trade-off is always associated
with performance and robustness requirements. This is
due to the fact that good performance leads to aggres-
sive controllers which will usually result in a decrease
in the robustness of the closed-loop process. A balance
between these objectives has to be found. Methods for
tuning linear controllers are well established (Skogestad
and Postlethwaite, 1996) but this is not the case for
nonlinear controllers, where performance and robust-
ness cannot easily be quantified.

In the following a methodology for determining upper
and lower bounds for tuning parameters for feedback
linearizing controllers is presented. This approach is
based upon bifurcation analysis of the closed-loop sys-
tem. The method will be illustrated by an example and
a generalization of this tuning method is discussed in
the next section.

Consider a continuous stirred tank reactor (CSTR) for
an exothermic, irreversible reaction, A — B (Uppal et
al., 1974). Assuming constant liquid volume, the fol-
lowing dynamic model can be derived based upon a
component and an energy balance:

v _ 4 — ) — _E
CA—V(CAf Ca) koeXp( RT)CA 9)
. g AH E
T=2(T;-T)- == -
v Tr-1) pcpkoexP( RT) Ca
UA

* VpCp

(T.—T) (10)

The values of the parameters and the nominal operat-
ing conditions for this process are shown in Table 1.
The temperature of the cooling fluid, 7., can be ma-
nipulated and the reactor temperature, 7', is measured.
This results in a system consisting of two states with
a single input and a single output. The bifurcation
diagram of the open-loop system is shown in Figure
1. The equilibria of the system consist of two stable
branches and one unstable branch connecting the two

Variable Value Variable Value
q 100-L- £ 8750K
Cay 1mol ko 7.2-100_L
Ty 350K UA 5-10" 2~
v 100L T. 300K
p 10004 Ca 0.5
Cp 0.239-% T 350K
g
AH | -5-10"_L

Table 1: Parameters for the CSTR

stable ones. The system also has two limits points and
one Hopf point. The nominal operating point shown in
Table 1 lies on the open-loop unstable branch. When a
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Figure 1: Bifurcation diagram of the open-loop system.

controller like the one given by equation (7) is designed
for this process it results in the following feedback con-
trol law

—& (Ty = T) + S koexp (—77) Ca + 55T

— VpCyp
- UA
VpCp
2(Tyy —T) + % [ (Tyy — T) dr
LTy T4 Ty ar
VpCp
T.=u (12)

Assuming that there is no mismatch between the plant
and the model, the controller of the form of equation
(11) results in a system that has a stable input-output
behavior as well as a stable internal dynamics for any
value of € and any set point, T, within the operating
region. This can easily be verified by applying bifurca-
tion analysis to the closed-loop system. For this nom-
inal case the value of € can be made arbitrarily small,
resulting in a very fast response. However, in an on-line
application there is always some mismatch between the
plant and the model which can also lead to restrictions
for the controller tuning.

Assume that the heat transfer coefficient, U A, of the



real plant represented by equation (10) is not identical
to the one for the model shown in equation (11) due to
uncertainty in this parameter. For the plant a value of
UA equal to 5-104 - Z{L % is used whereas for the model
a value of 5.5 - 10% mi{LK is assumed. When bifurca-
tion analysis of this closed-loop system is performed,
it is found that the system can become unstable for
high values of € because there is a Hopf point along the
equilibrium curve for some values of Ts,. Starting from
this Hopf point, a Hopf curve can be computed where
both € and Ty, are varied. The curve shown in Figure
2 results from this where the shaded region is unstable
and the region outside of the Hopf curve corresponds
to stable steady states. It can be concluded that the
system will always be stable if € is smaller than a cer-
tain value corresponding to the peak of the Hopf curve.

Next, it was investigated how this peak moves with
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Figure 2: Hopf curve of the closed-loop system for model
mismatch in UA of 10%.

variations in the parameter uncertainty. This way it
can be established how much the controller can be de-
tuned without losing stability for a specific uncertainty
in the model parameter. The corresponding curve is
shown in Figure 3. This curve provides information
about how large € can be chosen for a certain mismatch
in the model parameter in order to guarantee robust
stability. If the model mismatch is less than what was
assumed for the controller design then the closed-loop
system will also be stable. It should be pointed out that
values of € that are close to the critical € will usually
result in low performance of the closed-loop system.
When the model parameter UA is chosen to be less
than the real value of the plant (UA = 5-10*—L-)
then this model mismatch has a stabilizing effect. For
such a case any value of € will result in a stable closed-
loop system.

Similar investigations have been performed for mis-
match in other model parameters (ko, %) All of these
lead to similar conclusions that there exists an up-
per bound for the value of € for some form of model
mismatch. Tuning the controller more aggressively by
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Figure 3: ¢ vs. UA along the peak of the Hopf curve.

choosing a smaller value of € than this bound will guar-
antee robustness against parameter uncertainty for the
investigated case over the entire operating region.
Another form of model mismatch that needs to be con-
sidered is unmodeled dynamics. Since no model can
describe every detail of a process with perfect precision,
it is commonly assumed that the fast dynamics of the
process can be neglected. While this is generally a good
assumption, it does lead to a bound on the achievable
closed-loop performance. For linear controllers the un-
certainty can be described in the frequency domain and
unmodeled dynamics will result in a large uncertainty
weight at high frequencies (Skogestad and Postleth-
waite, 1996). Unfortunately, such a characterization of
the uncertainty is not possible for nonlinear systems.
However, bifurcation analysis can be performed on a
system that contains the most important part of the
fast dynamics while a controller that has no knowledge
about this dynamics is used to control it. For this case
study, the plant model is augmented by the following
two equations that describe the actuator dynamics as
an overdamped second order process

€T, =-T.+ 2

€&z =—2z+u

(13)

where €, corresponds to the time constant of the cool-
ing system. The equations in (13) replace the original
equation (12) for the following investigation. The goal
is to tune the controller such that robust stability is
guaranteed for this form of model mismatch.

Investigation of the closed-loop system under the as-
sumption of unmodeled dynamics given by equation
(13) (e, = 0.02min) but no parametric uncertainty
shows that the system exhibits a Hopf point when T,
is held constant and e is varied. Computing the Hopf
curve by starting from the Hopf point and varying both
T,p and € results in the curve shown in Figure 4. This
figure reveals that the unmodeled dynamics results in a
lower bound on the controller tuning parameter, €, for
any fixed value of T%,. Since the curve shown in Figure



4 has a peak at about € = 0.055 min, robust stability
can be guaranteed for any T, by setting € > 0.055 min.
Figure 5 shows how the peak on the Hopf curve moves
with a variation of the time constant of the unmodeled
dynamics, €,. If € is chosen to be greater than a certain
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Figure 4: Hopf curve of the closed-loop system for un-
modeled dynamics with ¢, = 0.02min.

value for a specific €,, then the system will be stable
over the entire operating region. It can also be con-
cluded that the closed-loop system will be stable for
any value of €, that is smaller than the one that was
used for the design. In summary, there are upper and
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Figure 5: € vs. €, along the peak of the Hopf curve.

lower bounds for the controller tuning parameter e for
this case study. The upper bound results from uncer-
tainty in the model parameters while the lower bound
is caused by unmodeled dynamics.

In a final step, the effect of parameter uncertainties
on the location of the lower bound for € and the effect
of unmodeled dynamics on the location of the upper
bound for € are investigated. The existence of unmod-
eled dynamics has a very mild stabilizing effect on the
system for high values of € because the unstable region
shown in Figure 2 is moved further to the right when
the value of €, is increased. A similar effect is taking

place for the lower bound of € when U A for the model
is chosen to be larger than the parameter in the model
because this will move the unstable region in Figure 4
further to the left. However, if the value of UA in the
model underestimates the real value of the parameter
then the unstable region in Figure 4 will move slightly
to the right.

Summarizing, it can be stated that the value of the
controller tuning parameter € for the worst case sce-
nario of 1) uncertainty in the parameter UA of up to
+10% 2) unmodeled dynamics of the form of equation
(13) with €, < 0.02min can be determined from the
diagram shown in Figure 6. Any value of € between
the peak values of 0.059424 min and 7.1969 min will re-
sult in robust stability of the closed-loop system over
the entire operating region and for any plant model
mismatch as described. In order to achieve good per-
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Figure 6: Regions of stability based upon the controller
tuning parameter e.

formance in addition to robustness it is recommended
to use a value of € that does not lie directly on the
stability boundary (e.g. € = 0.25 min for this case). If
there is a gap of several orders of magnitude between
the smallest and the largest value of the tuning param-
eter then it is recommended to stay closer to the lower
value in order to achieve a faster response. Ultimately,
the dynamics of the open-loop process has also to be
considered for tuning the controller.

All of the results derived from bifurcation analysis have
been confirmed in simulations with the dynamic sys-
tem.

5 Controller Tuning Procedure

The previous section illustrated the controller tuning
method by applying it to a specific example. However,
the same tuning method can be applied to processes in
general. It contains no restriction about the process to
be controlled or the type of controller to be tuned.

For feedback linearizing controllers the following steps
should be included in the controller tuning process:

1. Design and implement the controller on the sim-
ulated process.

2. Analyze the internal dynamics of the closed-loop



system using bifurcation analysis. This should be
performed at the operating point as well as over
the entire operating region in order to determine
if the internal dynamics will remain stable over
this region.

3. Tune the controller to satisfy a nominal perfor-
mance requirement. This is trivial to do for the
nominal case because the input-output behavior
of the closed-loop process corresponds to equa-
tion (6) or (8) if a controller of the type of equa-
tion (5) or (7) is being used.

4. Identify the main sources of parametric uncer-
tainty in the model. Subsequently, analyze the
closed-loop system using bifurcation analysis un-
der the assumption of parametric uncertainty.
This can result in restrictions on the controller
tuning parameters.

5. Perform bifurcation analysis on the closed-loop
system under the assumption of unmodeled dy-
namics. This investigation might place further
bounds on the controller tuning parameters.

6. Investigate the region for the controller tuning
parameters for which the closed-loop system re-
mains stable under the worst possible combina-
tion of parametric uncertainty and unmodeled
dynamics over the entire operating region. This
is an important point in order to guarantee ro-
bust stability of the controller.

7. If the controller tuning parameters that satisfy
the nominal performance requirement can also
guarantee robust stability then they can be kept.
Otherwise, the controller has to be retuned in or-
der to guarantee robust stability. It should be
pointed out that it is desirable to use controller
tuning parameters that do not lie close to a re-
gion of instability of the closed-loop process in
order to also achieve good robust performance.

It is stressed that step 6 of the above procedure cor-
responds to an analysis of cusp and degenerate Hopf
points involving more than two parameters. Figure
6, for example, was obtained by locating a degenerate
Hopf point from Figure 4 and Figure 2 in three param-
eters by repeatedly calculating curves in two parame-
ters for a variety of fixed values of the third parameter.
Repeated calculation of curves in two parameters will
become tedious if extremal points must be found w.r.t.
more than three parameters. It is worth noting that bi-
furcation theory-based design methods (Mo6nnigmann
and Marquardt, 2002) are available which can deal with
a larger number of parameters than bifurcation analy-
sis.

Following these steps will result in a controller that
is tuned such that it meets nominal stability, nominal
performance, as well as robust stability requirements.

6 Conclusions

This paper presented a controller tuning strategy for
nonlinear systems. The method is based upon apply-
ing bifurcation analysis to the closed-loop system in or-
der to determine regions of stability for the controller
tuning parameters. It is often possible to tune the con-
troller such that it meets nominal performance as well
as robust stability requirements. This approach was il-
lustrated by tuning a feedback linearizing controller for
an unstable nonlinear plant, under the assumption of
parametric uncertainty as well as unmodeled dynamics.
However, the approach as such can also be applied to
different types of controllers, plants with different char-
acteristics, as well as under the assumption of different
types of plant-model mismatch.
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CLOSED LOOP PROPERTIES AND BLOCK
RELATIVE GAIN
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Abstract: Block Relative Gain (BRG) is a useful method for screening alternatives
for block decentralized control at the design stage. In this paper, we establish the
connection between the BRG and closed loop properties like stability, input output
controllability, block diagonal dominance and interactions. Based on these results,
simple rules for pairing of variables for block decentralized control are proposed.
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1. INTRODUCTION

Manousiouthakis et al. (1986) generalized the con-
cept of Relative Gain Array (RGA) (Bristol, 1966)
to Block Relative Gain (BRG). It is a powerful
technique for input-output controllability analysis
and screening alternatives for block decentralized
control quickly at the design stage. During the
past few years, RGA has been studied exten-
sively (Grosdidier et al., 1985; Hovd and Skoges-
tad, 1992) and its properties are well understood,
but BRG has largely been overlooked. Some re-
searchers (Nett and Manousiouthakis, 1987; Chen,
1992) have found relations between BRG and Eu-
clidian condition number. It is shown that gener-
ally, a system is difficult to control, if the maxi-
mum singular value of BRG is large. Despite these
studies, BRG has not gained widespread popu-
larity and block pairings are selected primarily
based on heuristics (Castro and Doyle, 2002). This
can be attributed to lack of studies showing that,
similar to RGA, information regarding closed loop
properties can be obtained using BRG. This mo-
tivates the present work.

