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Abstract: A systematic framework for improving the quality of first engineering
principles models using experimental data is presented. The framework is based on
stochastic grey-box modelling and incorporates statistical tests and nonparametric
regression in a manner that permits systematic iterative model improvement. More
specifically, the proposed framework provides features that allow model deficiencies
to be pinpointed and their structural origin to be uncovered through estimation
of unknown functional relations. The performance of the proposed framework is
illustrated through a case study involving a model of a fed-batch bioreactor, where
it is shown how an incorrectly modelled biomass growth rate can be uncovered and
a more appropriate functional relation inferred. Copyright c© 2003 IFAC
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1. INTRODUCTION

Dynamic model development is an inherently
purpose-driven act in the sense that the required
accuracy of a model depends on its intended ap-
plication, and developing a suitable model for
a given purpose involves a fundamental trade-
off between model accuracy and model simplicity
(Raisch, 2000). For models intended for simula-
tion and optimisation purposes, which must be
valid over wide ranges of state space, the required
model accuracy and hence the necessary model
complexity is high, which means that developing
such models is potentially time-consuming.

1 Corresponding author.

Ordinary differential equation (ODE) models de-
veloped from first engineering principles and phys-
ical insights are typically used for such purposes
and a common problem with the development of
such models is that only the basic structure of the
model can be determined directly from first en-
gineering principles, whereas a number of consti-
tutive equations describing e.g. reaction kinetics
often remain to be determined from experimental
data, which may be difficult. Furthermore, if the
quality of a model of this type proves to be too
low, few systematic methods are available for de-
termining how to improve the model. Altogether,
this often renders the development of first engi-
neering principles models very time-consuming.



Experimental
data

Parameter
estimation

Stochastic state
space model

Residual analysis

Model
(re)formulation

First engineering
principles

Estimation of
unknown
functional
relations

Pinpointing of
model

deficiencies

 Model falsification
or unfalsification

Fig. 1. The proposed grey-box modelling cycle. The boxes in grey illustrate tasks and the boxes in white
illustrate inputs to and outputs from the modelling cycle.

In the present paper stochastic grey-box mod-
elling is proposed as a tool for systematic im-
provement of first engineering principles models,
as this approach resolves some of the issues men-
tioned above. In particular, the proposed frame-
work facilitates pinpointing of model deficiencies
and provides means to subsequently uncover the
structural origin of these deficiencies through esti-
mation of unknown functional relations. To obtain
these estimates nonparametric modelling is ap-
plied, and the integration of nonparametric mod-
elling with conventional stochastic grey-box mod-
elling into a systematic framework for improving
the quality of first engineering principles models
is the key new contribution of the paper.

The remainder of the paper is organized as follows:
In Section 2 the proposed framework is outlined
and in Section 3 a case study demonstrating its
performance is given. Finally, in Section 4, the
conclusions of the paper are presented.

2. METHODOLOGY

A diagram of the proposed framework is shown in
Figure 1 in the form of a modelling cycle, which
shows the individual steps of the corresponding it-
erative model development procedure. These steps
are explained in more detail in the following.

2.1 Model (re)formulation

A basic assumption of the proposed framework
is that an initial ODE model, derived from first
engineering principles, is available, which needs
to be improved to serve its intended purpose. The
first step of the modelling cycle then deals with
model (re)formulation, which essentially means
translation of the ODE model into a stochastic
grey-box model (or modification of this model in
subsequent modelling cycle iterations).

Stochastic grey-box models are state space mod-
els consisting of a set of stochastic differential
equations (SDE’s) describing the dynamics of the
system in continuous time and a set of discrete
time measurement equations, i.e.:

dxt = f(xt,ut, t,θ)dt + σ(ut, t,θ)dωt (1)
yk = h(xk,uk, tk,θ) + ek (2)

where t ∈ R is time, xt ∈ R
n is a vector of state

variables, ut ∈ R
m is a vector of input variables,

yk ∈ R
l is a vector of measured output vari-

ables, θ ∈ R
p is a vector of parameters, f(·) ∈ R

n,
σ(·) ∈ R

n×n and h(·) ∈ R
l are nonlinear func-

tions, {ωt} is an n-dimensional standard Wiener
process and {ek} is an l-dimensional white noise
process with ek ∈ N (0,S(uk, tk,θ)).

