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Abstract: A systematic framework for improving the quality of first engineering
principles models using experimental data is presented. The framework is based on
stochastic grey-box modelling and incorporates statistical tests and nonparametric
regression in a manner that permits systematic iterative model improvement. More
specifically, the proposed framework provides features that allow model deficiencies
to be pinpointed and their structural origin to be uncovered through estimation
of unknown functional relations. The performance of the proposed framework is
illustrated through a case study involving a model of a fed-batch bioreactor, where
it is shown how an incorrectly modelled biomass growth rate can be uncovered and

a more appropriate functional relation inferred. Copyright © 2003 IFAC
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1. INTRODUCTION

Dynamic model development is an inherently
purpose-driven act in the sense that the required
accuracy of a model depends on its intended ap-
plication, and developing a suitable model for
a given purpose involves a fundamental trade-
off between model accuracy and model simplicity
(Raisch, 2000). For models intended for simula-
tion and optimisation purposes, which must be
valid over wide ranges of state space, the required
model accuracy and hence the necessary model
complexity is high, which means that developing
such models is potentially time-consuming.
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Ordinary differential equation (ODE) models de-
veloped from first engineering principles and phys-
ical insights are typically used for such purposes
and a common problem with the development of
such models is that only the basic structure of the
model can be determined directly from first en-
gineering principles, whereas a number of consti-
tutive equations describing e.g. reaction kinetics
often remain to be determined from experimental
data, which may be difficult. Furthermore, if the
quality of a model of this type proves to be too
low, few systematic methods are available for de-
termining how to improve the model. Altogether,
this often renders the development of first engi-
neering principles models very time-consuming.
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Fig. 1. The proposed grey-box modelling cycle. The boxes in grey illustrate tasks and the boxes in white
illustrate inputs to and outputs from the modelling cycle.

In the present paper stochastic grey-box mod-
elling is proposed as a tool for systematic im-
provement of first engineering principles models,
as this approach resolves some of the issues men-
tioned above. In particular, the proposed frame-
work facilitates pinpointing of model deficiencies
and provides means to subsequently uncover the
structural origin of these deficiencies through esti-
mation of unknown functional relations. To obtain
these estimates nonparametric modelling is ap-
plied, and the integration of nonparametric mod-
elling with conventional stochastic grey-box mod-
elling into a systematic framework for improving
the quality of first engineering principles models
is the key new contribution of the paper.

The remainder of the paper is organized as follows:
In Section 2 the proposed framework is outlined
and in Section 3 a case study demonstrating its
performance is given. Finally, in Section 4, the
conclusions of the paper are presented.

2. METHODOLOGY

A diagram of the proposed framework is shown in
Figure 1 in the form of a modelling cycle, which
shows the individual steps of the corresponding it-
erative model development procedure. These steps
are explained in more detail in the following.

2.1 Model (re)formulation

A basic assumption of the proposed framework
is that an initial ODE model, derived from first
engineering principles, is available, which needs
to be improved to serve its intended purpose. The
first step of the modelling cycle then deals with
model (re)formulation, which essentially means
translation of the ODE model into a stochastic
grey-box model (or modification of this model in
subsequent modelling cycle iterations).

Stochastic grey-box models are state space mod-
els consisting of a set of stochastic differential
equations (SDE’s) describing the dynamics of the
system in continuous time and a set of discrete
time measurement equations, i.e.:

dxy = f(xs,ug, t,0)dt + o(uy, t,0)dw,
yk = h(mk,uk,tkﬁ) + €L

(1)
(2)
where ¢t € R is time, x; € R" is a vector of state
variables, u; € R™ is a vector of input variables,
Yy, €R! is a vector of measured output vari-
ables, 8 € R? is a vector of parameters, f(-) € R™,
o(-) e R™" and h(-) € R are nonlinear func-
tions, {w;} is an n-dimensional standard Wiener

process and {ey} is an [-dimensional white noise
process with e € N (0, S(ug,t;,0)).

A considerable advantage of models of this type
is that they are designed to accommodate random
effects due to e.g. approximation errors or unmod-
elled phenomena through the diffusion term of the
SDE’s in (1), which means that estimation of the
parameters of this term from experimental data
provides a measure of model uncertainty. This is
a key point and forms the basis of the proposed
framework for systematic model improvement.

2.2 Parameter estimation

In the second step of the modelling cycle the idea
therefore is to estimate the unknown parameters
of the model in (1)-(2) from experimental data,
including the parameters of the diffusion term.

Stochastic grey-box models allow for a decom-
position of the noise affecting the system into
a process noise term (the diffusion term) and a
measurement noise term. As a result unknown
parameters of such models can be estimated from
experimental data in a prediction error (PE) set-
ting, whereas for standard ODE models it can
only be done in an output error (OE) setting,
which tends to give biased and less reproducable
results, because random effects are absorbed into



the parameter estimates (Young, 1981). Further-
more, since the solution to (1) is a Markov process,
an estimation scheme based on probabilistic meth-
ods can be applied, e.g. mazimum likelihood (ML)
or mazimum a posteriori (MAP). An efficient
such scheme, based on the extended Kalman filter
(EKF), is available (Kristensen et al., 2002b).

2.3 Residual analysis

In the third step of the modelling cycle the idea
is to evaluate the quality of the model once the
unknown parameters have been estimated. The
most important aspect in this regard is to inves-
tigate the predictive capabilities of the model by
performing cross-validation residual analysis, and
various methods are available for this purpose.

2.4 Model falsification or unfalsification

The fourth step of the modelling cycle is the
important step of model falsification or unfalsifi-
cation, which deals with whether or not, based on
the information obtained in the previous step, the
model is sufficiently accurate to serve its intended
purpose. In practice, this is a subjective decision,
as it involves addressing the trade-off between
necessary model accuracy and affordable model
complexity with respect to the specific intended
purpose of the model. If, based on this decision,
the model is unfalsified, the model development
procedure can be terminated, but if the model is
falsified, the modelling cycle must be repeated by
re-formulating the model. In the latter case, the
properties of the model in (1)-(2) facilitate the
task at hand as shown in the following.

2.5 Pinpointing of model deficiencies

In the fifth step of the modelling cycle, which
is only needed if the model has been falsified,
the idea is to apply statistical tests to provide
indications of which parts of the model that are
deficient. The key statistical tests needed for this
purpose are tests for significance of the individual
parameters, particularly the parameters of the
diffusion term, and as it turns out, the properties
of the ML and MAP estimators mentioned above
allow t-tests to be applied for this purpose.

These tests provide the necessary framework for
obtaining indications of which parts of the model
that are deficient. In principle, insignificant pa-
rameters are parameters that may be eliminated,
and the presence of such parameters is therefore
an indication that the model is overparameterized.
On the other hand, because of the particular na-
ture of the model in (1)-(2), where the diffusion

term is included to account for random effects
due to e.g. approximation errors or unmodelled
phenomena, the presence of significant parame-
ters in the diffusion term is an indication that
the corresponding drift term is incorrect, which in
turn provides an uncertainty measure that allows
model deficiencies to be detected. If, instead of
the general parameterization of the diffusion term
indicated in (1), a diagonal parameterization is
used, this also allows the deficiencies to be pin-
pointed in the sense that deficiencies in specific
elements of the drift term can be detected, which
in turn provides an error indicator for the consti-
tutive equations or phenomena models influenc-
ing this term. If, by using physical insights, it is
subsequently possible to select a specific phenom-
ena model for further investigation, the proposed
framework also provides means to confirm if the
suspicion that this model is incorrect is true.

Typical suspect phenomena models include mod-
els of reaction rates, heat and mass transfer rates
and similar complex dynamic phenomena, all of
which can usually be described using functions of
the state and input variables, i.e.:

Ty = SD(iBmUt,e) (3)

where 7 is a phenomenon of interest and ¢(-) € R
is the nonlinear function used to describe it. To
confirm if the suspicion that ¢(-) is incorrect is
true, the parameter estimation step must be re-
peated with a re-formulated version of the model
in (1)-(2), where r; is isolated by including it as
an additional state variable, i.e.:
dzf = f*(xf, ue, t,0)dt + 0" (ug, t,0)dw; (4)
Yy = h(zy, ur, ty, 0) + ey, (5)
where x} = [z] 7;]T is the extended state vec-
tor, o*(-) € ROD*(n+1) ig the extended diffusion
term and {w}} is an (n 4 1)-dimensional standard

Wiener process. The extended drift term can be
derived from the original drift term as follows:

f*(w:autvtaa) =

f(ﬂ:t7’ll,t7t,0) (6)
Op(xs, ur, 0) dzy  Op(xt, ur, @) duy
a.’l)t dt 8ut dt

The presence of significant parameters in the
corresponding diagonal element of the extended
diffusion term is then an indication that ¢(-) is
incorrect and in turn confirms the suspicion.

2.6 Estimation of unknown functional relations

In the sixth step of the modelling cycle, which
can only be used if specific model deficiencies have
been pinpointed as described above, the idea is to
uncover the structural origin of these deficiencies.



The corresponding procedure is based on a com-
bination of the applicability of stochastic grey-
box models for state estimation and the ability
of nonparametric regression methods to provide
visualizable estimates of unknown functional re-
lations with associated confidence intervals.

Using the re-formulated model in (4)-(5) and
the corresponding parameter estimates, state es-
timates :izz|k, k=0,...,N, can be obtained for a
given set of experimental data by applying the
EKF. In particular, since the incorrectly mod-
elled phenomenon r; is included as an addi-
tional state variable in this model, estimates 7y,
k=0,...,N, can be obtained, which in turn facil-
itates application of nonparametric regression to
provide estimates of possible functional relations
between r; and the state and input variables.

Several nonparametric regression techniques are
available (Hastie et al., 2001), but in the con-
text of the proposed framework, additive models
(Hastie and Tibshirani, 1990) are preferred, be-
cause fitting such models circumvents the curse
of dimensionality, which tends to render nonpara-
metric regression infeasible in higher dimensions,
and because results obtained with such models are
particularly easy to visualize, which is important.

Using additive models, the variation in r; can
be decomposed into the variation that can be
attributed to each of the state and input variables
in turn, and the result can be visualized by means
of partial dependence plots with associated boot-
strap confidence intervals (Hastie et al., 2001). In
this manner, it may be possible to reveal the true
structure of the function describing r;, i.e.:

Ty = thrue(xh Ut, 0) (7)

which in turn provides the model maker with
valuable information about how to re-formulate
the incorrect phenomena models or constitutive
equations of the model for the next modelling
cycle iteration. Needless to say, this should be
done in accordance with physical insights.

A more elaborate discussion of the proposed
methodology is given by Kristensen et al. (2002a).

3. CASE STUDY: MODELLING A
FED-BATCH BIOREACTOR

To illustrate the performance of the proposed
methodology in terms of improving the quality of
a model, a simple simulation example is consid-
ered in the following. The process considered is a
fed-batch bioreactor, where the true model used
to simulate the process is given as follows:

B wsx -T2 (8)

s u(S)X  F(Sp—S)
@~y T ®)
av
ra (10

where X and S are the biomass and substrate
concentrations, V' is the volume, F' is the feed flow
rate, Y = 0.5 is the yield coefficient of biomass
and Sg =10 is the feed concentration of sub-
strate. ©(9) is the biomass growth rate, described
by Monod kinetics and substrate inhibition, i.e.:

S
L 11
HS) = tmax s e T I, 1D

where pmax = 1, K1 = 0.03 and K5 = 0.5. Using
(Xo, S0, Vo) = (1,0.2449, 1) as initial states, simu-
lated data sets from two batch runs (101 samples
each) are generated by perturbing the feed flow
rate along a pre-determined trajectory and sub-
sequently adding Gaussian measurement noise to
the appropriate variables. For the present case it is
assumed that all state variables can be measured
and noise levels corresponding to variances of 0.01,
0.001 and 0.01 (absolute values) are used.

3.1 First modelling cycle iteration

It is assumed that an initial model corresponding
to (8)-(10) has been set up, where the true struc-
ture of u(S) is unknown. As the first step, this
model is then translated into a stochastic grey-box
model, which has the following system equation:

FX
X T
d( S| =|_pX  F(Sr=95) |di+odw, (12)
1% Y v
F

where o is a diagonal matrix with elements 011,
099 and o33. Since the true structure of u(S)
is unknown, a constant growth rate p has been
assumed, and a diagonal parameterization of the
diffusion term has been used to allow possible
model deficiencies to be pinpointed. The model
also has the following measurement equation:

Y1 X
2] =S| +ex (13)
Y3/, V/.

with e, € N(0,S), where S is a diagonal matrix
with elements S71, Soo and Ss3. As the next step,
the unknown parameters of the model are esti-
mated using the data from batch no. 1, which
gives the results shown in Table 1, and, to eval-
uate the quality of the resulting model, a pure
simulation comparison is performed as shown in
Figure 2a. The results of this show that the model
does a very poor job, and it is therefore falsified,
which means that the modelling cycle must be
repeated by re-formulating the model.



(a) Model structure in (12)-(13).

(b) Model structure in (15) and (13).

Fig. 2. Pure simulation comparison using cross-validation data from batch no. 2. Dashed lines: y;, dotted
lines: yo, dash-dotted lines: y3, solid lines: pure simulation values.

To obtain information about how to re-formulate
the model in an intelligent way, model deficiencies
should be pinpointed, if possible. Table 1 also
includes t-scores for performing marginal tests for
significance of the individual parameters, which
show that, on a 5% level, only one of the pa-
rameters of the diffusion term is insignificant, viz.
033, whereas 011 and 099 are both significant. This
indicates that the first two elements of the drift
term may be incorrect. These both depend on u,
which is therefore an obvious deficiency suspect.