In this paper, we establish the connection between
BRG and closed loop properties like stability, in-
put output controllability, block diagonal domi-
nance and interactions. We show that the common

conjecture that a system is weakly interacting,
if BRG is close to the identity matrix, is not
true. Further, a system can have large interactions
despite BRG being exactly the identity matrix.
Based on these insights, simple rules for pairing
of variables are proposed.

This paper focuses on extracting useful feedback
properties from gain information, since it is often
the only reliable information available at design
stage (Grosdidier et al., 1985). The discussion is
limited to square, stable and linear time invariant
(LTI) systems represented as G(s). The steady
state gain matrix is represented as G(0) or simply
G € R™™" and its individual elements as g;;. A
vector of variables is denoted by a boldface letter
(e.g. y, u). The objective is to decompose the
original system into a set of M mnon-overlapping
square subsystems such that, G;; € R™i*™:; § =
1,2---M, 3. m; = n. The pair (y;,u;) denotes
the variables related by Gi;(s), which is the ij"
block of G(s).

2. PRELIMINARIES

Let the system be partitioned as shown in Fig-
ure 1. The steady state BRG between (yq,uy) is
defined as (Manousiouthakis et al., 1986),
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Fig. 1. Block Diagram of Closed loop system
[Agl;, = Gll[Gil]ll (1)

where Gi; and [G~1]y; are the first my x my
blocks of G and G~! respectively. If, Ggo is
non-singular, then recognizing that [G~1];; =
G;ll, [G]ll = G11 — G12G521G21 (HOI‘I’I and
Johnson, 1990), the BRG between (y1,u;) can be
alternatively calculated as

[AB]ll = G'llé'ﬁ1 (2)

Similarly, the BRG between (y;,u;) can be de-
fined as

[Ap];, = GulG™ i = GGy, (3)
Manousiouthakis et al. (1986) have suggested
choosing the pairings such that the eigenvalues of
[Ag]i; are close to 1 for all 4. This rule is based on
the incorrect conjecture that a system is weakly
interacting if the BRG is close to the identity
matrix. Due to this limitation, this rule can lead

to pairings with significant interactions in many
cases.

3. CLOSED LOOP PROPERTIES
3.1 Stability

In this section, we establish the connection be-
tween the BRG and simultaneous stabilization of
the closed loop system and individual loops. It is
based on a similar result for RGA shown to be
true by Grosdidier et al. (1985).

Let the system G(s) be partitioned as shown in
Figure 1. If the controller contains an integrating
element to give asymptotically zero tracking error,
K;i(s) can be expressed as 2Cy(s), k > 0. It
is assumed that C;;(s) and Gy (s) are stable,
contain no transmission zeros and G(s)C(s) is
proper. Defining, L(s) = G(s)K(s), the closed
loop system is given by

¥(s) =L+ L(s)] "' L(s)r(s) + [T+ L(s)] " d(s)

and y1(s) is given by

y1($) = |Lo(9)Lur () + Laa()Lan ()| ra (s)
+ [La1(s)La(s) + Laa(s)Laa(s)]ra(s)
+ L1 (s)da(s) + Lia(s)d2(s) (4)

where L;;(s) = [L™'(s)];;. Using the property of
partitioned matrices (Horn and Johnson, 1990):
Lii(s) = [T+ Lui(s)) — Lia(s)
) (I+Las(s))"Loy(s)]
Lia(s) = (I+Lui(s)) ™ 'Liz(s)[Lai (s) I+
+Li1(s)) "' Liz(s) — (I+Laa(s))]

At low frequencies, [I + Lj;(s)]7! ~ Li_jl(s)
(Hovd and Skogestad, 1992). This approximation
is valid, when the controller contains integral ac-

tion. Using this approximation,

fzu(S) = [I + Gll(S)KH(S)] -t
fqg(s) =~ —L;ll(S)ng [I + GQQ(S)KQQ(S)] -t

where G11(s) and Gaa(s) represent Schur comple-
ments of Gaa(s) and Gi1(s) in G(s) respectively.
If any of the zeros of [I+ G11(s)Ki1(s)] lie in the
right half plane and no pole-zero cancellations oc-
cur in (4), then the closed loop system is unstable.
Similarly, it can be shown that if the system is
to be decomposed into M blocks, the stability of
system depends on the location of zeros of [I +
Gii(s)Kii(s)], i = 1,2--- M. Now, we can relate
this finding to BRG using the concept of integral
controllability (Grosdidier et al., 1985).

Lemma 1. If Re{)X;(G#4(0)Cy(0))} < 0; j =
1,2---m; for some i, then the closed loop system
is not integral controllable.

Sketch of Proof. Since G(s) is stable and Gi;(s)
non-singular for all ¢ by assumption, G;(s) is also
stable. Now, Lemma 1 can be shown to be true by

following the proof of Theorem 7 of Grosdidier et
al. (1985).

It should be noted that the low frequency ap-
proximation has little effect on the applicabil-
ity of Lemma 1, since the maximum value of
Gii(s)Ki;(s) is seen at origin of s-plane.

Lemma 2. If Re{)\;(G;(0)C;(0))} < 0; j =
1,2---m;, then the subsystem (y;(s),r;(s)), con-
sidered in isolation, is not integral controllable.

PROOF. If all other loops are open, the stability
of subsystem (y;(s),r;(s)) depends on the zeros of
I+ Gii(s)K;i(s)]. The proof follows by replacing

G;; by G;; in Lemma 1. O

Proposition 3. If det([Ap(0)]i;) < 0, then one of
the following is true,

(1) The i*" loop by itself is unstable or
(2) The closed loop system is unstable.

PROOF. Using (3),



det([Ap(0)]:;) = det(Gi(0))

Thus, det([Ap(0)]:) < 0, if det(G4;(0)Ci;(0)) <0
or det(G;(0)Cy;(0)) < 0. If det(G;(0)C;;(0)) <

0, then at least one of the eigenvalues of G;(0)C;;(0)

is negative since,

m;

det(G4(0 H 2 (G4 (0)Cyi(0))

The closed loop system is unstable, if any eigen-
value of G;;(0)C;;(0) is negative (see Lemma 1).
Similarly, the i*" loop, considered in isolation with
other loops, is unstable if det(G;;(0)C;;(0)) < 0
(see Lemma 2). O

Proposition 3 can be interpreted on similar terms
as Theorem 6 of Grosdidier et al. (1985), where
the implications of negative RGA elements were
drawn. If det([Ap(0)];;) < O for some ¢ and a
controller exists, which stabilizes the individual
loops, then the closed loop system is unstable. If
the controller is designed such that the closed loop
system is stable, then the i*" loop is unstable. In
this case, the system is loop failure sensitive.

Proposition 3 provides only a necessary condi-
tion for stability. Consider the case when the
sum of the number of negative eigenvalues of
G.i(0)C;;(0) and Gy;(0)C;i(0)) is even. Then,
det([Ap]i;) will be positive, despite the closed
loop system and the individual loop being unsta-
ble.

Remark 4. The elements of the BRG with only
1 x 1 blocks are same as the diagonal elements
of the RGA (Manousiouthakis et al., 1986). Thus,
Proposition 3 generalizes Bristol’s pairing rule of
avoiding pairing on negative RGA elements to
block pairings.

3.2 Input-Output Controllability

It is well known that Right Half Plane (RHP)
zeros pose a limitation on the achievable perfor-
mance of the system. Hovd and Skogestad (1992)
have shown that the frequency dependent RGA
can be used to detect the presence of RHP zeros.
The applicability of their result is limited to the
individual elements of the system and (n — 1) x
(n — 1) subsystems of G(s). The next proposition
complements their result for subsystems having
different dimensions.

Proposition 5. Consider the partition of the sys-
tem matrix G(s) as shown in Figure 1. Then
[Ap(s)]11 is an my x my transfer function matrix.
If there exists mq, 2 < my; < n — 2, such that
lim;_, oo det([Ap(s)]11) is nonzero, finite and has

a different sign from det([Ap(0)]11), then at least
one of the following is true,

(1) Gq1(s) has an RHP transmission zero.
(2) Gaz(s) has an RHP transmission zero.

PROOF. For a given partitioning of the sys-
tem, 2 < m; < n — 2, consider that lim,_ ;o
det([Ap(s)]11) is nonzero and finite. If the signs
of det([Ap(0)]11) and lim,_, jo, det([Ap(s)]11) are
different, then there exists a frequency w,, w, > 0,
such that det([Ap(jws)]11) = 0.

The equality, det([Ap(s)]11) = 0, is satisfied, iff
one or both of det(G1;(jw,)) and det(G 1! (jw,))
are zero. Now, det(G11(jw,)) being zero implies
the presence of an RHP transmission zero in
Gi1(s) at that frequency. If det(Gii (jw,)) =
0, then Gll( ) contains an RHP transmission
zero and Gyi(s) contains an RHP pole at that
frequency. Due to stability assumptions, an RHP
pole in Gi;(s) at s = jw, can arise only due to
an RHP zero in Gaa(s) at s = jw,. O

Manousiouthakis et al. (1986) have shown that
BRG is input scaling independent. Thus, if an
input channel of G(s) contains an RHP zero,
the signs of det([Ag(joo)]11) and det([Ag(0)]11)
will remain unchanged. The change of sign of
det([Ap(s)]11) is only a sufficient, but not a nec-
essary condition for the presence of RHP zeros in
the subsystems of G(s).

Proposition 5 excludes the case in which any
subsystem contains a zero at the origin, (s = 0).
Should a subsystem contain a zero at the origin,
it would be extremely difficult to control the
system. The relation between zeros at the origin
and the steady state BRG is established in the
next corollary. The proof of this corollary follows
directly from the proof of Proposition 5.

Corollary 6. If there exists mi, 1 <m; <n—1,
such that det([Ap(0)]11) = 0, then one or both of
the subsystems, G11(s) and Gaa(s) contain a zero
or a transmission zero at the origin.

Either of these conditions is undesirable, as it
makes the subsystem uncontrollable using a con-
troller with integral action. The system may also
contain zeros close to the origin in the open left
half plane (LHP). Presence of such poorly damped
zeros also affects the controllability.

The gain of a multivariate system depends on the
input direction. Let the gain of (y1(s),u1(s)) be
|G11(0)v]|2, ||[v]2 = 1. Similarly, let the apparent
gain of this loop, when all other loops are closed
be [|G11(0)w|2, [[wll2 = 1.



Proposition 7. The worst case gain mismatch be-
tween G11(0) and G11(0) is bounded as follows,

5 oy G110Vl
([AB(O)]ll) S ““‘:““22211 HGll(O)W”Q (5)

1 1G11(0)w][2
oA = M e ol ©

[G11(0)v]2

G
max = =
[G11(0)wl]2 @

Proposition 7 suggests that if at least one of the
conditions, 7([Ag(0)];;) > 1 and o([Ap(0)];;) <
1, is satisfied, then the gain of the (y1(s),u1(s))
loop changes considerably due to closure of all the
other loops. If 5([Ap(0)];;) ~ a([AB(0)];;) ~ 1,
the change in gain may still be large, as (5) and (6)
are lower bounds on the gain mismatch with one of
the loops open. This affirms our earlier assertion
that if the BRG is far from the identity matrix,
the system has large interactions, but the converse
is not true. This is further discussed in §3.4.

3.3 Block diagonal dominance

An advantage of block decentralized controllers is
that if the blocks are weakly interacting, then the
individual controllers can be tuned independently
of each other. The concept of block diagonal
dominance can be used to assess this property
of the partitioned system. In this section, the
relation between block diagonal dominance and
BRG is established.

Let the system matrix G(s) be split into a block
diagonal part, Gpg(s) and an off-block diagonal
part, G(s) — Gypq(s). Furthermore, assume that
the controller K(s) has a block diagonal struc-
ture same as Gpg(s). Define E(s) = (G(s) —
G4(5))Gpa(s)™L. Then, a system is block diag-
onal dominant (Grosdidier and Morari, 1986), if

na(E(s) <1 (7)

where pa is the structured singular value (Skogestad
and Postlethwaite, 1996) with A having same
structure as Gpq(s). Next we show that informa-
tion regarding block diagonal dominance can be
obtained using the BRG.

Proposition 8. For a system partitioned into 2
blocks,

1

pa(E(s)) = a([As(s)]ii)

S

PROOF. Consider the system being partitioned
as shown in Figure 1. Then,

E(S) _ 0 GlQ(S)GQQ(S)_ :|

[Gm(s)en(s)l 0

Using Theorem 2 of Skogestad and Morari (1988),

pa(E(s)) = 0(G12(5) Gy ()7 (G (5) Gy (5))
pa(E(s) > 5(Gi2(5)Gyy (5)Ga1(s)Giy () (9)

Using (2)
1
—— < 1+
a([As(s)l1)
7(G12(5)G3y (5)Ga1(s)G1y ()  (10)
Substituting (9) in (10) and rearranging,

71 (11)

-

Similarly, (8) can be shown to be true for

[Ap(s)]22. O

Using (8), it can be shown that,

a(E(0)) = o0

lim
a([AB(0)]i1)—0 K

Thus the system in Figure 1 cannot be block
diagonal dominant if o([Ap(0)];) < 1. Though
this result is proven for the case, when the system
is partitioned into two blocks, numerical evidence
suggests that it is true for any partitioning.