A considerable advantage of models of this type
is that they are designed to accommodate random
effects due to e.g. approximation errors or unmod-
elled phenomena through the diffusion term of the
SDE’s in (1), which means that estimation of the
parameters of this term from experimental data
provides a measure of model uncertainty. This is
a key point and forms the basis of the proposed
framework for systematic model improvement.

2.2 Parameter estimation

In the second step of the modelling cycle the idea
therefore is to estimate the unknown parameters
of the model in (1)-(2) from experimental data,
including the parameters of the diffusion term.

Stochastic grey-box models allow for a decom-
position of the noise affecting the system into
a process noise term (the diffusion term) and a
measurement noise term. As a result unknown
parameters of such models can be estimated from
experimental data in a prediction error (PE) set-
ting, whereas for standard ODE models it can
only be done in an output error (OE) setting,
which tends to give biased and less reproducable
results, because random effects are absorbed into



the parameter estimates (Young, 1981). Further-
more, since the solution to (1) is a Markov process,
an estimation scheme based on probabilistic meth-
ods can be applied, e.g. maximum likelihood (ML)
or maximum a posteriori (MAP). An efficient
such scheme, based on the extended Kalman filter
(EKF), is available (Kristensen et al., 2002b).

2.3 Residual analysis

In the third step of the modelling cycle the idea
is to evaluate the quality of the model once the
unknown parameters have been estimated. The
most important aspect in this regard is to inves-
tigate the predictive capabilities of the model by
performing cross-validation residual analysis, and
various methods are available for this purpose.

2.4 Model falsification or unfalsification

The fourth step of the modelling cycle is the
important step of model falsification or unfalsifi-
cation, which deals with whether or not, based on
the information obtained in the previous step, the
model is sufficiently accurate to serve its intended
purpose. In practice, this is a subjective decision,
as it involves addressing the trade-off between
necessary model accuracy and affordable model
complexity with respect to the specific intended
purpose of the model. If, based on this decision,
the model is unfalsified, the model development
procedure can be terminated, but if the model is
falsified, the modelling cycle must be repeated by
re-formulating the model. In the latter case, the
properties of the model in (1)-(2) facilitate the
task at hand as shown in the following.

2.5 Pinpointing of model deficiencies

In the fifth step of the modelling cycle, which
is only needed if the model has been falsified,
the idea is to apply statistical tests to provide
indications of which parts of the model that are
deficient. The key statistical tests needed for this
purpose are tests for significance of the individual
parameters, particularly the parameters of the
diffusion term, and as it turns out, the properties
of the ML and MAP estimators mentioned above
allow t-tests to be applied for this purpose.

These tests provide the necessary framework for
obtaining indications of which parts of the model
that are deficient. In principle, insignificant pa-
rameters are parameters that may be eliminated,
and the presence of such parameters is therefore
an indication that the model is overparameterized.
On the other hand, because of the particular na-
ture of the model in (1)-(2), where the diffusion

term is included to account for random effects
due to e.g. approximation errors or unmodelled
phenomena, the presence of significant parame-
ters in the diffusion term is an indication that
the corresponding drift term is incorrect, which in
turn provides an uncertainty measure that allows
model deficiencies to be detected. If, instead of
the general parameterization of the diffusion term
indicated in (1), a diagonal parameterization is
used, this also allows the deficiencies to be pin-
pointed in the sense that deficiencies in specific
elements of the drift term can be detected, which
in turn provides an error indicator for the consti-
tutive equations or phenomena models influenc-
ing this term. If, by using physical insights, it is
subsequently possible to select a specific phenom-
ena model for further investigation, the proposed
framework also provides means to confirm if the
suspicion that this model is incorrect is true.