To avoid jumping to conclusions, the suspi-
cion should be confirmed, which is done by re-
formulating the model with p as an additional
state variable, which yields the system equation:

FX
X T
d == 4L 227" T4t d 14
v y T v Fotdw (14)
I F
0

where o* is a diagonal matrix with elements o011,
099, 033 and 044, and, since p has been assumed
constant, the last element of the drift term is
zero. The measurement equation is the same as
n (13). Estimating the parameters of this model,

Table 1. Estimation results - (12)-(13).

Parameter Estimate Significant?

Xo 9.6973E-01 Yes

So 2.5155E-01 Yes

Vo 1.0384E+4-00 Yes

o 6.8548E-01 Yes
o11 1.8411E-01 Yes
0922 2.2206E-01 Yes
033 2.7979E-02 No
S11 6.7468E-03 Yes
Sa2 3.9131E-04 No

Sa3 1.0884E-02 Yes

using the same data set as before, gives the results
shown in Table 2, and inspection of the t-scores for
marginal tests for insignificance now show that, of
the parameters of the diffusion term, only o4 is
significant on a 5% level. This in turn indicates
that there is substantial variation in g and thus
confirms the suspicion that p is deficient.

As the next step the re-formulated model in (14)
and (13) and the parameter estimates in Table 2
are used to obtain state estimates Xk|k, §k|k, Vk|k,
Ak, k= 0,..., N, by means of the EKF, and an
additive model is then fitted to reveal the true
structure of the function describing p by means of
estimates of possible functional relations between
w1 and the state and input variables.

It is reasonable to assume that p does not depend
on V and F', so only functional relations between
gk and ka and S'kw are estimated, giving the
results shown in Figure 3. These plots indicate
that figx does not depend on Xk‘k, but is highly
dependent on Sy, which in turn suggests to
replace the assumption of constant g with an
assumption of p being a function of S. More
specifically, this function should comply with the
functional relation revealed in Figure 3b.

Table 2. Estimation results - (14)&(13).

Parameter Estimate Significant?
Xo 1.0239E+00 Yes
So 2.3282E-01 Yes
Vo 1.0099E+00 Yes
1o 7.8658E-01 Yes
o11 2.0791E-18 No
022 1.1811E-30 No
033 3.1429E-04 No
044 1.2276E-01 Yes
S11 7.5085E-03 Yes
So2 1.1743E-03 Yes
S33 1.1317E-02 Yes
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Fig. 3. Partial dependence plots of fig; vs. XMk and S’Mk. Solid lines: Estimates; dotted lines: 95%
bootstrap confidence intervals computed from 1000 replicates.

3.2 Second modelling cycle iteration

The functional relation revealed in Figure 3b
clearly indicates that the growth of biomass is
governed by Monod kinetics and inhibited by sub-
strate, which makes it possible to re-formulate the
model in (12)-(13) to yield the system equation

FX
W)X — -~

A\ 8| =| wS)X | F(Sr=8)|dt+odw; (15
v Y - v

where o is again a diagonal matrix with elements
011, 022 and o33, and where ;(S) is given by (11).
The measurement equation remains unchanged
and is thus the same as in (13). Estimation of
the unknown parameters of this model using the
same data set as before gives the results shown
in Table 3, and to evaluate the quality of the
resulting model, a pure simulation comparison is
performed as shown in Figure 2b. The results of
this show that the model does a much better job
now. It is in fact unfalsified with respect to the
available information, and the model development
procedure can therefore be terminated.

Table 3. Estimation results - (15)&(13).

Parameter Estimate Significant?
Xo 1.0148E4-00 Yes
So 2.4127E-01 Yes
Vo 1.0072E+4-00 Yes

Mmax 1.0305E4-00 Yes
K 3.7929E-02 Yes
Ko 5.4211E-01 Yes
o11 2.3250E-10 No
0922 1.4486E-07 No
033 3.2842E-12 No
S11 7.4828E-03 Yes
S22 1.0433E-03 Yes
Sa3 1.1359E-02 Yes

4. CONCLUSION

A systematic framework for improving the quality
of first engineering principles models has been
presented. The proposed framework is based on
stochastic grey-box modelling and incorporates
statistical tests and nonparametric regression,
which in turn facilitates pinpointing of model
deficiencies and subsequent uncovering of their
structural origin. A key result is that the proposed
framework can be used to obtain estimates of un-
known functional relations, which allows unknown
or incorrectly modelled phenomena to be uncov-
ered and proper parametric expressions for the
associated constitutive equations to be inferred.
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1. INTRODUCTION

The term Multirate Sampled-Data (MRSD) Sys-
tems describes a common phenomena existing in
the industry that different variables are sampled
at different rates for some reasons (Chen and Qiu,
1994), e.g., a high-purity distillation column (Lee,
et al., 1992) and a bioreactor (Gudi, et al., 1995)
and CCR octane quality control (Li, et al., 2003).
Fig. 1 depicts a SISO MRSD system, where G, is
a continuous-time linear time-invariant (LTT) and
causal system with or without a time-delay; H
is a zero-order hold with an updating period mh
and S is a sampler with period nh, where m, n
are different positive integers and h is a positive
real number called the base period; discrete-time
signals u and y are the system input and output
respectively; a continuous-time signal v. is the
unmeasured disturbance. Essentially, it is a linear
periodically time-varying (LPTV) system (Kranc,
1957), to which many system identification algo-
rithms cannot be applied directly.

L Corresponding author: Telephone: (780)492-3940; Fax:
(780)492-1811; Email: tchen@ee.ualberta.ca
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Fig. 1. A SISO multirate sampled-data system

Under such a framework, Lu and Fisher (1988,1989)
used an output error method and a least-squares
method to estimate intersample outputs based on
the fast sampled inputs and slow sampled outputs.
Verhaegen and Yu (1994) extended a Multivari-
able Output Error State Space (MOESP) class of
algorithms to identify P subsystems of an LPTV
process with period P. Gudi, et al. (1995) gen-
erated frequent estimates of the primary output
based on the secondary outputs and the regular
measurement of inputs by an adaptive inferential
strategy. Li, et al. (2001) identified a fast single-
rate model with period mh from multirate input
and output data, with an assumption that m < n.
This work motivates us: Could we do better?



Doing better implies two things: first, a fast-rate
model with period A instead of mh will be iden-
tified; second, a general MRSD system is treated
without the assumption m < n. Note that our
objective includes that of Li, et al. (2001), since a
model with period mh is readily obtained from a
model with period h. The improvement is signifi-
cant: technically, we need to use additional condi-
tions such as observability of lifted models and co-
primeness of the integers m and n (to be clarified
later); in terms of applications, the availability of
the fast-rate model with period h broadens the
choices for multirate control design; the relaxation
of assumptions makes identification of fast-rate
models for more general MRSD systems possible.

The question states precisely as follows: For a
sampling period h, the unknown continuous time
system G. has a discrete time counterpart real-
ized by the step-invariant-transformation, G4 :=
SrG.Hp, represented by a state-space model:

D+C(zI-A)"'B= {%‘%}. (1)

Given the multirate sampled-data system in Fig.
1, how to identify the so-called fast-rate system
Gaq?

To answer this question, we start in Section 2 with
using the lifting technique to associate such an
LPTYV system with an LTI system, the so-called
lifted system. The uniqueness of recovering the
fast-rate system from the lifted system is shown
in Section 3. Section 4 analyzes controllability
and observability of the lifted system, which are
essential to the identifiability issues. Section 5
presents two approaches to compute a fast-rate
model. Section 6 illustrates the effectiveness of the
proposed methods through two examples. We end
with some conclusions in Section 7.

2. LIFTING SIGNALS AND SYSTEMS

Fig. 2. The lifted multirate sampled-data system

Henceforth, we will focus our discussion on the
SISO MRSD system depicted in Fig. 1. Let o
be a discrete-time signal defined on Z, and n
be some positive integer. The n-fold lifting op-
erator L,, is defined as the mapping from v to 1:

1 (0) P (n)
¥ (1) P (n+1)
{$(0),9 (1), -} : , :
P (n—1) ¥ (2n —1)

We lift u by L,, into u, and lift y by L,,, into y. The
disturbance v, is fictitiously sampled into v with
period nh, same as the output sampling period,
and v is lifted by L,, into v (see Fig. 2). Thus, u,
y and v share the same period mnh, and form a
discrete-time LTI system (Francis and Georgiou,
1988):

y=Gau+v (2)

Here G is the so-called lifted system from u to y;
it has a state space representation by matrices A,
B, C and D, which are related to A, B, C and D
of (1) as shown in Chen and Qiu (1994):

[A|B
f@} = @
r mn—1 mn—m-—1 m—1
Amn E A'B E A'B E A'B
i=mn—m i=mn—2m i=0
Cn Doo Do1 Do,n—1
CA Dio Di1 Dy pn-1
Lcamn—™ Dp—1,0 D11 * Dm—1,n—1
where
(G+1)m—1

D;j = DX[jm,(j+1)m) (in) + E CAmiliTBX[o,m) (r)

r=jm

and a characteristic function on integers is de-
fined:

(r) = 1l,a<r<b
Xla0) \7) = 0, otherwise.

A noise model can be used to further describe the
character of the noise term v in (2), but it is not
within our current objective. Hence, we adopt an
output error model structure, since for open loop
systems, output error models will give consistent
estimates, even if the additive noise is not white
(Ljung, 1999). An innovation form of the state-
space model with the Kalman filter gain K = 0
represents the overall discrete-time lifted system:

8.

=Az+B
y=Cr+Du+te. (5)
Here overdot denotes one sample advance, e is a
white noise vector and z is a state vector. If p is
the order of G4, then the dimensions of A, B,C, D
arepxp,px1,1xp,and 1 x 1, respectively, and
m X n, and ;; mTrespectively. Note that A and
A share the same dimension.

3. UNIQUENESS OF FAST-RATE SYSTEMS

Before starting the exploration of recovering the
fast-rate system from the lifted one, a question



arises naturally: Is the recovery of G4 from Gg
unique? The answer is affirmative if m and n are
coprime. We observe:

Ga= L SunGeHmn Ly (6)
= LS, (SLG.Hy,) H,, L1
- LmSnGdeLr_le

by properties S,n = SpSyp and H,,, = HpHp,,
where S,, and H,, are the discrete-time downsam-
pler and the discrete-time zero-order-hold type
upsampler respectively. Since the lifting is one-to-
one, the problem of recovery of a unique G4 from
G4 is equivalent to answering a question: Is the
mapping G4 — S,G4H,, one-to-one?

Proposition 1. Assume Gy is LTI and causal.
Then, the mapping G4 —— S,G4H,, is one-to-
one if and only if m and n are coprime.

Proof:

For sufficiency, it suffices to show that S, G4H,, =
0 implies G4 = 0. Let us assume S,,G4H,, = 0 and
let i be the impulse response of Gy, i.e., up = G4,
where § is the discrete-time unit impulse signal.
It follows that for any integer i, S, G4 H,, U6 = 0,
where U is the unit time-delay operator. This
implies, by the definition of H,,,

SpGa (UM + UM+ 4 Uil § = 0.

The time invariance of G4 and the definition of
Sy, imply

wm+gn) +plim+jn+1) +--- (7)
+u(im+jn+m —1)=0, Vi, j.

Since m and n are coprime, there exist integers
m' and n’ such that mm’+nn’ = 1. Thus, for any
k, there always exist ¢ = km' and j = kn' in (7)
to get im + jn = k. Hence,

pk)+pk+1)+---+pk+m—1)=0,Yk.(8)

By causality of u (k), (8) implies that p (k) = 0,
Vk, eg., if Kk = —(m—1), then p(0) = 0; if
k = —(m —2), then (1) = 0 and so on. Hence,
Gq=0.

The necessity is proved as follows. If m and n
are not coprime, there exists a common factor k:
m = km’,n = kn’, where m’ and n’ are coprime.
It follows from (6) that S,GaHy, = SpGraHpm
where Grgy = SpnGc.Hpp, ie., a discrete-time
counterpart of G, with period kh. Thus, the
mapping G4 — S,,G4H,, is not one-to-one, since
the mapping G4 —— Grq = SpG4H} is known to
be not injective. O

Therefore, in order to get a unique fast-rate sys-
tem we assume that m and n are coprime. Note
that any common factor of m and n can be ab-
sorbed into h.

4. LIFTED SYSTEMS
4.1 Controllability and Observability

For a state space system to be identifiable, the
lifted system Gg generally needs to be control-
lable and observable (Ljung et al, 1999). If
the continuous-time system G, is controllable
and observable and the sampling period is non-
pathological, then the discrete-time system G is
also controllable and observable (Kalman, et al.,
1963), which is still valid if a continuous time
delay exists. Francis and Georgiou (1988) have
proved that if G4 is stabilizable and detectable,
and satisfies an additional condition (x): For every
eigenvalue A of A, none of the mn — 1 points

2wk
Aedmn k=12, mn—1

is an eigenvalue of A, then (Am”,AiB) is sta-
bilizable and (C’Ai,AWT”) is detectable, for any
positive integer ¢. Based on these, we reach:

Proposition 2. Assume A satisfies the condition
(x). If (C, A) is observable, so is (C, A); If (A, B)
is controllable and A has no eigenvalues on the
unit circle, (A, B) is also controllable.