3.4 Closed loop Interactions

If G(s) = Gpa(s) or the system itself is block
diagonal, it is trivially non-interacting. In this
section, such a system is referred to as an ideal
system. When the controller contains integral
action, the sensitivity functions of the actual and
ideal systems are related as,



S(s) ~ Spa(s)T(s) (12)
S(s) = (I+ G(s)K(s))~"
Spa(s) = (I + Gpa(s)K(s))™*

where T'(s) = Gpq(s)G(s)~! is the Performance
Relative Gain Array (PRGA) (Hovd and Sko-
gestad, 1992). Let I'(s) be expressed through

its singular value decomposition as, I'(s) =
U(5)2(s)V(s)T. Then,

L(s)vi(s) = gi(s)ui(s), Yi=1---n

where o;(s) is the i*" singular value and u;(s) and
v;(s) are the corresponding left and right singu-
lar vectors, calculated at a particular frequency.
Grosdidier (1990) has argued that the exogenous
signals oriented in the direction of singular vectors
associated with 7(T'(s)) most adversely affect the
closed loop performance and vice versa. Then, a
necessary condition for interactions to be mini-
mum is that o;(T'(s)) ~ 1 for all ¢ = 1,---n.
Recognizing that [Ag(s)]i = [T'(s)]u,

a([Ap(s)lii) < a(L(s)) (13)

Therefore, if 5([Ap(s)]i:) > 1, then a(I'(s)) > 1.
When [Ag(s)]i; = I, then 0;([Ap(s)]i) = 1 for
all j =1,---m;. Then (13) suggests that 5(T'(s))
can still be large, despite BRG being exactly the
identity matrix.

Based on these observations and Proposition 7,
we conclude that the system has large interactions
if 65(Ap(s)) > 1 and g(Ap(s)) < 1 or in other
words, BRG is very different from the identity
matriz, but the converse is not true. Use of
PRGA is necessary for drawing any conclusions
regarding closed loop interactions. Note that due
to the approximation involved (see (12)), this
result holds only at low frequencies.

4. ALTERNATE PAIRING RULES

In earlier sections, it was shown that useful in-
formation regarding closed loop properties can be
extracted using BRG. In this section, we summa-
rize those results in the form of pairing rules.

Pairing Rule 1. Avoid pairing on variables with
det([Ap(0)]) < 0 (Proposition 3 and Corol-
lary 6).

Pairing Rule 2. Avoid pairing on variables if
o([AB(0)];) < 1 for some ¢ = 1,--- M (Propo-
sitions 7 and 8).

Puairing Rule 3. Prefer pairing on variables for
which ), [03(I'(0)) — 1] is small, provided Rules 1
and 2 are satisfied (see §3.4).

These rules are based on gain information only
and may suggest inferior pairings for systems
containing large time delays. In such cases, if a
reliable dynamic model is available, then ensuring
that >, |o;(IT'(s)) — 1] is small up to the crossover
frequency is helpful. In addition,

Pairing Rule 4. Avoid pairing on variables with
different  signs  of  det([Ap(0)];)  and
det([Ap(joo)]ii) (Proposition 5).

Remark 9. Alternatives satisfying pa (E(0)) < 1
also possess the property of decentralized integral
controllability (DIC) resulting in easier on-line
controller tuning. However, the computational
load for calculation of y is substantial (Skogestad
and Postlethwaite, 1996). Then, Pairing Rule 2
can be seen as a pre-screening step resulting in
reduced computational load.

Remark 10. Since BRG and PRGA are output
scaling dependent, so are its singular values.
Therefore, prior to pairing selection, specification
of a suitable scaling of system matrix is necessary
to avoid ambiguity. A possible approach is to
normalize the system matrix such that |ly;|| < 1
foralli=1,---n.

Remark 11. These pairing rules equally hold for
fully decentralized control structures. For many
problems, . |0;(T'(0)) — 1] is small, if the diag-
onal elements of RGA elements are close to 1.
Thus, Bristol’s rule of pairing on RGA elements
close to 1 is implicit here, but, in general, it is
neither necessary nor sufficient for the system to
be weakly interacting.

5. NUMERICAL EXAMPLE

Ezample 12. Consider the 4 x4 ALSTOM gasifier
system (Dixon et al., 2000). The gasifier is de-
scribed by 3 linearized state space models of 25"
order at 100%, 50% and 0% load conditions. Prior
to pairing selection, the outputs of the system are
scaled such that [|y;]|2 < 1 at all load conditions.

Screening of various block decentralized alterna-
tives for the system is done such that det([A(0)]::)
> 0 and g(Ap(0)) > 0.1 at different load condi-
tions. A representative set of alternatives satisfy-
ing these conditions is presented in Table 1. The
pairings (1,1)! and (1-4,1-4) contain RHP zeros
at s = 3.3013 and 3.2879 respectively at 100% load
conditions making the use of these alternatives
unattractive.

Based on steady state analysis, ((1-2-4, 1-3-4),(3-
2)) seems to be the best structure. This was

1 (1,1) represent the pairing (y1,u1).



100% load

0% load

Pairing min; o([Ap(0)]4;) Zl lo(T'(0)) — 1] min; o([AB(0)]::) ZZ |os(T'(0)) — 1|  Remarks

(1,1),(2,3),(3,2),(4,4) 0.33 2.96 0.48 3.28 RHP zero
(1-2,1-3),(3,2),(4,4) 0.73 2.41 0.48 1.56

(1-4,1-4),(2,3),(3,2) 0.17 2.99 0.44 4.15 RHP zero
(1-2,1-3),(3-4,2-4) 0.86 1.83 0.53 1.73
(1-2-3,1-2-3),(4-4) 0.30 2.99 0.43 1.16
(1-2-4,1-3-4),(3-2) 0.80 1.86 0.75 1.12

Table 1. Block decentralized pairings for ALSTOM gasifier system

further confirmed by using frequency-dependent
PRGA. It is also seen that this alternative satisfies
ua(E(0)) < 1 at all load conditions and thus is
DIC.

This system has also been analyzed by Chin and
Munro (2002) at 100% load conditions, where they
have suggested the use of ((1-3-4,2-3-4), (2-1)).
This alternative satisfies Rules 1 and 2 at 100%
load conditions, but the relative gain of the pair-
ing (2-1) is negative at 0% load conditions. This
shows that this alternative will be loop failure
sensitive under varying operating conditions.

6. CONCLUSIONS

The main contributions of this paper include:

(i) an extension of Bristol’s rule of avoiding
pairing on negative RGA elements to block
pairings (Proposition 3),

(ii) a connection between Grosdidier’s interac-
tion measure and BRG. (Proposition 8),

(iii) a correction and restatement of the common
conjecture that a system is weakly interact-
ing, if BRG is close to the identity matrix
(§3.4).

The pairing rules proposed in this paper will be
helpful in selecting block pairings for the system.
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Abstract: A sufficient condition for robust stability of nonlinear constrained Model
Predictive Control (MPC) with respect to plant/model mismatch is derived. This work
is an extension of a previous study on the unconstrained nonlinear MPC problem, and
is based on Nonlinear Programming sensitivity concepts. It addresses the discrete time
state feedback problem with all states measured. A strategy to estimate bounds on
the plant/model mismatch is proposed, that can be used off-line as a tool to assess
the extent of model mismatch that can be tolerated to guarantee robust stability.
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1. INTRODUCTION

A prominent aspect of the research in the
nonlinear Model Predictive Control (MPC) field
is the development of a theoretical analysis
framework to study the stability and robustness
properties of the closed loop system in the
presence of disturbances and modeling errors.
A broad review by Mayne et al. (2000) on
constrained MPC points out that while research
on stability has reached a relatively mature
stage, further research is required to develop
implementable robust MPC for nonlinear systems.

In this work we develop a framework that can
be used to evaluate off-line, the closed-loop
robustness of a system with constrained MPC
in the presence of plant/model mismatch. It is
a direct extension of a previous work on the
unconstrained case by Santos and Biegler (1999)
for the discrete state feedback problem. Both the
plant and model are simulated using nonlinear
state space models.

The paper is organized as follows. Section 2
is devoted to preliminary definitions and
assumptions on the modeling errors, and to
a brief description of the MPC problem. In
Section 3, we analyze the convergence of the
optimal control problem solution for both the
perfect and model mismatch cases, by exploiting
the properties of the exact penalty function,
and we establish a sufficient condition for
robust stability. In Section 4, using nonlinear
programming sensitivity concepts, we characterize
this sufficient condition for the MPC problem
with a general cost function. We further detail
this characterization for the case of a quadratic
cost function, and we obtain a bound on the
plant/model uncertainty. This bound can be
estimated through off-line calculations using a
procedure that constitutes a tool to analyze
robust stability for constrained MPC. These
results are illustrated in Section 5 with a simple
example. Finally, concluding remarks regarding
the analysis of conditions for robust stability of



MPC in the presence of plant/model mismatch
are given in Section 6.

2. DEFINITIONS AND NOTATION

For this study we treat only the state feedback
case and assume that at every time index k all
the states can be measured accurately. We assume
the state dynamics of the plant are described
by the following nonlinear, continuous-time set of
equations:

P = fp(xp’up)v (1)

where 2P € R™ is the vector of states and uP €
R"™ is the vector of inputs, with f? : R™ x
R — R™s.

The stationary discrete-time counterpart of (1) is
xz_i,_l = fp(At; CEZ, UZ) ) (2)

where At is the sampling period and fP : R™ x
R"™ — R™. We will drop the At for convenience.
A model with the same dimension as (2) is
considered for the MPC framework:

Tpy1 = f(@g, uk), (3)

where z;, € R™ is the vector of nominal states,
ug is the same vector of inputs as in (2), with
f:R" x R"™ — R™. We consider (z},u}) =
(zk,u) = (0,0) the point at which both the plant
and the model operate at steady state, such that
f(0,0) = f7(0,0) = 0.

As in Keerthi and Gilbert (1988) we also apply
the definition of a function belonging to class
Koo, along with related assumptions. A function
W(r): Ry — R4, r € Ry, belongs to class Koo
if: a)it is continuous; b)W(r) = 0 < r = 0; ¢)it is
nondecreasing; d)W (r) — oo when r — co. We
define ||-|| as the Euclidean norm and assume there
exists a modeling bound function Wy, ([|z]|) € K
such that pr(xi,uII;) - f(xk,uk)H < Wm(||a:;f||)7
and positive constants K, and  such that

Wn ([zell) = Ko zi - (4)

The MPC problem minimizes
i+p—1
V(s s:) = Y hzg,u) +hiziep),  (5)
k=i
where ¥ : R™ x R™ — R, ¥(0,0) = 0. Here
h(z,u) € K is a general cost function, z; is the
initial state vector at the time index ¢, i > 0,
and s; is the solution vector over the predictive
horizon, given by

si = [si siv1 o Sipp) (6)
where sl , = [xak uak], k= 0,1,---,p.

This formulation allows a shorter input horizon
m, with m < p and ur = Ujym—1,k = @ +

m,...,t + p. Traditionally, the decision variables
of the MPC problem are the control profiles. In
the optimization framework used in this study
the state profiles are decision variables as well. It
uses a multiple shooting method to solve (3) over
the predictive horizon (e.g., Santos et al. (1995);
Santos (2001)). State and control constraints over
this horizon are included in the MPC formulation,
set as lower and upper bounds — subscripts 1, and

. o - |

withk=4i+1,...,724 p, and

U — Uuk
<
—uk+uLk]0’ (8)

T —Tuk
<
et @

blug) = {

with kK =14,...,i4+m — 1. We define the vector of
inequality constraints of the problem at i as

b(s;)" = {b(%H)T cb(@ip1)"
b(ui)" -+ b(wirm-1)"|. (9)

Finally, we impose terminal state constraints
ZTitp = 0, or if we allow p — oo then this
constraint is automatically satisfied for a finite
value of (5).

We denote by P(z;) the MPC problem solved at
every time index i, ¢ > 0, given by

n;iin U(z;,8;) (10)
s.t. C(I’Z‘, Si) =0 (11)
b(s;) <0, (12)

Tpy1 — f(ar, ur) ,

where ¢(z;,8;) = |k=14,...,i+p—1]|,
Litp

with optional constraints added for a shorter input
horizon, m < p. We assume in this analysis that
s; is a feasible solution for (10-12) and that there
exists a sufficiently long (and possibly infinite)
horizon that insures an admissible trajectory to
satisfy the terminal state constraints and (12).