Typical suspect phenomena models include mod-
els of reaction rates, heat and mass transfer rates
and similar complex dynamic phenomena, all of
which can usually be described using functions of
the state and input variables, i.e.:

rt = ϕ(xt,ut,θ) (3)

where rt is a phenomenon of interest and ϕ(·) ∈ R

is the nonlinear function used to describe it. To
confirm if the suspicion that ϕ(·) is incorrect is
true, the parameter estimation step must be re-
peated with a re-formulated version of the model
in (1)-(2), where rt is isolated by including it as
an additional state variable, i.e.:

dx∗
t = f∗(x∗

t ,ut, t,θ)dt + σ∗(ut, t,θ)dω∗
t (4)

yk = h(x∗
k,uk, tk,θ) + ek (5)

where x∗
t = [xT

t rt]T is the extended state vec-
tor, σ∗(·) ∈ R

(n+1)×(n+1) is the extended diffusion
term and {ω∗

t } is an (n + 1)-dimensional standard
Wiener process. The extended drift term can be
derived from the original drift term as follows:

f∗(x∗
t ,ut, t,θ) =


f(xt,ut, t,θ)

∂ϕ(xt,ut,θ)
∂xt

dxt

dt
+

∂ϕ(xt,ut,θ)
∂ut

dut

dt


 (6)

The presence of significant parameters in the
corresponding diagonal element of the extended
diffusion term is then an indication that ϕ(·) is
incorrect and in turn confirms the suspicion.

2.6 Estimation of unknown functional relations

In the sixth step of the modelling cycle, which
can only be used if specific model deficiencies have
been pinpointed as described above, the idea is to
uncover the structural origin of these deficiencies.



The corresponding procedure is based on a com-
bination of the applicability of stochastic grey-
box models for state estimation and the ability
of nonparametric regression methods to provide
visualizable estimates of unknown functional re-
lations with associated confidence intervals.

Using the re-formulated model in (4)-(5) and
the corresponding parameter estimates, state es-
timates x̂∗

k|k, k = 0, . . . , N , can be obtained for a
given set of experimental data by applying the
EKF. In particular, since the incorrectly mod-
elled phenomenon rt is included as an addi-
tional state variable in this model, estimates r̂k|k,
k = 0, . . . , N , can be obtained, which in turn facil-
itates application of nonparametric regression to
provide estimates of possible functional relations
between rt and the state and input variables.

Several nonparametric regression techniques are
available (Hastie et al., 2001), but in the con-
text of the proposed framework, additive models
(Hastie and Tibshirani, 1990) are preferred, be-
cause fitting such models circumvents the curse
of dimensionality, which tends to render nonpara-
metric regression infeasible in higher dimensions,
and because results obtained with such models are
particularly easy to visualize, which is important.

Using additive models, the variation in rt can
be decomposed into the variation that can be
attributed to each of the state and input variables
in turn, and the result can be visualized by means
of partial dependence plots with associated boot-
strap confidence intervals (Hastie et al., 2001). In
this manner, it may be possible to reveal the true
structure of the function describing rt, i.e.:

rt = ϕtrue(xt,ut,θ) (7)

which in turn provides the model maker with
valuable information about how to re-formulate
the incorrect phenomena models or constitutive
equations of the model for the next modelling
cycle iteration. Needless to say, this should be
done in accordance with physical insights.

A more elaborate discussion of the proposed
methodology is given by Kristensen et al. (2002a).

3. CASE STUDY: MODELLING A
FED-BATCH BIOREACTOR

To illustrate the performance of the proposed
methodology in terms of improving the quality of
a model, a simple simulation example is consid-
ered in the following. The process considered is a
fed-batch bioreactor, where the true model used
to simulate the process is given as follows:

dX

dt
= µ(S)X − FX

V
(8)

dS

dt
= −µ(S)X

Y
+

F (SF − S)
V

(9)

dV

dt
= F (10)

where X and S are the biomass and substrate
concentrations, V is the volume, F is the feed flow
rate, Y = 0.5 is the yield coefficient of biomass
and SF = 10 is the feed concentration of sub-
strate. µ(S) is the biomass growth rate, described
by Monod kinetics and substrate inhibition, i.e.:

µ(S) = µmax
S

K2S2 + S + K1
(11)

where µmax = 1, K1 = 0.03 and K2 = 0.5. Using
(X0, S0, V0) = (1, 0.2449, 1) as initial states, simu-
lated data sets from two batch runs (101 samples
each) are generated by perturbing the feed flow
rate along a pre-determined trajectory and sub-
sequently adding Gaussian measurement noise to
the appropriate variables. For the present case it is
assumed that all state variables can be measured
and noise levels corresponding to variances of 0.01,
0.001 and 0.01 (absolute values) are used.