Proof: The first part follows with some trivial
modifications from Francis and Georgiou (1998) in
which (C’Ai, A) was shown detectable. We prove
the second part by showing (A, ZZ_OI AiB) is
controllable, i.e., all eigenvalues of A are control-
lable. Now each eigenvalue of A has the form A\™",
where \ is an eigenvalue of A. Define functions:
gmn _ \mn
9(s):= =3
m—1

f(s):= Z st

=

By non-pathological sampling, g (A) is invertible
(Chen and Francis, 1995). If A has no eigenvalues
on the unit circle, then ZZBI AP £ 0. Thus f (A)
is invertible. Therefore,

rank<
— rank (f(A) [A- ) B] [f_l (4)g(4) OD

:rank([Af)\I B])

m—1

(A™ — ) 3 AB




Thus, (A, B) is controllable. O

4.2 Effect of Time Delays

If there exists a continuous time delay 7 larger
than h, A has at least two poles at z = 0 (Astrom
and Wittenmark, 1997). Thus, the condition (x) is
not satisfied. Observability has been shown to be
lost and a remedy is proposed by Li, et al. (2001),
which is summarized below:

First, we can identify an m x n time-delay matrix
I' from u, y using correlation analysis (Ljung et
al., 1999):

loo lo1 lon—1
lio l11 b n—1
F p—
=10 =11 "+ lm—1,n—1

where [;; is the estimated time delay from the j-th
input w; to the i-th output Y, = 0,1,---,m—1
and j = 0,1,---,n — 1. The relation between [;;
and 7 is (Li, et al., 2001):

(lij = 1)mnh < 7 4 jmh — inh < l;;mnh.  (9)

Second, there exists a one-to-one correspondence
between I' and a positive integer k such that 7
is estimated as kh < 7 < kh + h (Sheng, et al.,
2003).

Third, since m and n are coprime, there exist
integers k; and ko such that

Then, we shift the measured input data: us [I] =
w[l — k1] and shift the measured output data:
ys [[] = y [l + ko], so that, the time delay between
us and y, is not larger than h. Hence, controlla-
bility and observability will be preserved.

4.3 Causality Constraint

Lifting causes a causality constraint, i.e., D in
(3) is lower triangular. How to identify a model
under such a constraint? A modified sub-space
identification algorithm was proposed by Li, et
al. (2001). As an easier alternative, a structured
state-space model with free parameters (Ljung,
2001) can be used to deal with the constraint.
For instance, if m = 2 and n = 3, D will be

parameterized as:
000
x x 0|’

where x marks an adjustable parameter.

5. FAST-RATE MODEL COMPUTATION

Once G4 is estimated, how to extract matrices A4,
B, C? Note D = 0 if G, is causal. The difficulty
lies in that in general A cannot be determined
by taking the mn-th roots of A. Once fl, an
estimation of A, is known, B and C can be
determined as:

m—1 -1
O=0 b= (Z A> 5,
1=0

where B, C are partitioned as:

B=[Bi By --- B, ], (11)
c=[cfcf - cn]t (12)
Here the dimensions of By, Bg, -+, B, are p X 1

and those of Cq, Csy, - -+, Cy, are 1 x p and p is the
order of the estimated fast-rate model. Note that
the proof of Proposition 2 shows the existence of
the inverse.

We propose two approaches to compute A. The
first approach, the controllability and observ-
ability approach, is based on assumptions that
(Apmn, Bimp) is controllable and (C, A,,j,) is observ-
able, where

Amp = Am7Anh = Ana

Similar to the proof of Proposition 2, both as-
sumptions can be shown to be valid if the con-
ditions in Proposition 2 are true.

Step 1: Given A and B in (11), (3) implies
mh = A,

Bmn = By, Ay B = Bn—1, -+ ;A?y:hlB = B;.

Thus, A’;@thh is known for any k& > 0. We form
the controllability matrix T'. of (A;pn, Bmpr) and

the shifted controllability matrix I'":
r.= [Bmh AmnBmn - Afnihleh] )

L= [AwnBun AbpBun -+ ALy B |

Since A,,,I'c = T" and the controllability assump-
tion implies that I'. is full row rank, A,,, is
uniquely determined by

App =TT (0,T7) 7

Step 2: Given A and C in (12), (3) implies

mo_
nh — A7



C=Cy,CApy =C, -+, CA™ = (..

Thus, CAF, is known for any k > 0. We form
the observability matrix ¥, of (C, A,p) and the
shifted observability matrix U:

c CAy,p
w, = | CAmn | g | CAL,
can! CAnn

Since ¥,A,; = ¥ and the observability assump-
tion implies that ¥, is full column rank, A, is
uniquely determined by

A = (WT0,) T 0T,

Step 3: Now, A, = A™ and A,, = A" are
estimated. Since m and n are coprime, there exist
two integers m ,n such that

! !
nn —mm = 1.

Thus, we have:

(Amp)™ A= (Au)" .

Therefore,

A (1) (dn)”

where T denotes a pseudo-inverse.

The second approach, the matrix roots approach,
is based on a condition that A is diagonalizable,
ie.,

PilAP = dla’g (>\13 )\2; ) )\P) .
Since A = A™"_ A and A share same eigenvectors.
If p; = a; + jB; is a pole of G, then

)\i — emnhpi _ emnhaiejmnhﬁi

Assume |mnhf;| < for i =1,---,p.

1 1 1 1
A= Pdiag (\[™, 77, AFT ) P

_1
where A" is the principal n-th root of A;; if this
condition is not true, A can be found by searching
through all mn-th roots of A.

6. EXAMPLES

Example 1:

For a system depicted in Fig. 3, take the process
and noise model to be

1
Ge(s) = —5———¢ " N,
)= et rie Vel

1
T 10s+1

u Ve y
---» Hy, » G, Sy e >

Fig. 3. A SISO MRSD system simulation diagram

and m = 3, n = 2, h = 1 sec. We generate
a low frequency random binary signal (RBS) as
the input signal u. e is a white noise. The signal-
to-noise ratio (SNR) is 3 : 1. The identification
procedure is: First, we estimate the time delay as
6 sec and shift the measured output and input
data as described in Section 4.2; second, we lift
the shifted data to form the lifted signals with a
time delay no larger than h; next, based on the
lifted signals, we choose a 2nd order lifted model
@ and compute a fast-rate model G4 with period
h; finally, we incorporate the estimated time delay.
Fig. 4 compares step responses of the actual
system G4 and the estimated fast-rate models Ga.
The models are obtained through the proposed
approaches: the controllability and observability
approach and the matrix roots approach. Both
achieve satisfactory results.

Step responses of the actual system and models

Tme 29
Fig. 4. Step responses of the actual system
(solid) and the estimated fast-rate models by
the controllability and observability approach
(dash) and the matrix roots approach (dot-
ted)

Example 2:

The experiment ? is implemented on a pilot-scale
process in the compute process control laboratory
at the University of Alberta. It is a SISO system
with the manipulated input w as the cold water
valve position and the measured output y as the
tank water level. Both are represented by currents
(mA), which have linear relationships with the
physical units. Around an operating point u = 11

2 Data and Matlab programs are available online.
http://www.ee.ualberta.ca/~jwang/paper.html



mA and y = 10.3 mA, a RBS input with a
limiting magnitude of 0.4 mA is designed. The
input updating period is 80 sec and the output
sampling period is 120 sec. Thus, m = 2, n = 3
and h = 40 sec, a dual configuration to Example 1.
With ‘cheap’ data acquisition, we simultaneously
measure the input and output every 40 sec, say,
uy and yy, to be used later for model validation.
Following a similar procedure as Example 1, we
choose a 2nd order fast-rate model with period 40
sec, using the matrix roots approach. To validate
the model, we take uy as the model input and
estimate the model output, which is compared
with yy in Fig. 5. The model captures the process
dynamics and steady states very well.

Measured water level and estimated water level
17 T T T T T

15—5 | / / / f 7l

15+

Water level (mA)
e I e I
| N ® S
- T T

"
o

\ o '\

I ] I I I I I I I
0o 100 200 300 400 500 600 700 800 900 1000
Data point

©

Fig. 5. Comparison of the measured water level
(solid) and the estimated water level (dotted)

7. CONCLUSIONS

In this paper, we studied how to estimate a fast-
rate model for a general multirate sampled-data
system under some mild conditions. The idea is
to associate the multirate sampled-data system
with an equivalent lifted system, from which the
fast-rate model is extracted. Some topics are still
open, e.g., how exactly the noise would affect
the estimation? how to get an explicit variance
expression of the estimated model? These are left
to the future investigation.
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SYSTEM IDENTIFICATION FROM MULTI-RATE DATA
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Abstract: In this paper, we provide a novel iterative identification algorithm for multi-rate
sampled data systems. The procedure involves, as a first step, identifying a simple initial
model from multi-rate data. Based on this model, the “missing” data points in the slow
sampled measurements are estimated following the expectation maximization approach.
Using the estimated missing data points and the original data set, a new model is obtained
and this procedure is repeated until the models converge. An attractive feature of the
proposed method lies in its applicability to irregularly sampled data. An application of
the proposed method to an industrial data set is also included.

Keywords: identification, multi-rate processes, expectation maximization algorithm

1. INTRODUCTION tween available sampled data. Technigues such as lin-
ear or quadratic interpolation are used. Interpolations
Traditional identification methods assume that the pf these types do not take into account the variation

data are sampled at uniformly spaced sample instants'" the input during the period over which the inter-

There is extensive literature on identification of pro- p;)latllon S ?rr]e maltzle. ;I'hgdre Itj?vet'also bg?n attempts
cesses from such data (Ljung (1999)). However, in la_lft_so thngh 1€ mu |I-_r_a? ! Ienz'olgall |onT;;]rol_:_m using
many chemical processes it is either not physically ifting techniques (Li et al. ( ) The lifting op-

possible to measure certain variables at regular inter-erator IS gsed to COT“’eTt the -mu|t|- Tate. identification
vals or it is impractical to have frequent or rapid lab problem into a multivariable identification problem.

assays done. For instance, estimating the compos:itior{_| owgyer,_app_lylng thgse t.e chmq_u es'towards process
of the distillate in a distillation column generally takes |dent|f|cat|orj n chermcal mdustr!es 1S not' easy be-
a few minutes while control moves are implemented cause the difference n the sampling rates IS ge”er.a”y
at much smaller sample intervals. Such processes withlarge' For example, (input to output) sampling ratios

differing sample times for the measured variables are%‘c 1t5 15 alr; CO”:T%” d«a}nd esumanonldtehchnlqtues to
termed multi-rate processes in the rest of this paper.I entify a 15-input ‘lifted” process would have to be

In particular, identification of models for multi-rate considered. Hence, for processes with a number of

processes at the fastest sample rate is the subject o puts and/or large output to input sampling ratios,

this paper. We refer to the fastest sample rate as th the identification probglem Iusm dg dl_'tf_tmg :ﬁchm?uehs can
base sample rate and the unavailable data points in th ecome unmanageable. In adaition, these techniques

slowly sampled measurements missing data This are incapable of handling irregularly sampled data.

allows us to accommodate systems in which outputsin this paper we present a method which uses an initial
are irregularly sampled within the same identification crude model to estimate the unavailable data points
scheme. in the slowly sampled variables. The estimated un-
available data points are then used with original data

A commonly used approach for the identification of . .
y bp set to identify a new model. From the new model,

processes from multi-rate data is to interpolate be-



the missing data is again estimated and this processA2. Outputs are sampled &, - - - , T, respectively.
is repeated until the models converge. This approachA3. The input sampling timeT, is assumed to be the

reduces to th&xpectation MaximizatioEM) algo- smallest sampling timee.,
rithm if optimal estimates of the missing data points .
are used in the estimation stage. The advantage of T<T Vi (4)

this method lies in the methodical manner in which
the missing data points are estimated instead of using
the traditional interpolation methods. Instead of inter-
polating, the missing data are estimated based on the 3. THE EM ALGORITHM
current estimate of the process model at each iteration.

Use of the EM algorithm guarantees convergence andrhe central idea behind the algorithm presented in this

consistency of the identified models (Dempster et al. paper is to pose the multi-rate identification problem

(1977)). in the maximum likelihood framework and solve for
the system matrices. The iterative algorithm presented

The rest of this paper is organized as follows: section In this section is based on the populxpectation

2 lists the assumptions and the notation. In section Maximization algorithr(EM algorithm) developed in
3, the EM algorithm is presented and in section 4 a .ngpsf[er.et al. (1977). Before ut|I|Z|ng_th|s algorithm
method for identification of linear dynamical systems N identifying multi-rate processes, a brief summary of
using the EM approach is developed. In section 5 the the algorithm is presented below.

EM based identification method is extended to the The EM algorithm addresses the problem of estimat-
missing data case. An industrial example is presenteding model parameters under the maximum likelihood
in section 6 followed by concluding remarks in section framework. More often than not, the maximum likeli-

7. hood function is a complicated nonlinear function of
the unknown parameters. Hence, one of the earliest
methods proposed for solving for the optimal param-

2. ASSUMPTIONS AND NOTATION eters was to use the Newton-Raphson method (Gupta
and Mehra (1974)). A simpler method based on the

Let us assume that the true process is of the form EM algorithm was proposed in Shumway and Stoffer
(1982).

A4. Assume that the initial state is zeite.,xg = 0.