3. STABILITY ANALYSIS

To extend the analysis made for the unconstrained
case (Santos and Biegler, 1999) to (10 — 12) we
use an exact penalty formulation as developed
by Oliveira and Biegler (1994). This approach
converts (10 — 12) to the problem P,(x;):

min Y(z;, s;, p;) (13)

st. ¢(x,8) =0, (14)
Wlth T(LE“ Si, pz) = \I/(SC,L, 37,) —|- P(Sz,pl) s (15)

T:R"™ x R"™ — R, 1(0,0,0) =0, where



i+p—1

P(si,pi) = pi - { Z maX{O,b(ij)}
k=i+1
i+m—1

+ Z maX{O,b(Uk)}}v (16)
k=i

and p; is the penalty parameter. We remark
that P(s;,p;) is bounded from below by zero
as well. An important property that motivates
the use of the exact penalty function, is that a
sufficient condition to recover the original optimal
constrained solution, s}, is to have a finite penalty
parameter with p; > [|w]||oc, Where w is the
vector of the Lagrange multipliers associated
to the inequality constraints from the original
problem (Fletcher, 1987). Thus this condition on
p; ensures that the control and state profiles do
not exceed the region delimited by (7) and (8)
over p. We will assume that the parameter p; can
be chosen in advance to be sufficiently large, i. e.,

p > max{p;} . (17)
Note that if p; cannot be bounded, then P(z;) has
no feasible solution. Of course, feasible solutions of
P(x;) cannot be guaranteed and for this reason,
a ‘reasonable’ value can be chosen for p so that
solutions of P,(z;) can be considered even if they
cannot always satisfy the bound constraints. To
simplify the notation we set

T*(x;) = Y(xi, 85, p). (18)

3.1 Perfect model case

The essence of our stability analysis follows
from familiar arguments developed by Muske and
Rawlings (see Mayne et al. (2000)). We first
consider the case where the model is perfect
and there is no source of disturbances. From the
assumptions stated in Section 2, the solution of
P,(x;) satisfies (xp,ur) = (0,0) for k& > i+ p.
Hence the locally optimal solution gives

i+p—1
T*(z;) = Z h(xzy, uy) + h(ziy,) + P(si,p).

=0
(19)
Note that we assume the point (z},u}) =
(zg,ur) = (0,0) is within the state and control
bound constraints.

Consider now the problem at the next time
index, P,(x;41). Because the model is perfect and
there is no source of disturbances, the resulting
optimal sequence of P,(x;) is a feasible solution
for P,(x;+1). Moreover, the objective function at
the solution of P,(z;+1) can be no greater than
the solution P,(x;); the solution of P,(x;41) can
not be worse because now the terminal constraint
is only enforced one interval ahead. Therefore

T (i) = T (wig1) = hlwi,ui, p) (20)

B Tsp

i+1i+2i+3i+4i45i+6 i+p—4 i+p—2  i+p
Fig. 1. Plant/Model state trajectory mismatch.

where h(x;, ul, p) = h(x;, uf)+ p-max{0,b(z;)} +
p-max{0, b(uf)}. Note also that h(z;, uf, p) € Keo.
Thus the sequence {Y*(x;)} over N time indices
decreases, and because (5) and (16) are bounded
from below by zero it converges. Taking the sum
of (20) over N we obtain

T (@) = T (en 1) =
N N
SO0 @) = T (i) = 3 Az ulp) . (21)
i=1 i=1
Also, because {Y*(x;)} is decreasing, then as N —
00, h(z;,uf, p) — 0 and z; — 0.

3.2 Model mismatch case

Consider now the case with plant/model
mismatch. Again, suppose that the solution of
Py(x;) gives (19). Now to solve the problem
at time index ¢ + 1 there are available two
initial state conditions to solve (3). One is the
prediction made at time index ¢ for i + 1, ;41
from (19), and the other one is defined by the
state measurements at ¢ + 1, x;11 from (2). This
leads to two MPC problems we denote here by
P,(Zi41) and P,(zi11), respectively. Note that
both problems are solved with the same model,
and the difference between their solutions reflects
the degree of plant/model mismatch — Figure 1:

® P,(Zi41) — using p and T;41, we obtain:

i+p

Y (@) = Y h(@,up)
k=i+1
+ W@ 1) + P(84,0). (22)
=0

From the perfect model case we assume that
p is large enough in order to obtain feasible
solutions to P(Z;41) if they exist. Thus the
arguments for the perfect model case are also
valid for this case.

o P,(xi41) — using p and x;41, we obtain:

i+p
T*(zi41) = Z h(zg, ur) + h(@7pi1)
k=it1 —

=0



1+p+1
+ P(sii1,0) = Y hlai,up,p)- (23)
k=i+1
Since ;41 can be different from Z;4 1, we may
not have P(sj ,p) = 0.

3.2.1. Sufficient condition for robust stability
To account for the existence of mismatch we

consider the addition and subtraction of YT*(Z;41)
to the difference T*(x;) — T*(x;41),

T (i) = T(@ig1) = T (@5) — T (Zit1)
— (T (i) = T*(@i1)) - (24)

The term Y*(z;) — Y*(Z;31) represents the
difference between the optimal objective functions
as in (20). Thus it follows that

T (i) = T (@ig1) =
Wi, up, p) = (T (2ip1) = T (Zit1)) - (25)

To ensure a closed loop stable system, we force
the right hand side to be bounded by a positive
function W (||z;]|) of class K. This ensures that
the sequence {Y*(z;)} is decreasing, that is,

h(zi,uy, p) — (T (@ip1) — T (Fig1)) = W([|la])

(26)
with W ([|z;]|) — 0 as ||lz;|| — 0, for all 4, i > 0.
The difference Y*(z;+1) — T*(Z;41) is a measure
of the plant/model mismatch and henceforth we
will refer to it as the mismatch term.

4. THE MISMATCH TERM

To characterize the mismatch term we start by
invoking the mean value theorem to derive an
expression for the mismatch term as a function of
the difference between the two problem solutions.
Then we consider the optimality conditions of
both problems to derive a bound on the mismatch
term, which leads to a sufficient condition for
closed loop stability under the presence of
plant /model mismatch.

4.1 Preliminaries

First of all, we assume that a value of p can be
chosen that is sufficiently large. By invoking the
mean value theorem it follows that

T (2ir1) = T(Tig1) =

Al{dxil [T* (Zigr + 7(wig1 — $i+1>)r}
(wig1 — Tip1)dr . (27)

This is done assuming (15) is differentiable.
However, because of the exact penalty terms it
is not. To overcome this we apply a smoothing

function (Balakrishna and Biegler, 1992) to every
element of (16); e.g., for a scalar z,

(b= +€)"  bla)
2 Ty
(28)
with small £ > 0. Henceforth (15) is replaced by
T(-'Eiv Siy Pis g) = \IJ(II)“ si) + P(Sia Pis E) ) (29)
which is continuous and at least twice
differentiable with respect to (6). For the
forthcoming developments it is convenient to
keep notation (18), and to define k =1,...,p:

¥ [e* ok _ $f+k—5?f+k
Eitk = |Sitr — 5; =| % L . 30
o= st st] = [ 0 )
From (5), (28), (29) and (30), (27) becomes

T (2it1) = T(Tig1) =

P 1
Z/ vsi+k h(§f+k + Tg;ﬁk—f—kapaé)T er—i-k dr.
k=170

maX{O,b(a?)} ~b(r,&) =

4.2 Derivation of a bound on the mismatch term

We start by considering the optimality conditions
of problem P,(z;+1). The Lagrangian for
this problem is L(s;41,A) = Y(wiy1) +
Ae(xii1,8i11), where X\ is the Lagrange
multiplier vector. The optimality conditions are:
Ve (it1) + Vse(witr, s51) " A*
c(Tiy1, 8iy1)
We also assume that Vsc(ziy1,8],,) has
full row rank and we define a basis, Z,
for the null space of this matrix, i.e.,
Vsc(ziy1,87,1) - Z = 0. By taking the projection
of VsYT*(xi41) + Vse(wit, s;*_H)T A* on the null
space of Vse(zit1,87,,), (31) becomes
T *
|:Z ~V5T £$i+1):| —0. (32)
c(@it1,8{41)
Thus proceeding as in the unconstrained case
study (Santos and Biegler, 1999) we derive a
bound for stability on the mismatch term,
T (1) = T (@i41)| <

P

=0. (31)

1
/ V5i+k,h(§;“+1 + Tff+k,p7 g)T dr
0

T Wi (llall) s (33)

that provides a sufficient stability condition for a
general cost function h(z,u), where T' is derived
from sensitivity information from (32) (see Santos
and Biegler (1999)).

D

k=1

4.3 Constrained MPC with quadratic function and
finite horizon

Typically, in MPC formulations (5) is defined with

h(sitk) = Siop, Qitk Sith » (34)



where Q41 = diag{Qxitr, Quitr}, and Qxipr €
R™*™ and Qui+rx € R™*™ are diagonal
matrices corresponding to the state and input
weighting matrices at predictive horizon time
index i+ k, respectively. From (34), the analytical
form of the integral term in (33) is

1
/ vswkh(g:-&-k Jr’rg;?k-i-k’p’é)T dr =
0

(2 §:+k + 5r+k)TQi+k +p- 7‘(53;“%7 €:+ka f) , (35)

where r(§;‘+k, I §) denotes a vector whose
elements are nonlinear functions of 57, ,, €7, ; and
&. Following the same developments as in Santos
and Biegler (1999) we obtain

|T* (2i1) = T (Zig1)| <

p
Z{ ("2§?+kH + HEerkH) Qx|
k=1

T HCE] | S (BT

We assume there are positive constants @, oy and
«g, such that for all ¢ > 0 and k£ <p

Pzt O < an 255l + oo [t

(37)
and ||Qi+k|| < Q. Moreover, since 57, ., k =
1,...,p, depends on x;, we set

1255k < K |l (38)

where K is a positive constant. From (4), with
v =1 (see Santos and Biegler (1999)),

||5;:k+k|| <r-: Wm(Hva) < T Kolzi[ (39)

for every k, k < p. Finally, substituting (37), (38)
and (39) in (36) leads to

|T*(2ig1) — TH(Zig1)| < Ks ||lzi?, (40)
where Kp :p{(f(—FFKm) Q
+p-(a1f(+a2FKm)}I‘Km. (41)

Note that the first term of the sum on the right
hand side of (41) is the expression of Kp obtained
for the unconstrained case. Therefore, when there
are no active constraints p = 0 and (40) is equal to
the unconstrained case sufficient stability bound.
Also, from (26) and (40) it follows that

Wi up,p) — | T (@ig1) = T (Zig)|
> h(xi,u}) — K [lzi)* = W([lzil]) . (42)

Suppose that Qy; = ayl and Q.; = a,l, with
constants oy > 0 and a, > 0. Because u] is

an implicit function of x; we can write |ju}||? =
B|lz:||?, B> 0. Thus

h(wi, up) = o 2] wibon uf T uf = (axtay B) ||z

(43)
For a given x;, with no active constraints, and
with ay, = 0, from (42) it follows that K < ax to

satisfy the sufficient condition for stability. When
ay # 0, this condition is relaxed to

K <ay+a,0. (44)

4.4 A tool to analyze robust stability

Because (§ in (44) depends on the optimization
problem solution it is impossible to know a priori
Kg. In Section 5 we illustrate that Ky < ax
provides a conservative sufficient condition for
stability. In any case, when constraint violations
occur a tighter value of the sufficient stability
condition for the constrained case, Kg, can be
estimated by exploiting the state-space region of
interest from

Kg > max |T*(Ii+1) — T*(@—H”
T i

(45)

This procedure involves the calculation off-line of
Kpg according to the following cycle:

1 For a given z;, i > 0, perform the following steps:
2 Solve P,(x;); save Tj{1.
3 Implement u; and set i =i+ 1.
i Using x;11, solve Pp(xi+1) to obtain T*(x;41).
ii Using Ziy1, solve Pp(Zi+1) to obtain Y*(ZT;41).
iii Go to 1 and repeat steps with new values of x;.

Therefore for a nonzero x; we can compute a lower
bound for Kg.

5. ILLUSTRATIVE EXAMPLE

Consider an exothermic zero-order reaction
system, A — B, with concentration and
temperature dynamics described by

dCs _ Iy ~E.J(RT)
TR (Cap —Ca) —koe , (46)
dT; 1
- - 4
with QR = _pLCpFO(TO - Tr) + UA(Tr - TJ’),

and Qg = (—AH,)Vkge Fa/(BT) Note that (47)
does not depend on Cp. The system is open
loop unstable for 7, ; > 34°C. Data and a
more detailed description of this system can be
found in Santos (2001). The control objective is
to control T, — the set-point is T;5p, = 34°C —
by manipulating the cooling fluid temperature 7j
subject to: T, > 0°C and 71} > 15°C. To satisfy
these constraints the control problems are solved
using (15) with p = 1000. We set (ay,ay) =
(1,0), (p,m) = (25,1), At = 0.5min and we
note that the plant and the model have the same
steady state with 7, = T; = 34°C. To test
for the sufficient stability condition parametric
model mismatch on U is considered. Figure 2
shows the variation of Kg with T} ;, varying from
24 to 44°C, and for various mismatches: U, =
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Fig. 3. Unstable regulator control response.

100, 200, 300, 400 and 500 W/m? k. The true plant
value is U, = 300W/m?k. Thus, we observe in
Figure 2 that in the case of perfect model K = 0.
We emphasize that when the constraints are not
satisfied then (16) is not zero and Kp is very high.
Here, the nonexistence of a feasible solution is
overcome by increasing appropriately p to pursue
the calculation of Kg.