3.1 First modelling cycle iteration

It is assumed that an initial model corresponding
to (8)-(10) has been set up, where the true struc-
ture of µ(S) is unknown. As the first step, this
model is then translated into a stochastic grey-box
model, which has the following system equation:

d




X
S
V


 =




µX − FX

V

−µX

Y
+

F (SF − S)
V

F




dt+σdωt (12)

where σ is a diagonal matrix with elements σ11,
σ22 and σ33. Since the true structure of µ(S)
is unknown, a constant growth rate µ has been
assumed, and a diagonal parameterization of the
diffusion term has been used to allow possible
model deficiencies to be pinpointed. The model
also has the following measurement equation:




y1

y2

y3




k

=




X
S
V




k

+ ek (13)

with ek ∈ N(0,S), where S is a diagonal matrix
with elements S11, S22 and S33. As the next step,
the unknown parameters of the model are esti-
mated using the data from batch no. 1, which
gives the results shown in Table 1, and, to eval-
uate the quality of the resulting model, a pure
simulation comparison is performed as shown in
Figure 2a. The results of this show that the model
does a very poor job, and it is therefore falsified,
which means that the modelling cycle must be
repeated by re-formulating the model.
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(b) Model structure in (15) and (13).

Fig. 2. Pure simulation comparison using cross-validation data from batch no. 2. Dashed lines: y1, dotted
lines: y2, dash-dotted lines: y3, solid lines: pure simulation values.

To obtain information about how to re-formulate
the model in an intelligent way, model deficiencies
should be pinpointed, if possible. Table 1 also
includes t-scores for performing marginal tests for
significance of the individual parameters, which
show that, on a 5% level, only one of the pa-
rameters of the diffusion term is insignificant, viz.
σ33, whereas σ11 and σ22 are both significant. This
indicates that the first two elements of the drift
term may be incorrect. These both depend on µ,
which is therefore an obvious deficiency suspect.

To avoid jumping to conclusions, the suspi-
cion should be confirmed, which is done by re-
formulating the model with µ as an additional
state variable, which yields the system equation:

d




X
S
V
µ


=




µX − FX

V

−µX

Y
+

F (SF − S)
V

F
0




dt+σ∗dωt (14)

where σ∗ is a diagonal matrix with elements σ11,
σ22, σ33 and σ44, and, since µ has been assumed
constant, the last element of the drift term is
zero. The measurement equation is the same as
in (13). Estimating the parameters of this model,

Table 1. Estimation results - (12)-(13).

Parameter Estimate Significant?

X0 9.6973E-01 Yes
S0 2.5155E-01 Yes
V0 1.0384E+00 Yes
µ 6.8548E-01 Yes

σ11 1.8411E-01 Yes
σ22 2.2206E-01 Yes
σ33 2.7979E-02 No

S11 6.7468E-03 Yes
S22 3.9131E-04 No
S33 1.0884E-02 Yes

using the same data set as before, gives the results
shown in Table 2, and inspection of the t-scores for
marginal tests for insignificance now show that, of
the parameters of the diffusion term, only σ44 is
significant on a 5% level. This in turn indicates
that there is substantial variation in µ and thus
confirms the suspicion that µ is deficient.

As the next step the re-formulated model in (14)
and (13) and the parameter estimates in Table 2
are used to obtain state estimates X̂k|k, Ŝk|k, V̂k|k,
µ̂k|k, k = 0, . . . , N , by means of the EKF, and an
additive model is then fitted to reveal the true
structure of the function describing µ by means of
estimates of possible functional relations between
µ and the state and input variables.

It is reasonable to assume that µ does not depend
on V and F , so only functional relations between
µ̂k|k and X̂k|k and Ŝk|k are estimated, giving the
results shown in Figure 3. These plots indicate
that µ̂k|k does not depend on X̂k|k, but is highly
dependent on Ŝk|k, which in turn suggests to
replace the assumption of constant µ with an
assumption of µ being a function of S. More
specifically, this function should comply with the
functional relation revealed in Figure 3b.

Table 2. Estimation results - (14)&(13).