X1 =Ax + Bu +w The EM algorithm can be summarized in the follow-

Yt =Cx% +w 1) ing few steps :
whereA B,C are the system matrices arde R" is e Obtain an initial estimate of the parameter vector,
then-dimensional state vector. Assume thét) € R™ @0,
andy(t) € RP. w; andw are uncorrelated white noise e Carry out the following steps at each iteratitn,
sequencese., until convergence:
- Expectation (E-step) Find the expected
Eww ] =Q;Ew]=0 Vt value of the complete data log likelihood

. function(Q-function) given the observed data
Ewv | =R;EMm]=0 vt set and the previously estimated parameter
Ewwv] =0 vt 2) vector,ok,

- Maximization (M-step): Maximize the Q-

Let us represent the time series data from 1 to function with respect to the parameter vector

t =N of any variable by(.)1.n. Through out this paper,
we will use the following notation for the expected The above steps ensure that the log likelihood func-
values of various variables, tion of the observed data increases at every iteration.
Therefore, the EM algorithm is guaranteed to con-
s. verge to a local maximum of the likelihood function.
X =E(%[Ys) (3) This is an important feature of the EM algorithm.
and However, there are a few drawbacks associated with
any iterative algorithm. The EM algorithm can be sen-
S, s ST sitive to the initial guess and also the rate of conver-
R =Bl =) %) gence can sometir%es be extremely slow. In order to
Po1 =B =) (1= 1)" avoid problems with a bad initial parameter guess, we
identify an initial unbiased FIR model of the process.
An example illustrating the use of EM algorithm in
estimating models from multi rate data is presented
below.

In addition, the following assumptions are made:

Assumptions

Al. Inputs are sampled uniformly eveifly units of
time. Examplel. Consider an ARX model



y(k) = (5)

where e(k) is normally distributed white noise with

varianceog? = 0.01. Let us assume that the output is
sampled at every alternate sample instant andytiat

is known. Then the following identification objective

0.8y(k— 1) +0.3u(k— 1) + e(K)

estimated parameters converge to the true parameters
asymptotically as the data length increases. On the
other hand, the least squares model obtained by in-
terpolating the data i8; = 0.83and6, = 0.24, which

is clearly not the true model. There is a small amount
of bias in the estimated model using the interpolated

function based on squared prediction errors can begaia. In general, the estimated models are biased if

used

1 N
W(8) =3 S &(t,8)?
N\&
1 XN 2
=5 > V(K —6y(k—1)—61u(k—1)]

N\&

whereN is the data length anfl = [6; 6,]". Since

only alternate data points are available, the above
objective function can not be evaluated. Instead, it is

possible to estimate the expected value of the above

objective function given the estimate 6ffrom the
previous iteration@(i~Y i.e.,

E [VN(9)|é(jil)va} —6y(k—1)

NZ

—61u(k— 1)) (6)

where Zy denotes all the available data. Now let us
consider two cases:
Case I y(k) is known, then

E[y(k) — Bay(k— 1) — Biu(k— 1) =
(y(k) — Bru(k—1))2+ 62(8)' Yu(k—2)
+6U7Vy(k—2))2+ 6302
—2(y(K) — Buu(k — 1))82(8Y Pu(k - 2)
+6) Vy(k—2)) W
Case II: y(k) is unknown, then
E[y(k) — Bay(k— 1) — Bru(k— 1)|* =
(6 Pu(k—1)+ 8 Py(k—1))?
+02 + (B1u(k— 1) + Boy(k— 1))?
—2(B1u(k—1) + Boy(k— 1)) (B Pu(k—1)
+8)Vy(k—1)) ®)

Using (7) and (8) in (6) it is possible to find the model
parameters at the current iteratign,

gl — minE Wn(0)]6U7Y, zy 9)
The iterations are performed until the parameters con-
verge. A plot showing the two parameters in this ex-

ample and the number of iterations is shown in fig.1.

arbitrary interpolation methods are used to fill the
missing data points. [ |
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Fig.

Now it is possible to use this algorithm to estimate the
state matrices of a linear dynamical system described
in (1). As a first step we provide an algorithm to esti-
mate the model from the complete data iset there

are no missing data. Even though the data set is com-
plete the states are unknown/unobserved and hence
the EM algorithm can be utilized. Once a method for
identification of single rate systems is developed, it
can be extended to multi-rate systems.

4. ESTIMATION OF LINEAR DYNAMICAL
SYSTEMS

A maximum likelihood framework is adopted in this
section to identify the system matrices of (1). Two
independent sequences of noise enter the dynamical
system in (1). Hence, the joint log likelihood function
of the complete data set can be expressed as

1092 (y1n, X1n, ©) = 1092 (WiN, Vi, O)

N N
~~1og|Q| - 5 log|R

1 N

5 2 0 A% Bl TQ 0~ A% 1~ Bu)
1 N

—5 > M- Cx) R (vt —Cx)

t=

where the parameter vectér= {A B,C,Q,R}. The
Q-function can then be evaluated by taking the expec-

The estimated model parameters converge to the trudation of the log likelihood function given the observed
parameters despite missing data. In general, the estidata and parameters from the previous iterate @ay

mates using the EM algorithm need not converge to

Let us define the conditional expectation operdpr

the true parameters with finite data sets. However, theas follows



Ek() = E( ‘y]_N 5 uj_;N 5 @k) (10) Step Response

. . -| == True model
Now using the above expectation operator the Q- - N4SID model
- modae|

function can be evaluated,

i
= Amplitu®
——

N N
Q(y11N7ekve) = 75 IOg|Q| - E IOg|R|

1 N
-5 Ztr{Q*lEk(xt —A%_1-Bu_1)(% —Ax_1—-Bu_1)"} o5}
2 ,

0

*% ZLtr{R_lEk(yt — C)Q)(yt fCX{)T} 0 5 10 Tme(sg 20
t=

wheretr(.) denotes the trace of a matrix. At each Fig- 2. Step responses of - the true model, the N4SID
iteration in the EM algorithm a new estimate of the model and EM model
model is obtained by maximizin@(y.n, ©,©) With  for jgentification of models from single rate data sets.

respectt® i.e., However, the computational effort involved in using
the EM algorithm is too heavy to warrant this method
01 = maxQ(y1n, 6%, ©) (11)  for single rate identification problems. Moreover, tra-
© ditional identification methods can provide asymptot-
Complete details on obtaining the new estim@}? ically unbiased estimates for single rate data sets. On
are given in the appendix. the other hand, in general, identification methods in-

volving arbitrary interpolations to substitute for miss-

Example2. Consider the following state space model iNg data result in biased estimates; thus, necessitating
the development of new methods for identification of
models from multi-rate data.

0.3688 04767 Q0114 0.34
A= | —05976 06095 —0.5408| B= | 0.56 It is interesting to note that the EM algorithm pre-
—0.0156 —0.0686 00422 0.78 sented in the previous section for identification of lin-
C=[12 096 15 (12) ear dynamical systems from single rate data, treats the
states as unknown/missing data. Hence, it is possible
with the true covariance matrices to extend the same algorithm to include the case of
missing data in the outputs by making appropriate
0.0407 00001 Q0015 changes to the Kalman filter and the Kalman Smoother
Q=0.0001 00407 —0.0020| ;R=0.398 presented in the Appendix. Full details regarding these
0.0015 —-0.0020 00428 modifications can easily be derived along the lines of

[ T . the arguments given in Shumway and Stoffer (2000).
Using the method proposed in this section one can o givent umway ( )

estimate the model parameters. A plot showing the The procedure can be summarized as follows:
step responses of the true model, a model obtai%gp 1:

using the subspace identification method - N4SI

and the model obtained using the EM algorithm
shown in fig.2. The EM algorithm performs as we
as the subspace method. The EM algorithm presented Kalman Filter and the Kalman Smoother.

n th|s sect|o.n, theoretically, W.'” provgje asymptop tep 3: Predict all missing data points using the current
unbiased estimates. However, in practice the algorithm model

may not converge fast enough or if a ba_‘d initial gue§§ep 4: Using the true and the estimated missing data
is given, it may converge to a local maximum. Hence, points identify a new model by minimizing the
a good initial guess for the EM algorithm is needed. Q-function

ﬁlﬂizln;’isszd least squares model can be used ass%% 5: Repeat the above steps until convergence.

Obtain an initial estimate of the model. For in-
stance, it is easy to obtain an FIR model.

ep 2: Estimate the missing data points using the initial
estimate of the model. This can be done using the

] Example3. The process in example 2 is used to gen-
erate multi-rate data. The input is sampled every sec-
ond and the output is sampled every four seconds. Ini-

5. ESTIMATION WITH MISSING DATA tially, a model is identified using linearly interpolated
data and the N4SID algorithm. Then the proposed
The strength of EM algorithm lies in being able to Method is used on the same data set without interpo-

estimate asymptotically unbiased models even if alating the data. The step responses of both the models
portion of the data is missing. As shown in the pre- are shown in fig.3. Clearly, the EM based method
vious section, it is possible to use the EM algorithm outperforms the N4SID method. u
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Fig. 3. Step responses of - the true model, the N4SID Fig. 5. Step response of a Delay-dominant recycle
model and EM model; Output sampled every four process

seconds to aid model development. Hence we used routine
6. INDUSTRIAL APPLICATION operating data to perform model identification. The
routine operating data has enough excitation in the

In thls_appllcatlon, mo‘?'e”'”g of a mechanlcal pulp form of grade changes to justify the exercise of model
bleaching process at Millar Western, Whitecourt, AB, identification using this data

Canada is shown. The system has four manipulated

inputs, two measured disturbance variables and oneWe used the proposed method based on the EM algo-
output. The output, pulp brightness, is an irregularly rithm for identifying the model. The predictions based
measured quality variable (distribution of sampling on the EM model (without interpolation) and N4SID

intervals are provided in fig.4). The manipulated in- model (with zero order hold interpolation) are pre-
sented in fig.6. The models shown have been adjusted

taking the recycle characteristics into account. Hence,
0 Vost common values ] only the forward path dynamics are shown. Though
/ 38 hours and 43 hours it appears that the EM model and the N4SID model
il perform comparably well for the given data set, it is
clear from the step responses (fig.7) that the EM model
is representative of the true process dynamics (fast
Significant tail in the distribution dynamics) .

Distribution of "Time between consecutive measurements”

.
o
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Fig. 4.Distribution of “time between consecutive mea-
surements”

puts are chemical add-rates (Peroxide and Caustic)
to two towers. The measured disturbances are two

— True Brightness

wood quality variables (Aspen and Freeness). All in- S5 1|7 NS e

= = EM model prediction EM model: MSE = 1.1079

puts are sampled every 10 minutes). The process is o ] ] ) ) )

known to be a time-delay dominant recycle process. ”

The step responses of the true model have large delay, . i )

fast dynamics and recycle characteristics. In generaI,F'g' 6 Comparlson of ’\_MSID and EM model predic-

the presence of a recycle stream can significantly al-  1°nS with actual brightness

ter the dynamics of a process (Morud and Skogestad

(1994),Kwok et al. (2001)). This is especially evi-

Qent when the process dynamics are faster than the 7 CONCLUSIONS

time-delay effects in the process. For example, a step

change in one of the inputs in a pme-de_lay dommant_ An identification approach for multi-rate data, based

recycle process, can cause a staircase-like structure in . Lo .

the output as shown in the fig.5. on the Expgctauon_ Maxm.nzatlpln a_pproach is pre-
sented. Unlike, traditional identification methods for

When the time-delay in the system is greater than themulti-rate data, the proposed method does not use

settling time, including lagged inputs (the extra lags interpolation. An attractive feature of the algorithm is

being equal to the sum of the delays in the forward that it can easily handle irregularly sampled data. It

path and the recycle path) as predictors can give aleads to asymptotically unbiased estimates of the true

better model. In this particular modelling exercise, model. However, the proposed method is sensitive to

there was no provision for performing dynamic tests the initial guess and is computationally intensive.
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Since the matriXC appears only ifT4, the new esti-
mate ofC, C¥*1 can be obtained by differentiatirig
0 and equating it to zero.
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Fig. 7. Step responses of the N4SID and EM models Ck+l ng (DIl (A-6)

APPENDIX : ESTIMATES OF SYSTEM

In order to obtain an expression for the optimal value
MATRICES AT EACH ITERATION

of R at the current iteration, we must differentiate

_ ) ) the third and fourth term in th@-function. The new
Let us first evaluate the second term in @dunction estimate oR can be shown to be

1N 11 T g1
T = -3 thr{Q_lEk(Xt — Ax_1—Bu_1) = N [‘D? — Og®; CDB] (A-7)
t=
(% — A%_1—Bu_1)T} Now we must evaluate aMp;s. I_n order to do so,
1 we need to use a Kalman filter and a Kalman
- —Etr{Q*1 [P1 -+ ADAT +BP4BT + 23AT smoother. Expressions for the Kalman filter and
T - Kalman smoother provided in Shumway and Stoffer
+20sB" —2AdeB ]} (A1) (2000) can be modified to suit the current problem.
where
N N REFERENCES
®y = ZE[XtXtT] &y = ZE[thlXtTfl} A.P. Dempster, N.M. Laird, and D.B. Rubin. Max-
t= t=

imum likelihood from incomplete data via the em

Gne S Efd 4] a e N T algorithm. J. R. Stat. Soc. B89:1-38, 1977.
3 '_t; iXe-a] Pa '_t;u“lu“l N.K Gupta and R.K Mehra. Computational aspects
N N of maximum likelihood estimation and reduction
®s5 = thNutT_l Dg = Z\&Nfqu_l (A-2) in sensitivity function calculations.IEEE Trans.
t= t= Automat. Contr.19:774-783, 1974.

K.E Kwok, M Chong-Ping, and G.A Dumont. Sea-
sonal model based control of processes with recycle
dynamics. Ind. Eng. Chem. Res40:1633-1640,
2001.

D. Li, S.L Shah, and T Chen. Identification of fast rate
models from multi-rate datdnternational Journal
of Control pages 680-689, 2001.

L. Ljung. System Identification: Theory for the user
Prentice Hall, 1999.

AL — (3 — 5D 1] [y — DD, 1dd ] J Morud and S Skogestad. Effects of recycle on dy-

B = (g — A%]q,;l (A-3) namics and control of chemical-processing plants.
comput chem end 8:529-534, 1994.