For (ax,on) = (1,0), a sufficient condition for
robust stability from (42) requires Kp < 1. This
can be seen in Figures 2 and 3. For T} ; < 34°C,
the profiles show Ky < 1 always. Under these
conditions the system is closed loop stable in
the sense that the state converges to the origin
(set-point), T, = 34°C. On the other hand, for
T:,; > 34°C, the profiles of Ky increase such
that they tend to cross the line Kg = 1 as
T ; increases. Since (45) provides a lower bound
on Kp it means the system can become closed
loop unstable under these plant/model mismatch
conditions — e.g., Figure 3 with 7}, ; = 37.5°C and
U = 400 W/m? K. On the other hand, with Uy, =
500 W/m? K, the system is closed loop unstable
when T,; > 34°C. Again, from (45) this is
consistent with the theory since Kp > 1 for
T:,; > 39°C.

On the other hand, stable performance may
still be observed if (42) is violated because this
condition is only sufficient. For instance, with
U = 100 W/m? K the system is closed loop stable
despite K > 1. The same result is observed
for Uy = 200W/m?x when T,,; > 37°C. In
these cases U, > Uy, thus the control solution
is favorable to the plant; i.e., the control system
provides a cooling rate greater than the one really
necessary. But for Uy, = 400 and 500 W/m? K the
cooling rate calculated by the controller may not
be sufficient to cool down the reactor liquid and
therefore a temperature runaway may occur.

6. CONCLUSIONS

We develop a strategy based on nonlinear
programming  sensitivity = that  determines
conditions under which the constrained model
predictive control is robustly stable with respect
to modeling errors. Here, a sufficient condition
for robust stability is derived and an offline
procedure is developed to evaluate constants
which determine sufficient conditions for this
property. These constants are available from
bounds on the model mismatch and from the
NLP solution of the receding horizon model.
This procedure is applicable to both linear and
nonlinear model predictive controllers in discrete
time that satisfy nominal stability properties
based on Lyapunov arguments.
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Abstract: In this work, the relationship between performance objective and control-
relevant nonlinearity was investigated for Hammerstein and Wiener systems with
polynomial nonlinearities. Nonlinearity assessment of the systems’ inverses augmented
with first-order linear filters using a numerical measure of nonlinearity showed that
the nonlinearity varies depending on the relative magnitude of the filter time constant,
but generally showed increasing nonlinearity with decrease in time constant. Similar
assessment of the respective nonlinear internal model control structures indicated that
the Hammerstein nonlinearity is weakly dependent on the filter time constant while

the Wiener nonlinearity is strongly dependent.
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1. INTRODUCTION

A key step in designing a control strategy for a
process is determining the degree of complexity
of the control algorithm necessary to optimally
compensate for the intrinsic process nonlinearity
(Ogunnaike et al., 1993). As demonstrated pre-
viously (Hernjak et al., 2002), certain nonlinear
behaviors are more severe than others and some
that appear significant in the open-loop setting
may have little impact on closed-loop behavior.

Work involving use of the optimal control struc-
ture (OCS) as a means for assessing control-
relevant nonlinearity (Stack and Doyle III, 1997)
emphasized another issue of importance in deter-

1 Author to whom correspondence should be addressed.
E-mail: doyle@engineering.ucsb.edu

mining the optimal degree of controller nonlinear-
ity: the cost of the control action, or similarly,
the desired level of performance of the controller.
The implication of these results is that it is not
only the inherent nonlinearity of the process that
is of importance, but also the desired level of
performance of the controller. In this work, a
numerical measure of nonlinearity is employed to
characterize the relationship between degree of
controller nonlinearity and its performance objec-
tive for Hammerstein and Wiener systems with
polynomial nonlinearities and scalar dynamics.

The particular control structures characterized in
this work are nonlinear internal model control
(IMC) algorithms. IMC algorithms involve the use
of an explicit model of the process in order to com-
pensate for uncertainty, including unmeasured
disturbances (Morari and Zafiriou, 1989). Control



actions are generated from the disturbance pre-
diction using an inverse of the model augmented
with a unity-gain filter to maintain realizability.
The filter time constant is introduced as a tun-
ing parameter to adjust controller aggressiveness.
Analysis of this type was suggested previously
(Stack and Doyle III, 1999) using coherence as
the measure of nonlinearity. Use of strictly linear
IMC algorithms in determining the applicability
of linear feedback for a process has also been inves-
tigated (Eker and Nikolaou, 2002). Other methods
for analyzing control-relevant nonlinearity have
also been proposed (Guay et al., 1995).

In Section 2, the nonlinearity measure is intro-
duced. In Section 3, the open-loop nonlinearity
of the Hammerstein and Wiener structures is
discussed. In Section 4, the nonlinearity of the
model inverse plus filter is investigated. Finally,
in Section 5, the nonlinearity of the classical IMC
structure is analyzed.

2. NONLINEARITY MEASURE

The numerical nonlinearity measure proposed
originally in (Allgower, 1995) and elaborated
upon in (Helbig et al., 2000) was used for non-
linearity characterization:

| G[u] — N [u|py,
| N [u]HPy

(1)

U .
¢y = inf sup
N GeG ueu

where N : U — )Y is the system operator and
G : U — Y is a linear approximation to N. U
is the space of considered input signals, ) is the
space of admissible output signals, and G is the
space of linear operators. gbjz”\’, is a number between
zero and one where a value of zero indicates the
existence of a linear approximation to the system
whose output matches the output of the original
system over the set of inputs being considered.
A value close to one indicates a highly nonlinear
system.

As (1) represents an infinite dimensional optimiza-
tion problem, approximate computational tech-
niques are utilized to compute lower bounds on
the measure. A general computational technique
involves selecting a representative set of inputs
and then building a linear approximation com-
posed of a weighted sum of linear basis functions,
e.g.:
N

y(s) = wou(s) + Z e
i=1 "

w;

(s) (2

w,; are the weights on the basis functions, 7;
are the functions’ time constants, and N; is the
number of basis functions chosen. It has been
shown (Allgower, 1995) that the search for the

optimal set of w; is convex. In this work, a quasi-
Newton optimization algorithm with numerical
Hessian update was employed to calculate the w;.

A less rigorous but more computationally efficient
lower bound on (1) can be obtained by limiting
the space of admissible inputs to sinusoids of
varying amplitude and frequency. Provided that
the nonlinear system preserves periodicity, the
output after any transients have decayed can be
represented by a Fourier series:

ys = Ao + Z Ay, - sin(kwt + ¢,) (3)
k=1

By choosing the norm:

w0l = jim |7 [o20d @)

0

it can be shown (Allgdwer, 1995) that the follow-
ing is a lower bound on (1):

A?
u 1
Xy = sup 4/1-— = 5
N aCA,weQ \/ 242+ 37002, Af )

where A, Q) are the sets of input signal amplitudes
and frequencies being considered. X% usually lies
within 10-15% of the best value obtained through

use of the optimization method discussed above.

3. OPEN-LOOP NONLINEARITY

The Hammerstein and Wiener models studied in
this work consist of a first-order linear dynamic
element with unity gain and time constant and
a static polynomial nonlinearity of order n. The
Hammerstein model is of the form:

v=u", T=—-x+v, y==2x (6)

and the Wiener model is of the form:

v=u, t=—-c+v, y=a" (7)

Hammerstein and Wiener model structures have
been applied in modeling many nonlinear process
systems (e.g., (Eskinat et al., 1991), (Pottman and
Pearson, 1996)) including pH systems and systems
with nonlinear control valves.

The degree of open-loop nonlinearity for these
systems is assessed using the LB (5). An input
range of 0 < w(t) < 1 centered at a steady-
state of u = 0.5 is considered along with integer
values of n ranging from 2 to 5. It is informative
to consider the value of (5) computed at each
frequency individually to study how different fre-
quencies contribute to the nonlinearity measure,



as is plotted in Figures 1 and 2. This will be
referred to as the frequency dependence of (5),
but note that the true value of (5) is the maximum
value of each of the curves. The results show that
the frequency dependence of (5) follows opposite
trends for the two systems with the Wiener system
reaching its highest values at low frequency and
the Hammerstein system approaching its highest
values at high frequency. The results also indicate
a trend of increasing nonlinearity with n.

0.7 T T TR R = e T L L T

Nonlinearity Measure (LB)
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Fig. 1. Frequency dependence of Wiener system
open-loop nonlinearity as measured using the
LB (5) for various polynomial orders and an
operating range of 0 < u(t) < 1.
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Fig. 2. Frequency dependence of Hammerstein
system open-loop nonlinearity as measured
using the LB (5) for various polynomial or-
ders and an operating range of 0 < u(t) < 1.

An analysis of the results in Figures 1 and 2
reveals that the low frequency results are identical
for both systems. Because the low frequencies
correspond to the region below the reciprocal time
constant (1 rad/sec), these results correspond to
the steady-state nonlinearity of the system, thus
negating any effects of the linear dynamics and its
placement in the structure.

The high frequency behavior is explainable by
considering the frequency behavior of the linear

dynamics. The linear dynamics are first order and
therefore attenuate to an increasing degree the
higher frequency inputs. As can be seen in Figure
3, for the Wiener system at high frequencies, the
linear dynamics attenuate the single-frequency
input to the point where the nonlinearity has little
effect.

For the Hammerstein system, the static nonlinear-
ity will first generate additional frequencies due to
the ability of many nonlinear functions to generate
harmonics (Pearson, 1999). The result of this, as
can be seen in Figure 3, is that the final output
exhibits a large positive bias from the steady-
state value due to the linear dynamics not atten-
uating the zero-frequency harmonic (steady-state
bias) generated by the static nonlinearity. This
bias adds greatly to the value of the nonlinearity
measure.

1

u()

x(t)

vyt

Time (sec)

Fig. 3. Wiener (solid) and Hammerstein (dashed)
systems time-domain signals for an input
sinusoid of amplitude 0.5 and frequency 8.33
rad/sec when n = 2. y*(¢) is the deviation
from the steady-state output.

The results provided in this section are generaliz-
able to other static nonlinearities and linear dy-
namics with only slight modifications as they rely
only on the generation of harmonics by a nonlinear
system and the attenuation characteristics of the
dynamics.

4. SYSTEM INVERSE NONLINEARITY

In the linear IMC framework, its ISE optimal
control results from the use of specific filters
(which depend on input characteristics) coupled
with the appropriate model inverse. While the
optimality properties do not transfer directly to
nonlinear IMC structures, these structures are
still important for control-relevant analysis since
they maintain many of the useful qualities of
linear IMC structures (Economou et al., 1986).
The equivalent classical controller designs arising
from IMC algorithms for the Hammerstein and



Wiener systems are shown in Figures 4 and 5.
As outlined in the figures, the nonlinearity of the
individual elements of these control structures and
the overall structures themselves are considered
separately in the sections of this paper. In this
section, the nonlinearity of just the process inverse
is considered as this structure corresponds to the
IMC algorithm in the ideal case when there is no
model error or output disturbances. In that case,
the process inverse serves as an open-loop con-
troller relating setpoint changes to manipulated
variable moves.

Section 5

Fig. 4. Classical control structure corresponding
to IMC design for a Hammerstein system. P
= linear dynamics, N = static nonlinearity,
F = filter.

Section 5

Fig. 5. Classical control structure corresponding
to IMC design for a Wiener system. P =
linear dynamics, N = static nonlinearity, F'
= filter.

To ensure realizability, the inverse is augmented
with a first-order filter:

F(s) = (8)

where A is the filter time constant. A first-order
design is the minimum filter order necessary in
this case to maintain realizability. Higher order
filters could be designed but would correspond to
controller designs with sluggish dynamic proper-
ties.

As seen in Figure 4 (Hammerstein structure), the
inverse of the linear dynamics for a first-order
system augmented with the filter is a lead-lag
system, i.e.:

s+1

FPTs) =30 ©)

Therefore, the frequency behavior of the system
is a function of the filter time constant. For large
A, the lag behavior of the system dominates and
the high-frequency signals are attenuated, while
for small A, the lead behavior dominates and
the high-frequency signals are magnified. Similar
observations can be made for the Wiener system,
but note that the filter and the inverse linear
dynamics are separated by the inverse of the
static nonlinearity. The nonlinearity of the inverse
systems is considered in the range 0 < y(t) < 1
centered at y = 0.5.

The effects of the lead-lag element on the nonlin-
earity can be seen for the Hammerstein system
in Figure 6. At large A values, the lag behavior
dominates and the nonlinearity follows the Wiener
trend seen in Figure 2. At small A, the lead be-
havior dominates and there exists a maximum
nonlinearity in the middle of the frequency range.
It should be noted that, at low frequency, all of the
curves in Figure 6 asymptote to the nonlinearity
of the static nonlinearity block. Figure 7 is the
corresponding plot for the Wiener inverse, demon-
strating the same trend as the open-loop Wiener
system for large A and a completely different trend
for low A. The large A trend is expected as the
filter placement causes the first two blocks of the
inverse to resemble a Wiener system of their own
with a time constant that will dominate that of
the inverse linear dynamics. Note that, for the
Wiener system, the A = 1 trend is not flat thus
showing the effect of placing the nonlinearity be-
tween the two linear dynamic blocks.
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Fig. 6. Inverse Hammerstein system (n = 3)

nonlinearity as a function of frequency for
various values of the filter time constant, .