Similarly we can differentiate the first two terms to R.H Shumway and D.S. Stoffer. An approach to

obtain the optimal new estimate of the covariance time series smooting and forecasting using the em
matrix, Q<t1 algorithm. J. Time Series Ana).3:253-264, 1982.

R.H. Shumway and D.S. Stoffefime Series Analysis
and Its Applications Springer, 2000.

All the expectations are evaluated using the previous
model estimaté.e., using ©¢ = {AX B¥ CX, Q¥ R¢}.
Observe that this is the only term in ti@@function
that depends on the system matridgeandB. Now it

is straightforward to differentiate the above expression
to obtain the optimal estimates of the system matrices
at the k+ 1)th iteration.

1
Q= [0+ AT 4 Br0,B 1 2054
+2dsBKT — 2AKpgBKT (A-4)

The fourth term in theQ-function can similarly be
evaluated,
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Abstract: Identification based PID tuning is studied. The proposed approach consists of
the identification of linear or nonlinear process model and model based control design.
The identification test can be performed in both open loop and closed-loop. The so-called
ASYM method is used to solve the identification problem. The method identifies a low
order process model with a quantification of model errors (uncertainty). The PID tuning is
based on internal model control (IMC) tuning rules. Two case studies will be performed
to demonstrate the methodology. The first one is the adaptive control of the dissolved
oxygen of a bioreactor; the second one is the nonlinear PID control of a pH process.

Key words: PID control, adaptive control, identification, performance, robustness

1. INTRODUCTION

Although MIMO model based control such as MPC
is becoming more popular in process control, most
control loops are still PID controllers. PID tuning is
also part of the pre-test in an MPC project.
Therefore, good tuning of PID loops is very
important to maintain good performance of the
overall process control system.

PID tuning follows basically two approaches:
Manual tuning and model based tuning. Manual
tuning is effective for simple loops. The
disadvantages are that the quality of the tuning is
dependent on the knowledge of the control engineer
and the control performance will be, in general, not
optimal. Moreover, manual tuning will be difficult
and inefficient for processes with complex dynamics
and/or nonlinearity. For the control of complex
industrial processes, a model-based control approach
has been proven the most effective. There are many
advantages of a model-based approach. The
controller can have a high performance because the
controller parameters can be optimized based on the
process model. The quality of the tuning is
independent of the tuning experience of the control
engineer. More complex dynamics can be controlled.

Nonlinear processes can be controlled using
nonlinear models; time-variant processes can be
controlled using an adaptive PID.

In this paper a model based PID auto-tuning method
is outlined. The model is identified using open or
closed-loop test data. Both linear and block-oriented
nonlinear models can be obtained. Model error
(uncertainty) is also estimated, which makes the
robust tuning possible. Internal model control (IMC)
tuning rules (Rivera et. al., 1986) are used to
determine the PID parameters. In Section 2, the
identification method is introduced. Section 3
discusses the controller tuning and implementation.
Two case studies are presented in Section 4.
Conclusions are given in Section 5.

2. IDENTIFICATION OF LINEAR AND
NONLINEAR MODELS

2.1 Cloced-loop Identification of Linear Models
Single-input single-output (SISO) system (process)

identification using data from closed-loop operation
will be introduced here.



The control system block-diagram is shown in Figure
2.1 where u(t) and y(f) are the process input and
output signals at time ¢, w(f) represents an
unmeasured disturbance acting at the output, 7(¢) is
the setpoint of the controlled process. It should be
clear that the open loop situation is a special case of
closed-loop identification.
v(t)

() u(t) l U]
I jﬁ Controller Process T
Figure 2.1 Process identification in closed-loop
operation

A linear time-invariant discrete-time model that
describes the relation between process input and
output in terms of the backword shipt operator ¢ is
given as follows:

(t) = Glqyu(t) + (1) @1
V() = H (q)e(t)

where

B(q) by+bg'+..+b,q"
AqQ) l+aq' +.+a,q”"

G(g)=

is called process transfer function model, and

_C(q) l+eq ' +..+c,q”

H(q) =
(@) D(q) l+dq'+..+d,q"

is a disturbance shaping filter, # is called the order
of the model, {e(¢)} is white noise with zero mean
and variance A* and

{Cl], ey Ay, b(), ceey bn, Cly «oey Cpy d], N d,,}
are the parameters of the model. This model structure
is called Box-Jenkins model in the literature.

A process identification procedure consists of four
steps: test design, parameter estimation, order
selection and model validation. The following is the
so-called ASYM method (Zhu, 2001) that solves
these four problems.

1) Test Design

Often binary test signals are used for linear model
identification. Tulleken (1990) has proposed the so-
called generalized binary noise (GBN) signal for use
in identification. The character of a GBN signal is
determined by its power spectrum which is in turn
determined by its amplitude and average switch time.

A good test design should meet two requirements: 1)
the test signal should excites the process such that
the identified model is most accurate for control, 2)
the test will not disturb normal production, or, the

disturbance is minimized. The spectrum of the test
signal should be determined such that the control
error of the identified model is minimal. An
approximate optimal spectrum formula of the test
signal at the setpoint of the closed-loop system is
given as (Zhu and van den Bosch, 2000)

¥ (0) = 1y D, ()P, () (22)

where @,(o) is the power spectrum of the reference
signal r, ®(®) is the power spectrum of the
disturbance, and u is a constant adjusted so that the
signal power (or amplitude) is constrained. In
practice, the average switch time of the GBN signal
is adjusted so that its spectrum approximates the
optimal one in (2.2). The amplitude is chosen so that
the process output will stay within a given range.

2) Parameter Estimation

Parameters of G(g) and H(g) can be estimated in
several ways. The well known prediction error
method (Ljung, 1987) estimates the parameters of
both G(q) and H(g) by minimizing the prediction
error criterion according to (2.1). This approach is
numerically difficult. Local minima and non-
convergence can occur.

In the so-called ASYM method (Zhu, 2001), first a
high order ARX (equation error) model is estimated:

A"(q)y(t) = B" (q)u(t) + &(t) (23)
where A4"(g) and B’ (¢) are polynomials.

The high order model in (2.3) is practically unbiased,
provided that the process behaves linear around the
working point. The variance of this model is high due
to its high order. Using the asymptotic result of
Ljung (1987) it can be shown that the asymptotic
negative log-likelihood function for the reduced
process model is given by (Wahlberg, 1989)

O ()
O, (A -, (0)]

|dw

2.4
The reduced model G(q) is thus calculated by
minimizing (2.4) for a fixed order.

[l1G" ) =G ()]

3) Order Selection

The best order of the reduced model is determined
using a frequency domain criterion ASYC which is
relate to the noise-to-signal ratios and to the test
time; see Zhu (2001). The basic idea of this criterion
is to equalize the bias error and variance error of the
transfer function in the frequency range that is
important for control.

If the optimal order is higher than 2, a model
reduction is used to reduce the order to 2 for PID

tuning.

4) Model Validation



Model validation is to check whether the identified
model is suitable for control. The main task of model
validation is to check if the identification test data is
rich enough for control purpose, and if not, provide a
test redesign. In Zhu (2001), a stochastic model error
bound has been derived based on the asymptotic
properties of high order models. Denote A(e”) as the
high order model error, then the additive error bound

A(®) is given as:

|A(e™) |I< A(w) =3 \/”h @, ()2

N q)u (a))/’{’z_ | q)ue(a)) ‘2
w.p.99.9% (2.5)

where n; is the order of the high order model, N is the
number of samples, ®(®) is the power spectrum of
disturbance, ®@,(w) is the power spectrum of input,
@,.(®) is the cross power spectrum between input
and white noise sequence {e(f)}. When the optimal
model order is higher than 2, the model order will be
reduced to 2. In this case, the difference between the
optimal model and the 2nd order model will be
added to the upper bound (2.5).

One way to use upper bound (2.5) for model
validation is as follows. First simulate the control
system using the model and controller. Then check
the robust stability of the system using the model, the
upper bound and the controller parameters; see
Section 3. If the controller simulation show good
performance and robust test is passed, the identified
model passes the validation and the controller can be
implemented. If the robust test is failed, then,
according to the upper bound formula (2.5), a test
redesign can be done using the following rules:

o Doubling the test signal amplitude will half the
error over the whole frequency band.

e Doubling the test time will reduce the error by a
factor of 1.414 over the whole frequency band.

e Doubling the average switch time of GBN signal
will half the error at low frequencies and double
the error at high frequencies.

2.2 Identification of Block-Oriented Nonlinear
Models

Commonly used block-oriented models are the
Hammerstein model, the Wiener model and
combined  Hammerstein-Wiener = models. A
Hammerstein model is formed by a nonlinear gain at
the input followed by a linear block, hence it can also
be called a N-L model; see Figure 2.2. A linear block
followed by a nonlinear gain forms a Wiener model
or a L-N model; see Figure 2.3. One way to combine
the Hammerstein Model and and the Wiener model is
the so-called N-L-N Hammerstein-Wiener model;
see Figure 2.4.

w(1)
u(?) w(t)

»(®)
— fw) G(g) H<l>—'

Figure 2.2 Hammerstein model

v(t)

A

0

Figure 2.3 Wiener model

v(t)

u(?) wy(?) we(?) l w(?) ¥(®)
— fi(w) G(9) > Sw) ——

Figure 2.4 N-L-N Hammerstein-Wiener model

Here, G(z') represents a linear time-invariant
transfer function, f(.) denotes the static nonlinear

gain. It is assumed that: 1) the nonlinear function
f(.) is continuous, monotone and invertible; 2) the

unmeasured disturbance {v(t)} is a stationary
stochastic process.

One can parametrize the linear part with the
disturbance using the Box-Jenkins model; and
parametrize the nonlinear function using cubic
splines. Recently, identification algorithms have been
developed for such models by extending the ASYM
method; see Zhu (1999, 2000, and 2002).

3. ROBUST PID TUNING

3.1 Tuning for Linear PID

There are many model-based PID tuning rules, such
as dominant pole placement, optimization by
minimizing integral square error (ISE) or integral
absolute error (IAE), and internal model control
(IMC) tuning; see Astrom and Higglund (1995).

Here we will use the IMC tuning rules introduced by
Rivera et. al. (1986). The idea of the IMC tuning is to
use the two-step IMC design method to derive the
PID parameters based on a low order (up to 2nd
order) plus delay model of the process. The PID
parameters are determined so that the closed-loop
behavior approximates the behavior given by a first
order filter

f(s)=

For controller tuning, the user only needs to specify
the time constant 7, of the filter, or the desired speed
of the closed-loop system. In general, a large time
constant leads to a slow response and a more robust
controller; a small time constant leads to a fast
response, but a less robust controller. Tuning
formulae for typical process models are available in
tables; see, e.g., Chien and Fruchauf (1990).
Therefore, when a process model is identified, it is

3.1)

T,s+1



straightforward to obtain PID parameters. The
closed-loop system can be simulated using the model
and the controller. Industrial experience of the IMC
tuning rules is very positive; see Chien and Fruehauf
(1990).

Because model errors are inevitable in real process
identification, a good control performance according
to simulation does not necessarily mean good
performance in reality. The robustness of the
controlled system against model errors can be
analyzed using the upper error bound in (2.5).

Denote G(s) as the process model in continuous-
time, C(s) as the controller and A(w)as the upper
bound. Then it can be shown (see, e.g., Rivera et.
at.,1986) that the controlled system is robustly stable

for all the errors bounded by the upper bound if and
only if

|Clio) |

— L A)<1 Yoe[0,0] (G2
|1+ G(iw)C(iw)|
The performance of the true system will be close to
the simulation if the left hand side of (3.2) is much
smaller than 1, for example, smaller than 0.5.

3.2 Tuning for Nonlinear PID

When a Hammerstein model or a Wiener model is
identified, the simplest tuning is to invert the
nonlinearity and then use the same IMC tuning rules
to find the linear part of PID controller. The robust
stability analysis can also be used after the nonlinear
compensation. Denote f~'()as the identified

nonlinear gain, then the block diagram for the
nonlinear PID control using the Hammerstein model
is given in Figure 3.1; and that using the Wiener
model is shown in Figure 3.2.
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Figure 3.1 Nonlinear PID for Hammerstein model
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Figure 3.2 Nonlinear PID for Wiener model

4 CASE STUDIES

4.1 Adaptive Control of the Disolved Oxygen of a
Bioreactor

The setup is a 20 liter fermentor (Figure 4.1). In this
setup, base and acid are used to control the pH value;
heating and (water) cooling are used to control
temperature and airflow is used to control dissolved
oxygen.

The production specifications for the three controlled
variables are:

1) pH Normal range: setpoint +
0.05. Worst case range: setpoint = 0.05.

2) Dissolved oxygen Nornal range: setpoint +
2.0%. Worst case range: setpoint = 5.0%.

3) Temperature Normal range: setpoint = 0.1 °C.
Worst case range: setpoint = 1.0 °C.

Each variable is controlled using a PID controller.
Experience has shown that, when fixed PI controllers
are used, the controls of pH and dissolved oxygen are
difficult, but the control of temperature is easier.

The main disturbances to the dissolved oxygen are
changes in the oxygen consumption rate during the
fermentation, the addition of anti-form the changes of
the medium properties.

Applikon ADI 1065 unit that is connected to the
sensors and actuators controls the fermentor. The low
level PID control loops are run in a PC. The
supervisory controller sets the PID parameters. The
supervisor controller runs in another PC under
Matlab/Simulink/ Stateflow. The sampling time is 5
seconds.

Figure 4.1. The bioreactor setup
The adaptive control scheme is as follows.
1) Control loop performance monitoring

Is control performance OK?
Yes, goto 1); no, goto 2)

2) Identification test; identifying model and
error bound

3) Performing PID tuning and simulating
closed-loop responses

4) Performing robust stability test
Is the control system robust?
Yes, goto 5);

No, goto 2) (for collecting more test data),
or, goto 3) (detune the controller)

5) Implement the new PID parameters
Goto 1)



In this work, control performance monitoring (Huang
and Shah, 1999) is not studied; only identification
and PID tuning are shown.
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Figure 4.2 DO control loop before, during and after
the adaptation

Figure 4.2 shows the signal plots of the real-time
measurements during the test. First the existing PID
tuning is made very slow; see the first plot of Figure
4.2. Then the identification test is started. A GBN
signal is added at the process input. The test lasted
for about 20 minutes; see the second plot of Figure
4.2. At the end of the 20 minutes, the input/output
data is used to identify a model and its error bound,
and PID parameters are computed. The desired
settling time of the closed-loop is 1 minute. The
closed-loop system is simulated and the robust
stability is tested using the model and the control
parameters see Figure 4.3. It shows that the new PID
controller has good performance with robust
stability. The new PID parameters are implemented
in the low level controller and the step responses is
measured after the adaptation; see the third plot of
Figure 4.2.

Closed-loop step response
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Figure 4.3 Identification and robust PID tuning

It can be seen that the performance of the adaptive
control is very satisfactory. The simulation and the
real-time measurements agree very well. Only a few
seconds are needed to carry out the off-line
identification, PID tuning and robust stability
analysis.

When the closed-loop is in oscillation, the identified
model is very poor. This results in a large error
bound and the robust stability test will fail. Therefore
the new control parameters will not be implemented.
To solve this problem, and oscillation detection is
performed before the identification test. The existing
controller is detuned until the oscillation disappears.

The adaptive control of the pH and the temperature
can be done in the same way.

4.2 Nonlinear PID Control of a pH Process

The pH process consists of a continuous stirred tank
reactor (CSTR) with two input streams and one
output stream. The scheme is shown in figure 4.4.
The first input flow consists of solution of strong
acid and the second flow consists of a solution of
strong base. The acid flow has a constant rate and the
rate of base flow can be adjusted using a controlled
pump. These two flows react with each other and
produce a pH value. The pH of the solution inside the
CSTR is measured by using a pH sensor. The base
flow rate is used to control the pH value of the
solution inside the tank.

Closed-loop identification test has been carried out.
Staircase test signal with different step length is
applied at the pH setpoint. Wiener model is identified
using the test data. The linear model has an order of
2, but a first order model is almost as good. The
nonlinear part has degree 10. Figure 4.4 shows the
identified nonlinear gain which decreases as the pH
increases.

9
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Figure 4.4 Identified nonlinear gain

Based on the identified Wiener model, a nonlinear
PID controller is designed and tested for the pH
process. In the control scheme, the inverse of the
nonlinear gain is placed in the feedback path and
before the setpoint as shown in Figure 3.2. Figure 4.5
shows the control result of the nonlinear PID (step
responses); Figure 4.6 shows the result of linear PID.
One can see that the system with linear controller
becomes slower when the pH value is high, but with
the nonlinear controller the performance is nearly the
same for low and high pH values.

The control scheme is implemented in a LabView
environment. See Erol (1999) for more details on the
study.
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Figure 4.5 Step responses of the nonlinear PI
controller
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Figure 4.6 Step responses of the linear PI control

5. CONCLUSIONS

An identification based robust PID tuning method is
proposed. Both linear and simple nonlinear models
can be identified in a possibly closed-loop operation.
An error bound of the linear model part can be
estimated, which makes the robust tuning possible.
The linear or nonlinear PID controller is determined
using the so-called IMC tuning rules. The robust
stability analysis is then carried out using the
identified model, the error bound and the controller
parameters. There are many ways to implement the
proposed method to solve industrial control
problems. The first way is to use the linear method in
an auto-tuner to tune fixed PID controllers. The
second way is to use the linear identification and PID
tuning in an adaptive controller. The third way is to
design a time-invariant nonlinear PID controller. The
two case studies have shown the capability of the
methodology. our experience, the use of such test
signals is often permitted in industrial environments.
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NONLINEAR SYSTEM INVERSION
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Abstract: The estimation of reaction rates is an important problem in mechanistic
modeling, monitoring and control of chemical reactors. In contrast to standard
estimation techniques where a model must be chosen for the reaction rates, we
consider them in this work as unknown time-varying functions, which also may be
interpreted as inputs. The resulting estimation task is an ill-posed inverse problem.
The paper addresses this estimation problem based on systematic methods
for nonlinear system inversion and filtering resulting in efficient estimators. A
theoretical analysis reveals the conditions for reaction rate reconstruction are those
for system invertibility. Our estimation scheme is a regularization method which
eliminates the difficulties arising with ill-posed problems. Guidelines for the design
of the estimator structure and the selection of the regularization parameters are

presented.

Keywords: Inverse problems, ill-posed problems, system inversion, filtering,

regularization, reaction rates.

1. INTRODUCTION

Reaction rates are important quantities for mech-
anistic modeling, monitoring and control of chem-
ical reactors. Since these quantities are not of-
ten directly measurable, they must be estimated
from other measurable quantities, such as tem-
perature, pressure and eventually concentrations.
This necessitates however an accurate model of
the process, which is rarely available. In real-
ity, the reaction rates are complex functions of
unknown structure of the temperature and the
concentrations of the reacting species involving
many kinetic parameters.

An approach to the estimation of reaction rates,
which does not rely on kinetic expressions, has
been investigated by Schuler and Schmidt (1992).

1 Author to whom all correspondence should be
addressed, Turmstr. 46, 52056 Aachen, Germany,
phone: +49.241.8096712, fax: +49.241.8092326, email:
wmaQIfpt.rwth-aachen.de

It has been based on a calorimetric model com-
prising conservation equations for mass and en-
ergy. The estimator used is the Kalman filter. The
authors report on estimation of reaction rates,
conversion and rate of production and on the
use of these quantities to control runaways and
overfeeding. The problem has also been consid-
ered by Elicabe et al. (1995). The authors use a
stationary Kalman filter together with a simple
linear model basically derived from the definition
of the reaction rate and assuming knowledge of
total mass of the reacting species derived from
concentration measurements. In order to cast the
problem in a form suitable to apply standard
Kalman filtering techniques, a model must be
chosen to represent the reaction rate (de Valliére
and Bonvin, 1990; Elicabe et al., 1995; Schuler
and Schmidt, 1992). In general, estimation results
will depend on the model selected (de Valliere and
Bonvin, 1990). Hence, the type of model chosen is
a degree of freedom of the estimation scheme.



In our earlier work (Mhamdi and Marquardt,
1999), we have developed an inversion-based regu-
larization for the estimation of reaction rates with-
out assuming any reaction rates model. Instead,
the reaction rates have been considered as un-
known input functions to be estimated from con-
centration measurements of the reacting species.
Insight into this estimation problem has been
gained by noticing that this task is actually an in-
verse problem, which is roughly defined by deter-
mining causes for desired or observed effects (Engl
et al., 1996). The solution of inverse problems is
generally a difficult task since they are usually ill-
posed (Engl et al., 1996; Hansen, 1998), i.e. their
solution is not unique and/or unstable with re-
spect to data in the sense that small perturbations
in the measurements cause large variations in the
estimate. Ill-posedness is due to the smoothing
character inherent to causal relations. Different
causes, even well-separated, may result in almost
an equal or the same effect.

In this paper, we consider the extension of our
previous method (Mhamdi and Marquardt, 1999)
to deal with MIMO linear and nonlinear systems.
Our estimation scheme is based on regularization
techniques (see e.g. Engl et al. (1996) for a re-
view), which deal with the difficulties arising due
to the ill-posedness of such problems. In general
terms, regularization refers to the approximation
of an ill-posed problem by a parameter dependent
family of neighboring well-posed problems. Exam-
ples are Tikhonov regularization (Tikhonov and
Arsenin, 1977) and regularization by projection
(Kirsch, 1996). The inversion approach gives im-
portant insight into the inherent properties of the
estimation problems and, in particular, the error
trade-off to get the best solution.

The paper is organized as follows. The problem
formulation and the solution framework are stated
in Section 2 and 3 respectively. The design proce-
dure based on system inversion for unknown input
estimation is given for linear and nonlinear MIMO
systems in Section 4. In Section 5, the case study
of a bioreactor is presented. Conclusions are given
in Section 6.

2. INPUT ESTIMATION PROBLEM

We consider in this work systems ¥y given by
the following nonlinear equations

&(t) = Alx) + B(z) w(t), (1)
y(t)=C(z) + D(z) w(t) (2)
where the quantities w and y are vector-valued
functions, i.e. w(t) € R™ and y(t) € RP for
t € [to,t] and z(t) € R™ are the system states. The
quatities w(t) represent the unknown inputs to be

estimated from measurements of the outputs y.
In the application context considered these inputs
are the reaction rates of interest.

Since the observations are always corrupted with
errors, the measurements, denoted by ¢, are dif-
ferent from the true values y. We assume that the
two quantities are related through the following
equation

g(t) = y(t) + n(d), (3)

in which n represents an additive measurement
error.

We formulate the problem as follows. Let T’ be
the operator mapping the unknown input vector
w € W to the measured output y € Y, i.e.

Tysy w=y 4)

The sets W and Y are function spaces. The input-
output operator 7', is implicitly given by the
system X ny,.

The unknown input estimation (UIE) problem is
to find an approximation w of the unknown input
functions {w(7), T € [to,%]} from the noisy obser-
vations {g(7),T € [to,t]}. In other words, the es-
timation problem is to solve the integral equation
(4) for w using the available noisy measurements
g, i.e.

Tw—)y w = Zj, (5)

3. SOLUTION FRAMEWORK

In this work, we approach the UIE problem from
the perspective of inverse problems and regular-
ization theory. In general the UIE problem is ill-
posed, which means that one or more of the follow-
ing well-posedness properties, due to Hadamard
(Engl et al., 1996), does not hold: (i) for all
admissible data a solution exists, (ii) for all ad-
missible data the solution is unique and (iii) the
solution is stable. Of major concern is the stability
condition, which means, that the solution must
depend continuously on the data such that small
perturbations in the data cause small variations
in the solution.

The standard method to guarantee the solution
existence and uniqueness for problem (5) is to con-
sider generalized solutions denoted by w' (Engl
et al., 1996). In the Lo-norm, w' is the minimum
norm least-squares solution of the integral equa-
tion (5). The generalized inverse operator Tt maps
y to w’. The generalized solution w! may be hence
determined through

wh = T13. (6)



However, the usefulness of this solution depends
strongly on the properties of the inverse operator
Tt i.e. its continuity. Therefore, within the UIE
problem, we are interested in the inverse operator
and its properties.

The generalized inverse is generally unbounded
such that stability cannot be guaranteed. Regu-
larization methods are used to recover this prop-
erty of the solution. A regularization method is a
family of well-posed transformations 7T, such that

lim T,y =T'y, Vy, (7)
a—0

where « is called the regularization parameter
(Engl et al., 1996; Tikhonov and Arsenin, 1977).
In other terms, the introduction of regularization
is connected to the approximation of the inverse
operator in the family of continuous operators.

Regularization, however, introduces an extra error
term to the estimate. To see this, consider mea-
surements satisfying

79—yl <e (8)

where € is an error level. For any bounded linear
operator T, the error in the regularized solution

wt, = T,§ can be calculated according to

W, —wh =T, — Ty 9)
=To(§—y) + (Toa —ThHy. (10)

The term T, (7 — y) is called data error and (T, —
TY)y regularization or approzimation error. As a
function of a these two error types have different
behavior, such that the minimization of the total
error results in a trade-off between them. No regu-
larization method is therefore complete without a
procedure for choosing the regularization param-
eter a.

4. REGULARIZATION BY SYSTEM
INVERSION AND FILTERING

In our earlier work, a filter-based regularization,
originally investigated in (Tikhonov and Arsenin,
1977) for SISO problems, has been developped for
the solution of inverse heat conduction problems
(Blum and Marquardt, 1997) and the estimation
of reaction rates in chemical reactors (Mhamdi
and Marquardt, 1999). In the following section, we
consider the extension of the method for MIMO
linear and nonlinear systems.

4.1 Linear systems

We consider the operator Ty, given by the
MIMO LTI system X,

Process Estimator

W—» Gp ) 3f Gt Gp LW

Fig. 1. Filter-based regularization

#(t)=Az(t) + B w(t), (11)
yt)=C z(t) + D w(?). (12)

The considered regularization method is more
easily presented in the frequency domain. In this
context, the estimation problem is to solve the
equation

Y(s) = Gp(s)W(s) + N(s). (13)
using the observations g of the outputs y.

Assume we are able to compute the inverse trans-
fer function G, '(s), a regularization method is
constructed as follows. To suppress the high fre-
quencies due to the measurement errors, the con-
sidered regularization (Tikhonov and Arsenin,
1977; Blum and Marquardt, 1997; Mhamdi and
Marquardt, 1999) suggests the design of a pa-
rameter dependent family of functions Gy(s,q)
operating on Y according to

W(s) = Gy(s,a) G (s)Y (s). (14)

p

« is the regularization parameter (see Figure 1).
Gy(s,a) is chosen such that W (s) approximates
the true input W(s) as good as possible despite
non-vanishing noise N(s). In particular, G¢(s, a)
should be chosen such that

e 0<Gy(s,a) <1, Va,s;

e G(s,a) — 1 non-decreasingly as a — 0 and
Gy(s,0) = 1;

o lim, ,o Gy(s,a) =0, Va > 0, and
limyy00 G¢(s,a) = 0.