By the definition of (5), the true nonlinearity of
the inverse system is the maximum value over
the frequency range for each value of \. Figure
8 shows these results for both systems. For the
Hammerstein system, the inverse’s nonlinearity
is a weak function of A over selected intervals.
For A > 1, the nonlinearity is that of the static
nonlinearity block and for A < 1, the nonlinearity
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Fig. 7. Inverse Wiener system (n = 3) nonlinearity
as a function of frequency for various values
of the filter time constant, A.

is that of the peak value shown in Figure 6. For
the Wiener inverse, the nonlinearity matches that
of the Hammerstein system for A > 1 and steadily
grows for A < 1.
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Fig. 8. Wiener and Hammerstein systems (n = 3)
inverse nonlinearity as a function of the filter
time constant, .

The conclusion that can be drawn from the data
presented in this section is that the nonlinearity of
these system inverses is dictated by the time con-
stant of the linear filter (i.e., the closed-loop time
constant). As the filter time constant varies in
magnitude relative to the system’s open-loop time
constant, the severity of the nonlinearity changes
in differing manners. Admittedly, consideration of
A values greater than one is not of much practical
relevance since such tunings would correspond to
a closed-loop time constant that is larger than
the open-loop time constant. It is informative to
consider the A > 1 case since the overall results
indicate a trend of increasing nonlinearity as one
proceeds from the A > 1 region to the A < 1
region, corresponding to an increase in desired
controller performance.

5. CLASSICAL CONTROL STRUCTURE
NONLINEARITY

The final step in the control analysis is to consider
the classical realization of the IMC controller. As
shown in Figures 4 and 5, the input considered
now is the setpoint error (yq — y, where yq is
the set-point). This form of the IMC design is re-
ferred to as the “classical” realization, equivalent
to the form of PID and other standard control
algorithms in which setpoint error is the input and
manipulated variable value is the output.

As is desired for this realization, the controllers

will integrate the input (error) signals. For in-

stance, for the Hammerstein structure, the N1

block can be moved beyond the loop leaving a

purely linear loop. In that case, it can be shown

that the equivalent loop operator has the form:
s+1

1(s) =25 (10)

containing integral action. For the Wiener case,
the P~! block can be moved beyond the loop
first followed by the N~! block leaving only the
filter in the feedback loop. The loop operator thus
reduces to 1/\s, again showing integral action.
The preceding analysis also demonstrates that the
classical structures have the same general struc-
tures as the process inverses, i.e., the Hammer-
stein controller has a Wiener structure and the
Wiener controller has a “linear-nonlinear-linear”
block sandwich structure.

Given the integrating nature of the systems, the
LB formulation of the nonlinearity measure can-
not be used. Instead, the optimization-based al-
gorithm discussed in Section 2 was used to char-
acterize the system nonlinearity for a finite time
horizon. Twenty stochastic input signals were im-
plemented spanning the same magnitude and fre-
quency ranges of wu(t) used to characterize the
inverse system nonlinearity. The basis functions
chosen for the linear approximation included one
pure integrator and two unstable functions (i.e.,
7; < 0) to account for any other positive feedback-
induced behaviors of the system as well as 13
stable first-order lags with logarithmically-spaced
7; € [0.075, 60].

Figure 9 includes the results of the classical IMC
nonlinearity assessment. The slight roughness of
the trends in Figure 9 is due to the stochastic
nature of the input signals. Signals with more
precisely designed frequency content would result
in smoother trends.

The Hammerstein system nonlinearity in Figure 9
is essentially invariant with respect to A, which is
consistent with the results for the inverse nonlin-
earity in Figure 8. The result in this case is due to
the role of X in the loop operator (10) in which
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Fig. 9. Nonlinearity of the classical IMC structures
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it acts purely as a gain, therefore affecting all
frequency components uniformly. For the Wiener
system, the results in Figure 9 suggest a uniformly
high nonlinearity for the A < 1 region and a
sharp decrease beyond A = 1 again indicating
decreased nonlinearity with detuning. In general,
the results indicate that the nonlinearity of the
controller necessary to effectively control either of
these systems is quite high.

6. CONCLUSIONS

The results of this work demonstrate that the per-
formance objective of a controller can greatly im-
pact the control-relevant nonlinearity of the sys-
tem. It was shown that the degree of nonlinearity
of the process inverses and the classic realizations
of the IMC controller is strongly dependent on
the relative magnitude of the filter time constant
as compared to the open-loop time constant for
Wiener systems and, at most, weakly dependent
for Hammerstein systems.

The results in Section 3 showed that the open-
loop nonlinearity of the Hammerstein systems is
generally greater than that of the Wiener systems.
In comparing these results to the control-relevant
results, it is suggested that the high Hammerstein
open-loop nonlinearity mandates a uniformly high
controller nonlinearity to optimally control these
systems. For the Wiener systems, highly nonlinear
control is only necessary when high levels of
performance are desired. Therefore, at least in
regards to IMC design, these common classes of
systems are representative of two different cases:

(1) highly nonlinear open-loop systems that re-
quire highly nonlinear control for optimal
performance (Hammerstein),

(2) mildly nonlinear open-loop systems that re-
quire highly nonlinear control only when high
levels of performance are required (Wiener).
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Abstract: In this paper, a new local measure of linear controller performance is introduced
for linear controllers operating on a nonlinear plant. The measure, called the performance
sensitivity measure, quantifies the departures from optimality of a locally linear quadratic
regulators. The measure applies to nonlinear systems that admit a controllable and
observable linearization. It is shown that the measure can be related to standard minimum
variance benchmarking techniques and can therefore be assessed using closed-loop

process data in an operating region of interest.
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1. INTRODUCTION

The control of linear systems has been extensively studied
and the literature provides a very complete and well-
characterized collection of tools for their analysis, mon-
itoring, optimization, and control. As a result, process
control engineers focus on linear system representations
to solve a wide range of control problems. Unfortunately,
the reality is that few processes are linear, and therefore
the effectiveness of using linear control strategies can be
questioned. Nonlinear control strategies have advanced
greatly, and are becoming more widely accepted; how-
ever, their implementation is impeded by a considerable
degree of mathematical sophistication or computational

1 Work supported by the Natural Sciences and Engineering Council of

Canada and the Canadian Foundation for Innovation
2 To whom correspondence should be addressed.

requirement. As a result local linear approximations of
the nonlinear system are often used to develop a control
law. In order to test the effectiveness of this approach,
it would desirable to develop an index that measures the
effect of process nonlinearity on linear controller per-
formance. From a design point of view, such a measure
would indicate whether sufficient benefit is available to
warrant investment in a nonlinear controller.

Many authors (e.g., (Desoer and Wang 1981), (Allgower
1995a), (Allgower 1995b), (Stack and Doyle 111 1997),
(Haber 1985), (Ogunnaike et al. 1993), (Guay et al.
1995)) have considered the assessment of process non-
linearity as means of justifying the need for nonlinear
control techniques. However such measures provide ad-
mittedly open—loop assessment of nonlinearity that are
difficult to relate to controller performance. The objec-



tive of this paper is to introduce a new local measure of
linear controller performance for linear controllers oper-
ating on a nonlinear plant. The measure, called the per-
formance sensitivity measure, quantifies the departures
from optimality of a locally linear quadratic regulators.
The measure applies to nonlinear systems that admit a
controllable and observable linearization. It is shown that
the measure can be related to standard minimum variance
benchmarking techniques and can therefore be assessed
using closed-loop process data in an operating region of
interest. The paper is structured as follows. The proposed
performance sensitivity measure is presented in Section
2. In Section 3, we draw a parallel between the proposed
measure and standard minimum variance benchmarking
techniques. This is followed by brief conclusions in Sec-
tion 6.

2. PERFORMANCE SENSITIVITY MEASURE

In this section, an alternative control-relevant nonlinear-
ity measure, the “performance sensitivity measure”, is
introduced. The performance sensitivity measure (PSM)
attempts to characterize the extent of performance degra-
dation expected when a nonlinear system is regulated by
a linear quadratic regulator (LQR).

Consider the nonlinear time-invariant system,

&= f(x,u(t)) M)
y=h(xz(t))

u(t) € RP is the available control input, y(t) € R™ is
the observed process output, and z(t) € R™ represents
the internal states of the system. The linearization of the
system eq.(1) about the origin is given by the linear time-
invariant system

& = Axz(t) + Bu(t)
y(t) = Cul(t)

where A, B, and C are system matrices of appropriate
dimension. It is assumed that the triple (A, B, C) is both
observable and controllable. By letting C' be the identity
matrix, full state information is available for use in the
control strategy.

)

For the linear system eq.(2), the linear quadratic regulator
given by

u(t) = —R™'BT Px(t) (3)

minimizes, for every initial condition z(0) = =z, the
quadratic objective function,

n= /O - (2" (H)Qz(t) + u” () Ru(t)) dt  (4)

where @ € R™™ and R € RP*? are problem—specific,
non-negative definite state— and input—penalty matrices,
and where P is the positive—definite, symmetric solution
matrix of the algebraic Riccati equation

ATP4+ PA—PBR'BTP4+CTQC=0 (5

The cost to regulate about the origin when the system
starts at any point at any time ¢ can be approximated by
the value function,

J* =27 (t)Px(t) (6)

The level sets of this value function describe ellipses
in the state space (ellipsoids in systems with more than
two states) from which the system can be moved to the
origin for a given cost. For linear systems, the Riccati
equation solution matrix is constant throughout the entire
state space, and therefore the size and orientation of these
level sets is constant. If one implements the LQR to
control the nominal nonlinear plant eq.(1), the degree
to which the intended linear controller performance is
realized depends on the extent of nonlinearity of the
process. One way to assess this change in performance
due to nonlinearity is to add a perturbation term, denoted
v(t), to the control law,

u*(t) = =R BT Px(t) + v(t) )
in the closed-loop system:

B ) o), 00) ©
The perturbation may be considered as a means of in-
corporating knowledge of the process nonlinearities in
the control law to account for setpoint or load changes.
To ascertain the effect of v/(¢) on the performance of the
closed—loop system, (6) is differentiated with respect to
v(t). When the optimal linear controller with perturba-
tion, (7) is applied to the linear system, (2), the resultant
closed—loop model is



i = (A— BR™'BTP)x(t) + Bu(t)
y(t) = Cz(t)

The system (9) is a linear system where v(¢) is an input
which is known to enter the solution z(t) linearly:

9)

l‘(t) _ I(to)e(AfBR_lBTP)(tfto)

t
—|—/ (e(AfBRleTP)(FT)BV(TD dr (10)

to
If we consider only constant perturbation, v(t) = v,

and we assume that the system starts from the origin,
x(to) = 0, J* can be evaluated as

J* =T Py
where P is formed from the coefficient matrix of v/(t)
in the integrand of (10) and the Riccati equation solution

matrix P. J* may be represented about v = 0 as a Taylor
series polynomial,

. - 0J*(v) 1 8%J*(v) 9
‘] (V)|O - J (0) + 8V V:OV ? 67/2 V:OV
1B ()|
+§W VZOI/ + 0(4) (11)

where O(4) is a fourth—order truncation error term. Since
J* is a quadratic function of v for linear systems, the
third—order term, and the truncation error, is exactly zero.
Thus, it is possible to assess the effect of nonlinearity on
local controller performance by assessing the magnitude
of the third-order term in eq.(11). Considering only the
magnitude of the third derivative of the value function
with respect to the input perturbation is wrought with
scaling and dimensionality issues, as % has units from
n and the inputs. In order to assess the magnitude of the
third order term, we propose the following dimension-
less quantity, called the performance sensitivity measure
(PSM):

83]*
PSM = IB% N (12)
ov?

where J . the minimal (quadratic) cost attainable in the
particular region of interest. The PSM considers how the
cost J* changes as the process moves along the closed
loop locus normalized by the largest cost contour com-
pletely contained within the operating region chosen. A
small value of the PSM indicates that the nominal linear

controller performance is not sensitive to the effect of

the process nonlinearity. In that case, the linear controller
provides uniform performance over the region of interest.
If the PSM s large then the nonlinearity has a drastic
impact of the performance of the linear controller. In
general, a PSM value of 1.5 is deemed important as it
leads to an average departure of 30% from the nominal
linear controller performance.

2.1 PSM of a Nonlinear System

For a nonlinear system, v(t) does not enter the solution
z(t) linearly, even for control-affine systems, and there-
fore J* is not a quadratic value function. Consequently,
the Taylor series expansion of J* given in (11) has a
nontrivial third—order coefficient.

For the case where v(t) is a constant, the higher order
derivatives of J*(v) are computed as follows. The states
are assumed to be scaled to nominal operating regions to
permit the identity matrix to be employed for @ in the
objective function, and R chosen according to the desired
control attenuation level. As described above, the optimal
linear controller may be found, and the perturbed input,
(7), employed. The approximation of the value function
is then

:szipi,jxj (13)
j=11i=1
where z;, 1 < i < n, represents the solution of the
perturbed closed-loop system under constant input v.
Differentiating J* with respect to v, we obtain

=S (Zip ;4P 20
oy, ijzz:l (ayl GT5 Tk Ay, )

ij=1
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All the derivatives of J* are evaluated at x = 0 and
v = 0 to obtain a local measure of sensitivity that applies
to the closed-loop system operating at its setpoint. The
computation of the derivatives of J* requires the calcula-
tion of the 1st, 2nd and 3rd order sensitivity coefficients
of x(t) with respect to . The sensitivity coefficients are
computed by the integration of the sensitivity equations.
Due to space restrictions, we omit to list the full set of
sensitivities. As an illustration, we consider the derivation
of the first order sensitivity equations. Differentiating (1)
with respect to v and inverting the order of differentiation,
we obtain

dox Ofox Of

dtov 0z ov ' ov
EQ.(14) can be integrated along with the perturbed closed-
loop system to obtain the first order sensitivity coeffi-
cients. In the current development, we consider the trivial
solution for x = 0 at v = 0. The same applies to the
higher order sensitivity coefficients. Note that the solution
of the sensitivity equations yields a time-varying PSM
value that we could use to assess the variations in per-
formance as a function of time. Since we focus on the
infinite-horizon optimal control problem, it is sufficient
to evaluate the steady-state value of the derivatives of
J* with respect to v at v = 0 . The resulting steady-
state PSM provides an estimate of the sensitivity of the
infinite horizon cost to small perturbations in the control
law. By the local stability of the nominal system under
LQR control, the steady-state values of the sensitivity
coefficients can be shown to exist and to be finite.

(14)

An important consideration is the effect of state scaling
on the values of the PSM. Process states with signifi-
cantly different nominal values affects the PSM through
the optimal linear controller gain matrix. It is therefore
necessary to scale the states of the system appropriately.
Knowledge of the typical range of operation can enable
standardization, so that each of the states has zero nomi-
nal value and varies within the range [—1, 1]:

l.;wam _ x;mzn

(15)

In general, such scaling is used to ensure consistency of
the analysis over a region of particular interest.

In addition, it is important to note that the current devel-
opment is not restricted to the LQR. The analysis applies
equally to the analysis of sensitivity of an LQG controller
or any other linear controller design with quadratic cost
performance.

2.2 Example: Chemostat Bioreactor

Consider the model of a chemostat bioreactor (Guay et
al. 1995):

dry _ fmee®iT2 4o
dt 1+{L‘2+Kil‘% - i

(16)

% R P o jzzzfl‘;?x% + (So — z2) ug

where z; and x, are the biomass and substrate concentra-
tions, respectively, in g/L, and w4 is the dilution rate, in
min~!. The model parameters fi,q = 0.5 min~*!, Sy =
0.3 g/L, kg = 0.05 min~', and K; = 10 L/g repre-
sent the specific growth rate, inlet substrate concentration,
death rate and substrate inhibition constant, respectively.
The nonlinearity measure proposed in (Guay et al. 1995)
suggests the process would be the most difficult to control
with a linear controller near (1, x2) = (0.02,0.2).

Consider five points of steady state operation, labelled in
Figure 1, chosen by uniformly selecting constant input
values in the interval [0.002,0.018], as shown in Table
2.2.

Point Label | wnom T T2
a 0.002 | 0.00622 | 0.13826
b 0.006 | 0.01528 | 0.15736
c 0.010 | 0.01982 | 0.18107
d 0.014 | 0.01881 | 0.21403
e 0.018 | 0.00327 | 0.28765

Table 2.1. Selected operating points for
chemostat bioreactor.

Choosing point “c”, the states are scaled about the
nominal steady state operating point (x7°™,z5°™) =
(0.01982,0.18107), with the ranges chosen as Z; €
[z7°™ £+ 0.0025], and T3 € [z5°™ £ 0.025]. We express
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Fig. 1. The steady state locus of the chemostat bioreac-
tor. Points represent the steady states of the system
when the input is chosen uniformly in the interval
[0.002,0.018].

the system equations in scaled coordinates and we choose
the quadratic performance metric
n= / (277 + (50uq)?) dt
t=0
Linearizing the system about the origin, corresponding

to (2), and solving the corresponding algebraic Riccati
equation we obtain the linear quadratic regulator

uy () = 0.010 + 0.00691607 1 (£) — 0.024268% (t) + AL])

For this system, the first and second partial derivatives are
found to be

8531 8532
— =29.300 — =38.001
v v
0%%, 0%,
—_— . —_— = —1 4.
oo = 08555 S 304.5

If we pick the operating region to be {27 + i3 <1}
then the value of J* . is simply equal to the minimum

eigenvalue of the Riccati equation solution matrix, P. The
PSM at point “c” is PSM = —0.94005.

To provide an indication of whether the PSM value for
point “c” is significant, consider the evaluation of the
PSM for the other four points previously identified: The
relative PSM values are consistent with results that should

be expected from the geometry of the steady state locus

Point Label | ©nom T To PSA
a 0.002 | 0.00622 | 0.13826 | -0.037179
b 0.006 | 0.01528 | 0.15736 | -0.13989
c 0.010 | 0.01982 | 0.18107 | -0.94005
d 0.014 | 0.01881 | 0.21403 | -0.92211
e 0.018 | 0.00327 | 0.28765 | 0.016861

Table 2.2. Computed PSM values for the five
selected points of the chemostat bioreactor.

(see Figure 1). From the actual PSM values computed
for the chemostat bioreactor, it is expected that a linear
controller could be used without significant deviation in
performance about any of the five operating points.

3. EMPIRICAL MEASURES OF CONTROLLER
PERFORMANCE

Much of the work in the assessment of process control
schemes within the last decade can be traced back to
(Harris 1989). Minimum variance benchmarking, as pro-
posed in (Harris 1989), is a widely accepted for the as-
sessment of performance in control systems. In this study,
we focus on Harris’s controller performance measure for
single—input, single—output processes. The reader is re-
ferred to (Harris 1989) for more details on the evaluation
of the performance measure.

Since the PSM indicates the sensitivity of quadratic sys-
tem performance of a linear controller, it is reasonable to
assume that a large PSM value would also indicate sig-
nificant variations in a minimum variance benchmarking
measure over a particular region of interest. Thus if we
design a linear control based on a local linear approx-
imation of the process, the large PSM would indicate
that the implementation of the linear controller at other
setpoints in the region of interest would result in signif-
icant deviations in controller performance measures. In
order to evaluate this premise, we consider the chemostat
bioreactor model operating at point ”c” in closed-loop
with the LQR control eq.(17) (with v(¢) = 0). In order to
proceed with the assessment of controller performance,
we consider the biomass concentration as the measured
output. Furthermore, we corrupt the measurements with
uncorrelated white noise, a(t) passed through the discrete

transfer function
1

1+04z1



The noise power is set to 0.001, chosen to ensure that the
closed—loop deviation from steady state is less than one
in magnitude, meaning the process remains in the region
suggested by the scaling of Section 2.2. The process
was simulated for 400 minutes, with a fixed step-size of
0.1 minutes. For this process, Harris’ minimum variance
benchmark »(0) was 0.15 for the regulation of the system
at point ”c”. This value indicates that only 15% of current
output variance could be eliminated through use of a
minimum variance controller. Thus the linear control
operates well in this region.

The strategy is to implement the linear controller devel-
oped under the conditions at point ”c” at different set-
points. To move the process about the operating region
along the closed—loop locus, a constant perturbation, ()
is input to the system which is then allowed to reach the
new steady state. An equivalent way to handle this prob-
lem would be to assign setpoints along the steady-state
locus. By evaluating the controller performance measure
about each setpoint we obtain an estimate of the sen-
sitivity linear controller performance to the location of
the setpoint. It is clear that if the plant is linear then the
performance measure remains essentially unchanged over
the region of interest. Therefore, this relatively simple
exercise provides a potential substitute to the PSM for
operating control systems. It remains to show that the
interpretation of the PSM provides a good indication of
the sensitivity of linear control performance.

Table 3 shows the perturbed steady state values, and the
minimum variance performance measure found at each of
the points. Although the closed loop gains vary through-

Point Label | u/(t) i1 7 1(0)
CHt 0.008 | 0.072274 | 027352 | 0.1629
CcH 0.004 | 0070454 | 014320 | 0.1630
o+ 0.002 | 0.045610 | 0.073582 | 0.1631

c 0 0 0 0.1631

c- -0.002 | -0.074435 | -0.078981 | 0.1631
c- -0.004 | -0.18670 -0.16527 | 0.1632
c— -0.008 | -0.63025 -0.38039 | 0.1618

Table 3.3. Perturbed operating points for
chemostat bioreactor about point “c”.

out the region considered, there is very little change in
performance. In fact, the variability is insignificant given
the computations required to compute 7(0). The oper-
ating region about point “c” is unsusceptible to perfor-

mance degradation from closed loop nonlinearity and
therefore a linear, finite gain controller performs well
throughout.

4. CONCLUSIONS

The performance sensitivity array has been introduced
as a closed-loop measure that attempts to quantify the
effect of nonlinearity on the performance of a nonlinear
system subject to a linear quadratic regulator. The results
demonstrate that the PSM can be used to predict the
linear controller performance on nonlinear systems. Its
impact can be verified by considering a simple minimum
variance benchmarking approach.
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APPLICATION OF SOFTWARE SENSORS FOR
MONITORING AND PREDICTION IN
FERMENTATION PROCESSES
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Abstract: The development of modelbased process software sensors for monitoring
of biomass concentration and product concentration in fed-batch and continuous
yeast fermentations is presented, followed by a validation of the sensors using data
from industrial fermentations. Alternatively, using multiway projection to latent
structures (MPLS) algorithm, a model for prediction of one-step ahead and end
point product concentrations is developed and demonstrated on industrial process
data. The one-step ahead MPLS-predictor is compared to the modelbased product
concentration software sensor. The comprison indicates a better performance by
the MPLS-predictor. Copyright (©)2003 IFAC

Keywords: Process software sensors, MPLS, prediction, industrial process data.

1. INTRODUCTION

To improve monitoring and control of industrial
fermentation processes it is desirable to include
interpreted information of dynamic responses of
relevant biological and chemical species to changes
in process conditions whenever possible. Fulfilling
this desire is however not trivial, since measure-
ments of relevant species often are difficult to
conduct and often impossible to obtain at the
desired rate. An alternative approach to the di-
rect measurement of species is the development
of process software sensors based on mathemat-
ical models correlating measurable variables to
the desired variables. This work will develop two
different types of software sensors, one based upon
first principles engineering modelling and another
based upon chemometrics.

1 Partially supported by the Academy of Technical Sci-
ences, Denmark

2. PROCESS SOFTWARE SENSORS

First principles engineering models (FPEM) can
form the underlying foundation for software sen-
sors. The models infer information of unmeasured
entities by using available information from other
measured entities. Different frameworks can be
used for the model development. First software
sensors using FPEMs will be developed and inves-
tigated for the prediction of biomass and peptide
product concentration in a fermentation broth.
Subsequently a chemometric model is used for de-
veloping a software sensor for product estimation.
Finally the two types of product concentration
sensors are compared.

2.1 FPEM based Sensor for Biomass Concentration
Lei (2001) and others demonstrated that it was

possible to use a component mass balance on the
proton production or consumption rate in a high



performance laboratory setup to obtain a simple
on-line estimation of the biomass concentration
in batch, fed-batch and continuous fermentation
of Saccharomyces cerevisiae.

A simplified illustration of the contributions to
the proton balance in a bioreactor is shown in
figure 1. A component mass balance for the proton
concentration [HT] in the extracellular medium
yields:

dH]
dt

= Fs[H+]s,in - Fe[H+]e,out
+FH+,gen_FNH3 (1)

where the dual role of NHs is i) to maintain
a constant pH-level in the medium and ii) to
act as the primary nitrogen source for biomass
production.

The following assumptions are used for simplifica-
tion of the mass balance expression:

e Constant pH-level in the bioreactor
e Negligible contribution to proton balance
from pH-diff. between feed and medium pH

In the original work the pH of the feed was ad-
justed to the pH of the medium. In this work
estimation of the amount of proton equivalents
needed to compensate for this pH-difference indi-
cated that less than 1% of the molar flow of NHjs is
needed to balance the pH-difference between feed
and medium pH.

The simplified mass balance yields:
0ZFH+,gen7FNH3 (2)

The volumetric proton production rate can now
be calculated as:

F F
I H;r/,gen _ ]}]/Hg (3)

The following assumptions have been made con-
cerning possible sources contributing to the pro-
ton production rate from cellular activities during
aerobic growth on a complex medium:

M, F Fu, =0

r=)>
Substrate feed | Off-gas
]
ALY~ constant pH

Protons « med\um/l'.
generated by S g

cellular activity |

P, H'] e out Fe
T . T e

Fig. 1. Simplified schematic illustration of flows
and factors that influences the extracellular
proton concentration balance in the fermen-
tation medium.

e Uptake of NH] as primary nitrogen source

e Negligible production or consumption of or-
ganic acids

e Negligible consumption of amino acids from
complex medium

e No acidification of the medium due to pro-
duction of COy

During aerobic growth on glucose only negligi-
ble amounts of organic acids are produced; C'Os
and biomass being the primary carbon-products
formed. Contribution to the proton balance by
the solution and dissociation of HyCOs to car-
bonate can be disregarded when the pH-level is
significantly below pH 7. By further assuming only
negligible consumption of organic N-sources from
the complex medium, the uptake of NH j{ is the
only contributor to the proton production rate
and the only significant nitrogen source. A 1:1 ra-
tio between proton production rate and the NHZ{
uptake rate (using has been observed indicating
that the biomass production rate is proportional
to the proton production rate, under the assump-
tion that the nitrogen content of the biomass to
be constant during balanced growth.