These conditions are sufficient for the time-
domain operator T, corresponding to Ge(s) =
Gy(s,a)G,(s) to qualify as a regularization op-
erator in the sense of equation (7) (Tikhonov and
Arsenin, 1977).

These design specifications are in general conflict-
ing, as seen from the expression of the estimation
error Ey(s) = W(s) — W(s):

Ey(s) = (Gy(s,a) = 1) W(s)

+ Gy(s,a) G;l(s) N(s). (15)

The choice of an appropriate regularization pa-
rameter « is in general difficult. However, many



methods have been proposed in the literature for
its computation (Engl et al., 1996). Most of them
are based on residual norms. They can be divided
into two classes: (i) methods based on knowledge
of the error level €, e.g. Morozov’s discrepancy
principle; and (ii) methods that do not require the
knowledge of €, e.g. Generalized Cross Validation
or the L-Curve Criterion (Hansen, 1998). The last
method is used in this work.

Inversion of LTI systems has been considered in
many publications. The approach developed by
Silverman (Silverman, 1969) is most fruitful. The
basic idea is to construct a sequence of systems
system X

2p(t) = Ag 21(t) + B w(t), (16)
yr(t) = Cr 2x(t) + Di w(?), (17)

by iteratively differentiating the output equation
(12) until we reach an iteration k = r where the
corresponding matrix D, is invertible.

Therefore D, ! exists, and we have after some
algebraic manipulations the inverse system %

4(t) = (A - BD, 'C,) z(t) + BD, 'y.(t) (18)
w(t) = =D Crz(t) + Dy, (t) (19)

with input vector y, comprising time derivatives
up to the order r of the system output y Hence,
the obtained inverse system Ei is given by a
cascade of the bank of differentiators to get y,
and the dynamical system given by (18)-(19).

A construction for the case m # p has been
given by Silverman and Payne (Silverman and
Payne, 1971). The question of invertibility with-
out knowledge of the initial states has been ad-
dressed by Moylan (1977).

4.2 Nonlinear systems

Consider now the nonlinear system (1)-(2) ¥y

z(t) = A(z) + B(x) w(t),
y(t)=C(z) + D(z) w(t)

Since the the iterative procedure of Silverman for
the construction of the inverse system is done
in the time domain using differentiation and ele-
mentary algebraic operations, it has been already
extended to time-varying and nonlinear systems
(Hirschorn, 1979). A closed representation of the
inverse system is (Daoutidis and Kravaris, 1991):

L7 Ci(2)
3=A(z) — B(z)M 1(2) :
L%Cp(z)

r df1 Y1

dtP1
+B(z)M ()| : |, (20)
dﬁz;yp
- dtPr 5
1
LPCy(2) 4
w= B(z)M (z) : - :
Bo Py,
L Cp(z) d:ﬁz
with
Lb1 Lglcl (z) L;,po‘lcl (Z)
M(z) = : :
Ly, L e, (2) Ly, L% c,p(2)
1444 Cp bpA Cp

As in the linear case, not only the system out-
puts, but also their derivatives are used as system
inputs. This inverse is not suitable for input es-
timation without additional regularization, since
unavoidable measurement errors lead to an error
amplification in the solution.

The determination of the derivatives of the in-
volved measured variable requires the solution of
linear inverse problems. The method presented in
the previous section is used here to solve them.

5. ILLUSTRATING EXAMPLE

The regularization procedure is illustrated by an
example taken from (Farza et al., 1998) using the
same set of constant model parameters.

In a bioprocess, product P is made from biomass
X and substrate S. The process modelling leads
to the nonlinear system

X =uX - DX, (21)

P=vX — DP, (22)
S=—mpX —nvX +D(Sin — 5), (23)

with initial conditions X, Py and Sg. where D is
the dilution rate and 7; and 7, are yield coeffi-
cients. The quantities p and v define the specific
reaction rates for the growth of the biomass and
for the biosynthesis respectively, which are to be
estimated from measurements of X and P. For
the generation of the measured data in simulation
the following models for p and v are used:

S Kp (1 P)
B=p -,
" (ks +5+2) et P\ Py

V=VUn0l——"F
" (K52 + S)

Figures 2-3 show the true and noisy measure-
ments. The corresponding dilution rate D varies
as a trapezoidal signal from 0.1 to 0.2/h.



Instead of assuming kinetic models for x4 and v,
these are regarded as unknown inputs wy and wa
to a nonlinear dynamic system with the states
21 =X 2o =P and 23 = S:

[\~
g

1 =—Dx1 +x1W;

TN N N N /N
N N
[=2 N

N N N N N

.7.32 = —DIL‘z + Tiw2

.fi)g = D(S»m - .’1,'3) —MNMT1W1 — N2T1W2.

[\
J

y1=21

[\
oo

Y2 =T2

The inverse system is then

Z1=1" (29)
22 = U2 (30)
1
w; =D + —1 (31)
21
1
wy=D2 4 =4, (32)
Z1 z21

The results of the estimation are shown in Figures
4-7. Although the noise is relatively small, the
calculated inputs are without regularization, as
expected, not useful (Figures 4,5). A regulariza-
tion with the approach described above results in
reasonable estimates, as shown in Figures 6,7. The
simulation was done with a second order transfer
function Gy with a regularization parameter de-
termined by the L-curve criterion.

6. CONCLUSIONS

We have considered, in this work, the estimation
of unknown reaction rates based on the theory
of inverse problems. The proposed estimator does
not assume or require any model for the reaction
rates. The method is based on system inversion
and filtering. The design has been achieved for
MIMO linear and nonlinear systems. The results
obtained show that efficient and satisfactory esti-
mations could be achieved.

As seen from our problem formulation, the method
is not restricted to the estimation of reaction
rates. It is applicable to problems where unknown
inputs w are determined from measurements of
other quantities using the considered model struc-
ture. Some other examples from chemical engi-
neering are estimation of heat fluxes, heat of reac-
tion or interphase mass transfer. Similar problems
appear also in other engineering and science areas.
Moreover, different types of system uncertainties
such as nonlinearities, parameter changes, faults
and unknown external excitation can be conve-
niently represented as unknown inputs. There-
fore, the unknown input estimation method is of
great interest for system supervision and robust
or fault-tolerant control.
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Fig. 2. Biomass concentration measurements
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This work may be extended by considering other
classes of systems where the inverse system may
be determined.
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Abstract: This paper proposes an incremental approach for the identification
of complex reaction kinetics in chemical reactors. The reaction fluxes for the
various species are first estimated on the basis of concentration measurements
and balance equations. This task represents an ill-posed inverse problem requiring
appropriate regularization. In a further step, the reaction rates are estimated
without postulating a kinetic structure. Finally, the dependency of the reaction
rates on concentrations, i.e. the kinetic laws, are constructed by means of feed-
forward neural networks. This incremental approach is shown to be both efficient
and flexible for utilizing the available process knowledge. The methodology is
illustrated on the industrially-relevant acetoacetylation of pyrrole with diketene.

Keywords: Identification, reactor modeling, input estimation, regularization,

neural networks

1. INTRODUCTION

The description of reaction kinetics often repre-
sents the most challenging part in the model-
ing of chemical reactors. A reliable description is
rarely available a priori. For example, it is well
known that reaction kinetics cannot necessarily be
derived from stoichiometries (Connors, 1990), in
particular in the case of catalyzed reactions. Thus,
a reliable kinetic model needs to be identified from
experimental data.

The model-based techniques used in process con-
trol and optimization require a model that ade-
quately describes the process dynamics, i.e. also
the kinetics in reaction systems. For the case
where a kinetic structure is not available, Psi-
chogios and Ungar (1992) proposed a hybrid ap-

I Corresponding author. E-mail: marquardt@Ilfpt.rwth-
aachen.de

proach to process modeling as an alternative to
recurrent neural networks for describing the dy-
namic system. The hybrid model combines prior
knowledge on mass and energy balances with a
feed-forward neural net model that serves as a
substitute for the constitutive equations that can-
not be determined from first principles. These
authors found that the hybrid model has bet-
ter properties than standard black-box neural
net models, i.e. interpolation and extrapolation
are more accurate and the model is easier to
analyze and interpret. Parameters in the neural
net part of the hybrid model can be estimated
from experimental data. Recently, Tholudur and
Ramirez (1999) used a two-step approach for the
identification of kinetics: Reaction rates are first
identified, assuming known curve characteristics,
and subsequently correlated with the independent
state variables using a feed-forward neural net
approximation. Van Lith et al. (2002) combined



an extended Kalman filter for the estimation of
states and rates with subsequent fuzzy submodel
identification.

In this work, an incremental approach for the
identification of reaction kinetics is proposed when
no prior kinetic knowledge is available. The ap-
proach is applicable to all reactor types, i.e. also to
those exhibiting transient behavior and possibly
variable feed and effluent streams. The reaction
fluxes for the various species are estimated from
noisy concentration data using the approach of
Mhamdi and Marquardt (1999). Then, the in-
dividual reaction rates can be calculated using
knowledge of reaction stoichiometry. These reac-
tion rates and the concentration data serve as
input to a Bayesian algorithm to train a feed-
forward neural network yielding the kinetic model.
The approach is especially suited for nowaday’s
high resolution measurement techniques such as
IR (Alsmeyer et al., 2002) or Raman spectroscopy
(Bardow et al., 2003), where concentration data
can be obtained continuously in-situ.

2. PRELIMINARIES
2.1 Model of the reaction system
Consider a homogeneous, not necessarily isother-

mal, chemical reaction system with R reactions
involving S species. The time evolution of the

number of moles of species 4, n; [mol], is given by:

d’fli

= fin _ pout PLoi=1,.. 1
S =1 ()

where fi and fPU [mol/min] are the molar flow
rates of species ¢ into and out of the reactor and
fF [mol/min] is the reaction flux of species 1, i.e.
the net molar flow rate of species ¢ produced or
consumed by the various chemical reactions.

The reaction flux of species 7 can be expressed in
terms of the individual reaction rates:

R
firZVZl/ijTj, i=1,..,S (2)
J

where v;; is the stoichiometric coefficient for
species ¢ in the jth reaction, r; [mol/l min] the
rate of the jth reaction, and V' [l the volume.

In vector form, equation (2) reads:
f' = VNr (3)
where f" is the S-dimensional reaction flux vector,

r the R-dimensional reaction rate vector and IN
the S x R stoichiometric matrix.

Equation (3) indicates that, if S > R, the reaction
rate vector can be calculated from the reaction
fluxes as follows:

1
= _N*Hf" 4
r= o 4)

where N7 is the Moore-Penrose inverse of N.

For a constant-density semi-batch reactor with a
volumetric feed of rate F' [l/min| and concentra-
tion ¢l [mol/l] and no outflow, the mole balance
equation (1) expressed in terms of the molar con-
centration ¢; = n,;/V [mol/l], and the total mass
balance give

dci _ F in f’Lr

QG V(Ci i) + v (5)
dVv

L _F

Yor (6)

implying no volume change by the reactions.

2.2 Estimation of reaction fluxes

The reaction fluxes ff(t) can be estimated inde-
pendently for each species. A generic model of the
problem is developed as follows. Let

t
(t) = na(t) = malto) ~ [ wtr) dr (1)
to

where u; (1) = fin(7) — f°U*(7). This transforma-

tion, applied to (1), leads to
dy; (t .
MO pw, w =0, ®
where fI(t) is considered as an unknown input

that must be determined on the basis of a noisy
measurement

4i(t) = yi(t) + £y, (1). 9)

Here, the superscript () is used to denote a noisy
quantity and e, represents the measurement noise
contained in g.

This estimation problem represents an ill-posed
inverse problem according to the definition of
Hadamard (Engl et al., 1996). Since the measure-
ment is noisy, the estimate fr(t) of fI(t) can be
arbitrarily large if no regularization of the solu-
tion is considered. Mhamdi and Marquardt (1999)
used Tikhonov-Arsenin filtering for the estimation
of fI(t). The quality of the estimation is greatly
influenced by the choice of the regularization pa-
rameter that weighs the tradeoff between noise
reduction and bias in the estimate. Adequate reg-
ularization parameters can be determined by the
L-curve criterion (Hansen, 1998), for example.

Another approach to filtering is the use of smooth-
ing splines (Craven and Wahba, 1979). Splines
are piecewise polynomial functions that possess
certain smoothness and differentiability properties
at the nodes. General cross validation (GCV) is
often used to select a suitable regularization pa-
rameter (Craven and Wahba, 1979).



3. INCREMENTAL IDENTIFICATION
APPROACH

The incremental identification approach mirrors
the steps taken when developing a model for a
given process. During model development, the bal-
ance equations are set up first and the unknown
fluxes are then described by constitutive equa-
tions. If needed, variable parameters in the con-
stitutive equations can be modeled as functions of
the system states. Transferring this procedure to
the identification process, the incremental identi-
fication approach features the stepwise identifica~
tion of quantities as they are used in the modeling
process. In an adaptive model identification con-
text (Marquardt, 2002), the incremental approach
allows the utilization of as much information as
can be safely provided by first-principle modeling
or sound empirical approaches. The process of
identification then reduces to modeling uncertain-
ties, i.e. unknown parameters in a given structure
or the model structure itself. This way, the iden-
tification procedure is split up into a sequence of
decoupled identification problems. This offers two
main advantages: i) the solution at a given step
becomes more simple as e.g. process dynamics are
considered in the first step and can be omitted
subsequently, and ii) physical insight is provided
for tackling the following steps.

The incremental identification approach for the
identification of reaction kinetics is depicted in
Figure 1. It includes the following steps:

(1) The fluxes fI(t),i=1,.., S are estimated using
mole balances (Model 1). Use equations (7)-

(2) With additional information on stoichiom-
etry (Model 2), the reaction rates #;(¢),
j=1, .., R are then calculated using (4).

(3) Furthermore, if the rate laws (e.g. r =
kcacp) are known (Model 3), (time-variant)
rate constants k;(t) are calculated from the
reaction rate 7;(t) and concentrations é;(t).

(4) Model 4 in addition assumes a temperature
dependency of k£ such as the Arrhenius law
(k = k:oe%_?). The rate constant parameters
(koj, Ej) can then be estimated from k;(t)
and T'(t).

If parts of the kinetics are unknown, such as the
Arrhenius law, the outputs of Model 3 can be
taken as inputs to a data-driven approach for
describing & = k(T). For an unknown rate law
(Model 2 known), é;, T and 7; serve as inputs
to the data-driven models r; = r;(¢;) and r; =
rj(c;, T) for the isothermal and non-isothermal
cases, respectively. If the reaction stoichiometry
is unknown, target factor analysis (Bonvin and
Rippin, 1990) can help identify the stoichiometry
based on the estimated fluxes.

Measurements

fh"
y

‘ Model 2 ‘ Balances Stoichiometry
By
Model 3 Balances Stoichiometry Rate law
(conc. dep.)

G G O
L Rate law Arrhenius law
‘ Model 4 ‘ Balances Stoichiometry (conc. dep)) | (temp. dep.) }7

IR Il I o

‘ Model structures and parameters for kinetic phenomena ‘

Fig. 1. Incremental approach for reaction kinetics
identification

For describing functional relations in a data set,
methods can be grouped in two categories based
on the quality and amount of prior knowledge.
If a model structure is available, the unknown
model parameters can be identified from the data.
Lacking such a model structure, black-box ap-
proaches are usually used, with the choice of basis
functions based on some prior knowledge. Their
ability to approximate any function arbitrarily
well, given a sufficient number of parameters,
may imply overfitting where the error on the
training set is small, but a large error results if
new data are presented to the model. To avoid
overfitting and improve the predictive capability
of the model, regularization, model discrimina-
tion or data validation techniques are commonly
used. Feed-forward neural networks with Bayesian
regularization (MacKay, 1992) may serve as an
automated regularization procedure for training.

4. ILLUSTRATIVE EXAMPLE
4.1 Simulated reaction system

The incremental approach for identifying reaction
kinetics is illustrated on the acetoacetylation of
pyrrole with diketene (Ruppen et al., 1997):

P+D 5 pAA (10a)
D+D 5 DHA (10b)
D — oligomers (10c)
PAA+D 5 F (10d)
In addition to the desired reaction of diketene (D)
and pyrrole (P) to 2-acetoacetyl pyrrole (PAA)

(10a), there are several undesired side reactions
(10b)-(10d). These include the dimerization and
oligomerization of diketene to dehydroacetic acid
(DHA) and oligomers as well as a consecutive
reaction to the by-product F. The reactions take
place isothermally in a laboratory-scale semi-
batch reactor with an initial volume of 1 liter,
to which a diluted solution of diketene is added
continuously.



Reactions (10a), (10b) and (10d) are catalyzed by
pyridine (K), the concentration of which continu-
ously decreases during the run due to addition of
the diluted diketene feed. The dilution of catalyst
is modeled by normalizing the corresponding rate
constants with respect to the volume. Reaction
(10c), which is assumed to be promoted by other
intermediate products, is not normalized. Hence,
the effective reaction rates are described by the
following constitutive equations

(O = gy d= (b ()
relt) = 2 (1), (12)

with the formal reaction rates

ra(t) = kacp(t)en (1), (13a)
15 (1) = kych (t), (13b)
ro(t) = keen(t), (13c)
ry(t) = kacpaa (t)ep(t), (13d)

where k., kp, k. and kg represent the rate con-
stants and V[ the initial volume.

The mole balances for the species D, P, PAA and
DHA read

dCD(t) o F(f)

ar vy B ety )
AT
dCng(f) _ 75 22 cpaa(t) + P‘?@gt) (14c)
ool _ I a0 + 1200 149

with the initial conditions ¢p(0) = cpo, cp(0) =
cpo, cpAA(0) = cpaao and cpna(0) = cprao- The
reaction fluxes ff), fp, fpaa and fhga can be re-
lated to the reaction rates using the stoichiometry:

fo=(=re—2ry—rc.—rqg)V, (15a)
fp ==V, (15b)
feaa = (ra —7ra)V, (15¢)
fpua =1V (15d)

4.2 Ezperimental design

To assess the capability of the incremental iden-
tification approach and allow a comparison of the
modeled and true kinetics, concentration trajecto-
ries are generated using the model described above
and the rate constants given in Table 1.

The measured concentrations are assumed to stem
from a high-resolution in-situ measurement tech-
nique such as Raman spectroscopy, taken at a

Table 1. Values of rate constants

kq kp ke ka

! l 1 l
lnotmin]  lmotmim]  lmim] (ot

value 0.053 0.128 0.028 0.001

Table 2. Range of independent variables

€Do CPo CPAAO  CDHAO F e
[ mlOl ] [ mlol ] [ mlol ] [ mlol ] [ ﬁ ] [ mlul ]

min 0.07 0.40 0.10 0.02 0.5e-3 4.0
max  0.14 0.80 0.20 0.04 1.5e-3 6.0

sampling frequency f; = 60 min~! and corrupted
with normally distributed white noise of standard
deviation o, = 0.01 mol/l. The batch time is
ty = 60 min. Concentration data are available for
the species D, P, PAA and DHA, but not for the
oligomers and the side product F since the latter
are difficult to obtain.

The reaction system (10a)-(10d) suggests that ry
and 7. are univariate functions of c¢p, whereas r,
and 7y are expected to be bivariate functions of
cp, cp and cpaa, cp, respectively.

To obtain reliable approximations of the reaction
rates, in particular for the bivariate functions,
experiments are designed so as to obtain concen-
tration data over a large domain. Six indepen-
dent variables can be considered: the four initial
conditions cpg, cpg, cpaao and cpgag, feed rate
F chosen to be constant during a run, and feed
concentration cll. The possible ranges of these
independent variables are given in Table 2. Since
cpo, cpo, F' and c%l have the largest impact on
the resulting transient behavior, a 26=2 factorial
design consisting of 16 experiments is selected.
Fewer experimental runs would reduce the valid-
ity range and/or the predictive capability of the
model, while additional runs would improve them.

4.8 Various modeling scenarios

In the following, three different modeling scenarios
are presented, each differing in the amount of prior
knowledge regarding the reactions. The fluxes,
reaction rates and reaction kinetics are identified
from noisy concentration measurements.

Scenario 1 In the first scenario, we assume
knowledge regarding the existence of reactions
(10a)-(10d), including their stoichiometric coeffi-
cients. Moreover, it is known that the rates of the
reactions (10a), (10b) and (10d) are proportional
to the catalyst concentration, see (11).

The reaction fluxes for the various species are ob-
tained from (8) using appropriate regularization.
Here, smoothing splines with GCV are used for
determining the regularization parameters.

From the time-dependent reaction fluxes ff, i =

{D,P,PAA,DHA}, the time-dependent reaction



rates 75, j = {a,b,c,d}, can be calculated using
(15a)-(15d). Since the influence of the catalyst on
the reaction rates is known, the formal reaction

rates 77 are determined from (11) and (12).

Finally, the concentrations and the reaction rates
from one or several runs are correlated as r} =
ri(cp,cp), ry = ry(cp), rf = ri(cp) and ) =
r5(cpaa,cp), as proposed by stoichiometry. A
feed-forward neural net with Bayesian regular-
ization as training algorithm and 3 nodes in the
hidden layer is utilized.

Scenario 2 In the second scenario, no informa-
tion regarding the effect of catalyst on the kinetics
is postulated. This corresponds to r} = r;. Other-
wise, the procedure is identical to that of Scenario
1.

Scenario 3 We consider the case where little is
known a priori about the reaction system. Besides
the known desired reaction (10a), there is evidence
that diketene (D) and pyrrole (P) are involved
in other reactions, including the formation of the
dimerization product DHA. Hence, the stoichio-
metric model

P+D — PAA
D+ 11 PAA — 1,DHA + G

(16a)
(16b)

is postulated, where the possible side reactions
are lumped into reaction (16b) with the unknown
stoichiometric coefficients v; and v, and some
unknown side products G.

From the estimated reaction fluxes, the reaction
rates 7;(t) for Reaction (16a) and rf, (t) for
Reaction (16b) as well as the stoichiometric co-
efficients v; and v can be determined as solution
of the reconciliation problem:

o) = [=ri(®) = rlump(OIV(E)  (17a)
fot) = —rz(OV(#) (17b)
foaa(t) = [ra(t) — 17, IV () - (17¢)
foma(t) = variy,, OV (1). (17d)

The rates r;(t) and i, (t) can subsequently be
correlated with the concentrations, as discussed in
Scenario 1.

4.4 Identification results

Reaction fluzes and concentrations Fxemplarily,
the true and estimated reaction fluxes for species
D are shown in Figure 2 (right). Integration of
(14a) yields an estimate of the concentration cp,
as shown in Figure 2 (left).

Reaction rates For Scenario 1, the estimated rate
r; in the univariate case is shown in Figure 3,
along with training data and true rate.

concentration data
—— concentration estimate -3

Concentration c, [mol/l]
o o
o (=]
B >
Reaction flux f'; [mol/min]
JL 1
o &

002 5 —— estimated reaction flux
true reaction flux

20 40
Time t [min]

20 40 60
Time t [min]

Fig. 2. True and estimated reaction flux ff; (right),
measured and estimated concentration cp (left)

8% 10 Reaction 2: D+D — DHA
2,51
=
E 7
S
E 15t
v
]
g gt
c
2
ksl
g 05
i3
data sets
ol —— approximated rate
true rate

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Concentration S [mol/]

Fig. 3. Estimated reaction rate r;

Kinetic model The validity range of a model is
defined as the smallest n-dimensional (e.g. n = 2
for the bivariate case) box containing all concen-
tration combinations taken for training. The mean
and maximum values of the neural net predictions
in the validity range are compared to the true
(simulated) reaction rates in Table 3.

The predictions obtained in Scenarios 2 and 3 are
comparable which can be accredited to the fact
that the volume change remains small during the
runs (the increase in volume does not exceed 3%
for the low and 9% for the high feed rate). Pre-
sumably, the importance of the catalyst dilution
becomes more obvious for large volume changes.
Rate r}, whose value is small compared to the
other rates, is mainly influenced by noise and
cannot be identified satisfactorily.

For the lumped model in Scenario 3, the main
reaction rate r} is identified with reasonable accu-
racy despite the error introduced by lumping all
side reactions in (16b). Here, the stoichiometric
coefficients 1 and vy were calculated as 0.0028
and 0.2227, respectively. Since the rates r}, 2 and
7, were not modeled, they are not identified in this
case.

Table 3. Reaction rate prediction errors

rr Ty ry ry
Scenario 1  Mean error  2.95 6.15 5.16 185
Max. error 11.24 26.42 20.92 3245
Scenario 2  Mean error  4.48 7.33 4.88 117
Max. error 15.69 25.84 18.58 466
Scenario 3  Mean error  4.64 - - -

Max. error 62.99 - - -




4.5 Validation of the hybrid model

To check the predictive capability of the hybrid
model consisting of the mole balance equations
and the neural-net-based kinetic laws, concentra-
tion trajectories are simulated using (13a)-(13d)
and the neural net approximations used to predict
them. Ten runs were simulated with experimen-
tal conditions chosen randomly within the ranges
given in Table 2. The mean and maximum values
of the prediction errors are listed in Table 4.

Table 4. Hybrid model prediction errors

(%] cD cp CPAA  CDHA
Scenario 1  Mean error 0.81 0.11  0.40 1.10
Max. error 2.80 0.63 1.48 5.58
Scenario 2 Mean error  0.79 0.24 0.61 1.10
Max. error 2.30 043 1.19 5.04
Scenario 3 Mean error  0.60 0.20 0.53 4.13

Max. error 1.91 042 1.28 15.58

Hybrid model predictions show excellent agree-
ment with the true (simulated) values. The fact
that the model predictions are good even for a
poorly estimated reaction rate rj illustrates the
difficulties experienced in estimating this rate.
These results suggest omitting reaction (10d) in
the postulated reaction scheme. Comparison of
the three scenarios also indicates that the hybrid
model derived from the lumped model equations
performs nearly as well as the detailed models.

5. CONCLUSIONS

This work has proposed an incremental approach
for the identification of unknown kinetics in a
chemical reactor. The approach consists of: (i)
model-free estimation of the reaction flux asso-
ciated with each species, (ii) calculation of the
reaction rates using the (partially) known system
stoichiometry, and (iii) identification of kinetic
models using neural nets to represent the corre-
lation between reaction rates and concentrations.
Here, information on stoichiometry helps choosing
the independent variables.

The predictive capability of the hybrid model
was very satisfying as were the kinetics identified
in the case of known stoichiometry. The errors
observed were largely caused by missing initial
information regarding the reaction fluxes, a phe-
nomenon that requires further investigation.

It should be emphasized that the proposed incre-
mental modeling approach is by no means limited
to the use of neural net submodels. Mechanistic
models using target factor analysis, multidimen-
sional sparse grids or multigrid methods may also
take advantage of the incremental approach.
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