Based on the above comments and assumgtions
the volumetric biomass production rate, 71", can
be calculated from volumetric NH3 addition rate:

ot _ Mpw g+ Mpw - Fin, ()
* Y:CH Y;cH %

with Mpw as the molar weight of dry weight

biomass and Y, is the yield coefficient of mole

protons produced per mole biomass i.e. the molar

content of nitrogen in biomass based on the overall

growth stoichiometry:

CH,O,N. +aCOs + Yy H'
— bCH,0 — cNH{f —dOy =0 (5)

From the stoichiometric equation it can be seen
that Y,y is constant, since NHI is the only
proton source and z = ¢ (= Y,g) since NH]
is the only nitrogen source. Combination of the
above expressions with a dynamic mass balance
for biomass (z):

d
d_:f =r, — Dz (6)
yields a simple biomass predictor:

HT

Tr+1 = Tk '630}?((7“;’; - Dk)(tk+1 - tk)) (7)

where Dy, is the dilution rate at time point ty.

The above model has been developed assuming
ideal conditions in fermentor. Both for small and
large scale fermentations with high cell densities
this assumption is unlikely to be valid. To account
for these variations the model has been modified
as follows:
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Fig. 2. Comparison of signals from software sensors

tions in two different fermentors.

a-F
Thtl = T - 63317((# - Dk) (th1 — tk))
(8)

where « = f(t, Mpw,Y,n,vessel properties) is
determined for the individual fermentor.

Two examples of the application in simulation
of the biomass concentration software sensor are
illustrated in figure 2(a).

2.2 FPEM based Sensor for Product Concentration

To develop a process software sensor for prediction
to the peptide product concentration, physiolog-
ical knowledge of the recombinant yeast strain is
used. It is known that the control of the promotor
for transcription of the product gene is linked to
the activity of the glycolysis of the recombinant
strain. To simplify the model formulation the fol-
lowing assumptions are made:

e Production rate of product (r,) proportional

to production rate of biomass (r,)

e High stability of recombinant gene

e No influence from transport and folding in
organelles on production rate

e Effective excretion of product

A high stability of the recombinant gene en-
sures that no decay in specific productivity of
the peptide product is experienced over time.
Furthermore by assuming that the transport of
the peptide product through the organelles of the
cell does not seem to have any influence on the
production rate, combined with effective folding
and excretion of the peptide product to the abi-
otic phase, the rate limiting step of the cellular
production proces becomes transcription of the
recombinant gene.

Based on the above assumptions the following
model for the production rate of the product (p)

0 1 2 3 4 5 6 7
Normalized time

(b) Product concentration

(—) and analytical measurements (A) for fermenta-

is proposed:

Mpw - Fnm,
e A S il 9

Introducing a parameter (3) accounting for the
issues relating to non-ideal process conditions and
variations in growth stoichiometry (Y, ) and cell
composition (Mpw) a dynamic mass balance on
the product becomes:

Tp X Ty =

dp F N H-
_— = —_ D = 3
at pT P p 1%

leading to to the product predictor:
B FNH k
Pk+1 = Pk - €TP ((73 - Dk) (tk-i-l - tk)
(11)

Vi - pr
where 8 = g(t, Mpw, Y., vessel properties) is
determined for the individual fermentor.

—Dp  (10)

Two examples of the application in simulation
of the product concentration software sensor are
illustrated in figure 2(b) along with signals from
biomass concentration software sensors from the
same fermentations. The software sensors are ac-
tivated after the batch fase and used for the fed-
batch and continuous phases of the fermentation
with constant (8 values.

2.8 Multiway Projection to Latent Structures (MPLS)

Process monitoring and prediction of end quality
using MPLS have been illustrated by a number
of research groups e.g. Nomikos and MacGregor
(1995). The general idea behind MPLS is that an
empirical model is build on measurements from
reference batches operated under normal oper-
ating conditions producing a good quality prod-
uct in terms of high concentration. This work
has focused on the prediction possibilities of the
MPLS. The available on-line measurements are
used to estimate or predict product quality, which



Fig. 3. Product concentrations at end of batch
estimated using MPLS and kernel estimators.
(o) M-, (A) V- and (W) A-batches.

is desirable, since a limited number of analytical
measurements of the quality variables is available
in an off-line fashion. The on-line measurements
are arranged in an array X and the quality mea-
surements are arranged in another array Y.

Using the MPLS-algorithm a regression equation
can be formulated:

Y = XB, with B=W(PTW)'Q” (12)

This regression model B can then be used for on-
line prediction of the end quality of the batch
provided that a suitable method for the estima-
tion of future on-line measurements is available
(Nomikos and MacGregor, 1995). This work has
been applying the method using the J measure-
ments obtained at the last sampling number k to
fill in the empty spaces.

The number of PLS-components (C') necessary to
obtain a desired level of regression can be evalu-
ated using different methods of (cross-)validation
techniques. In this work the root mean square
error of prediction (RMSEP) is used:

K
1 . 2
RMSEP = ?;( k= Yk) (13)

For increasing numbers of PLS-components C
used for model identification the RMSEP is
evaluated on validation data, where the lowest
value of RMSEP indicates the number of PLS-
components C' to be used.

2.4 MPLS for On-line Prediction and Estimation

In the case where quality measurements are taken
frequently during the batch run, the MPLS-
framework can be used for estimation and pre-
diction of the intra-batch quality. For all the
batches considered in this work, both on-line mea-
surements and off-line quality measurements in
each batch have been subsampled to the same
frequency by applying a kernel estimator for
smoothening using a tricubic kernel with a lo-
cal linear fit of 3 nearest neighbors (Hastie et

Table 1. Exp. var. of X and Y. Mean
RMSEP from the validation.

No of PLS  Comp
Expl. var 1 2 3 4 5
X 16.3 27.4 43.9 56.3 65.2
Y 56.9 73.1 80.7 86.5 94.4

RMSEP 0.039 0.056 0.061 0.060 0.083

al., 2001). With the smoothened data a Y array
is obtained. At sample number k in a new batch
the full batch profiles of the quality variables Vi
can be obtained by filling in the empty spaces in
X}, as described above and applying the regression
matrice B:

Vi = XiB (14)

2.5 MPLS Applied on Industrial Data

In this work the only quality variable to be re-
gressed was the product concentration. 11 on-line
measured variables were sampled 180 times during
a fermentation, operating in fed-batch phase fol-
lowed by a continuous phase. 9 batches conducted
under normal operating conditions were used for
the model identification (M-batches), while 2 val-
idation batches (V-batches) were used to deter-
mine the number of PLS-components to be in-
cluded in the model evaluated by the RMSEP
as describe above. The explained variance and
RMSEP for the 5 first PLS-components are
shown in table 1. It is interesting to note that
the RMSEP evaluation indicates that only 1
PLS-component should be included in the model,
explaining 55 % of the variation in Y.

The model performance was then investigated
using the 2 V-batches along with 4 additional
batches (A-batches), the latters having normal
end-point concentrations of the product, but un-
dergoing small process upsets during operation.
A comparison between the MPLS estimated and
kernel estimated product concentration at the end
of the batch is shown in figure 3. The latter of
the two estimators is comparable to the analytical
measurements. From the figure it is seen how the
MPLS estimations at worst are within 10 % of
the kernel estimated values for model, validation
and A-batches. It is interesting to notice how the
MPLS estimations of 4 A-batches all are larger
than the kernel estimations.

Figure 4(a) shows the prediction results for a V-
batch. A good description of the variations in
the kernel estimation and the analytical measure-
ments can be seen by the one- step ahead MPLS-
prediction. From time 1.4 and to the end of the
batch some variations in both the one-step ahead
and end point prediction (starting at coordinates
(0,1)) can be noticed. The variations are explained
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by a temporary outfall (time 1.4-1.6) of the mass
spectroscopy instrument measuring the contents
in the off-gas from the fermentor. The effects of
the disturbance are seen to have settled at the
end of the batch.

The predictions of the MPLS-model in one of
the A-batches where a small upset in the process
operation occurs are illustrated in figure 4(b). The
first upset occurs at time 0.4, where the fermen-
tation is stopped because a fault has occured in
the ammonia supply system. A number of actions
occur as a consequence of this fault, resulting in
large variations in the one-step ahead prediction
and the end concentration prediction. A general
decrease in the end point concentration is seen
until the system is fully returned to normal oper-
ating conditions at time 0.7.

At time 0.9 a new disturbance appears, this time
the substrate flow is stopped for a while. Both
predictions decrease with this change, but are
restored to normal after the substrate flow is
reinitiated at time 1.0.
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Fig. 5. Prediction error of end point product
concentration in 2 V-batches (top) and 4 A-
batches. (—) MPLS-prediction and (--) + 10

% errors of the kernel est. end value.

The one-step ahead predictor is very close for
all but one of the analytical measurements. Also
the kernel estimated product concentration lies
in general close to the one-step ahead predictor.
however at the end of the batch both of the predic-
tors are seen to sharply increase their predictions
around time 1.6, the reason being a decrease in
the dilution rate.

Figure 5 shows prediction error between the ker-
nel estimated concentration and the analytical
measurements and the one-step ahead prediction
respectively. The prediction errors are illustrated
for the 2 V-batches (top left and right) and the 4
A-batches, where the dotted lines represents the
+ 10 % value of the kernel estimation. For 5 of
6 batches (not middle right) it is seen how the
MPLS-predicted end concentrations are within +
10 % of the final product concentration thus indi-
cating that even with possible process upsets the
predicted end point concentration was good.

3. PERFORMANCE COMPARISON OF
FPEM- VERSUS MPLS-PREDICTOR

In the above two methods for one-step ahead pre-
diction of the product concentration have been de-
veloped and tested. Figure 6 shows the prediction
error between the kernel estimated concentration
and the analytical measurements, the one-step
ahead MPLS-predictor and the FPEM-predictor
(product concentration software sensor) respec-
tively. It can be seen that the MPLS-predictor to
some degree is able to capture the values of the an-
alytical measurements and the kernel estimations
between the data points. However after approxi-
mately 20% of the batch time, the predictions are
within 10% of the analytical measurements during
normal operation. The MPLS- predictor performs
better than the FPEM-predictor, which in general
can be seen to have big positive errors in the first
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Fig. 6. Prediction errors between kernel est. values
and one-step ahead product concentration
predictors. MPLS-predictor (—) and FPEM-
predictor (—, bold) in 2 V-batches (top) and 4
A-batches. (A) analytical measurements and
(-) £ 10% on the kernel est. values.

quater of the batch, approximately corresponding
to the fed-batch phase. This is not desirable, since
it is in the non-stationary phases that accurate
and precise estimation and prediction is most im-
portant from an optimization perspective.

To support the comparison, RM SE P values have
been calculated in different phases of the fermen-
tation process and shown in table 2. The FPEM-
predictor can be seen to have relatively large er-
rors in the first part of the batch corresponding
to the fed-batch phase. While the RMSEP of
the MPLS-predictor also is the largest in the fed-
batch phase, the predictor still performs well. In
the stationary phase (phase 3) the results of the
two predictors are approximately the same.

4. DISCUSSION AND CONCLUSION

In this paper two different methods for obtain-
ing quantitative information from a fermentation
process has been presented and preliminarily com-
pared. The methods have been applied using on-
line process data from an industrial fermentation
process to illustrate the type and quality of infor-
mation obtainable with the methods.

A software sensor was developed for monitoring
of the biomass concentration and was based on
FPEMs using the feed rate of ammonia, volume of
broth and the dilution rate as inputs. Application
of the software sensor using on-line process data
gave a good description of the variations seen
in the analytical measurements, leading to the

Table 2. Mean RM SEP of phases.

Phase 1 2 3 Total
Time 0.0-05 05-1.0 1.0-1.8 0.0-1.8
FPEM 0.039 0.027 0.022 0.030

MPLS 0.025 0.021 0.021 0.023

conclusion that the implementation of this device
will enable on-line monitoring of the biomass
concentration.

A similar software sensor was then developed for
monitoring of the product concentration using
the same framework as the biomass concentration
software sensor. Although complex cellular pro-
cesses are involved in the processes for generating
the peptide a very simple model was developed
by only slightly modifying the FPEM used for
modelling the biomass concentration. Applied on
the industrial data this simple software sensor was
also able to give a good description of the general
product concentration trajectory making on-line
monitoring of the product concentration possible
if implemented.

An alternative approach for monitoring com-
ponent concentrations in a process is through
process chemometrics. A model for predicting
the product concentration based on the MPLS-
algorithm was developed producing a linear model
describing changes around an average trajectory.
The model was tested on the industrial data and
indicated that both one-step ahead and end point
predictions of the product concentrations came
within 5-10 % of the kernel estimated values based
on analytical measurements.

The MPLS-predictor for the one-step ahead pre-
diction was compared with the simple product
concentration software sensor (FPEM-predictor),
where the first gave a more accurate description
of the variations in the product concentration.

In conclusion this work has provided insight into
tools for monitoring a given fermentation pro-
cess with respect to biomass concentration and
product concentration. Areas to address in future
work is the trade off between bias and variance in
on-line estimators, the use of available analytical
measurements for parameter adaption, develop-
ment of a better description of the dynamics of
product formation and extending the application
of the MPLS-algorithm.
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