Parameter Estimate Significant?

X0 1.0239E+00 Yes
S0 2.3282E-01 Yes
V0 1.0099E+00 Yes
µ0 7.8658E-01 Yes
σ11 2.0791E-18 No
σ22 1.1811E-30 No
σ33 3.1429E-04 No
σ44 1.2276E-01 Yes

S11 7.5085E-03 Yes
S22 1.1743E-03 Yes
S33 1.1317E-02 Yes
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Fig. 3. Partial dependence plots of µ̂k|k vs. X̂k|k and Ŝk|k. Solid lines: Estimates; dotted lines: 95%
bootstrap confidence intervals computed from 1000 replicates.

3.2 Second modelling cycle iteration

The functional relation revealed in Figure 3b
clearly indicates that the growth of biomass is
governed by Monod kinetics and inhibited by sub-
strate, which makes it possible to re-formulate the
model in (12)-(13) to yield the system equation

d




X
S
V


=




µ(S)X − FX

V

−µ(S)X
Y

+
F (SF −S)

V
F


dt+σdωt (15)

where σ is again a diagonal matrix with elements
σ11, σ22 and σ33, and where µ(S) is given by (11).
The measurement equation remains unchanged
and is thus the same as in (13). Estimation of
the unknown parameters of this model using the
same data set as before gives the results shown
in Table 3, and to evaluate the quality of the
resulting model, a pure simulation comparison is
performed as shown in Figure 2b. The results of
this show that the model does a much better job
now. It is in fact unfalsified with respect to the
available information, and the model development
procedure can therefore be terminated.

Table 3. Estimation results - (15)&(13).

Parameter Estimate Significant?

X0 1.0148E+00 Yes

S0 2.4127E-01 Yes
V0 1.0072E+00 Yes

µmax 1.0305E+00 Yes
K1 3.7929E-02 Yes
K2 5.4211E-01 Yes
σ11 2.3250E-10 No
σ22 1.4486E-07 No
σ33 3.2842E-12 No

S11 7.4828E-03 Yes
S22 1.0433E-03 Yes
S33 1.1359E-02 Yes

4. CONCLUSION

A systematic framework for improving the quality
of first engineering principles models has been
presented. The proposed framework is based on
stochastic grey-box modelling and incorporates
statistical tests and nonparametric regression,
which in turn facilitates pinpointing of model
deficiencies and subsequent uncovering of their
structural origin. A key result is that the proposed
framework can be used to obtain estimates of un-
known functional relations, which allows unknown
or incorrectly modelled phenomena to be uncov-
ered and proper parametric expressions for the
associated constitutive equations to be inferred.
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Abstract: This paper studies identification of a general single-input and single-output
(SISO) multirate sampled-data system. Using the lifting technique, we associate the
multirate system with an equivalent linear time-invariant lifted system, from which
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controllability and observability of the lifted system, and other related issues are
discussed. The effectiveness is demonstrated through simulation and a real-time
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1. INTRODUCTION

The term Multirate Sampled-Data (MRSD) Sys-
tems describes a common phenomena existing in
the industry that different variables are sampled
at different rates for some reasons (Chen and Qiu,
1994), e.g., a high-purity distillation column (Lee,
et al., 1992) and a bioreactor (Gudi, et al., 1995)
and CCR octane quality control (Li, et al., 2003).
Fig. 1 depicts a SISO MRSD system, where Gc is
a continuous-time linear time-invariant (LTI) and
causal system with or without a time-delay; H
is a zero-order hold with an updating period mh

and S is a sampler with period nh, where m, n
are different positive integers and h is a positive
real number called the base period; discrete-time
signals u and y are the system input and output
respectively; a continuous-time signal vc is the
unmeasured disturbance. Essentially, it is a linear
periodically time-varying (LPTV) system (Kranc,
1957), to which many system identification algo-
rithms cannot be applied directly.

1 Corresponding author: Telephone: (780)492-3940; Fax:
(780)492-1811; Email: tchen@ee.ualberta.ca
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Fig. 1. A SISO multirate sampled-data system

Under such a framework, Lu and Fisher (1988,1989)
used an output error method and a least-squares
method to estimate intersample outputs based on
the fast sampled inputs and slow sampled outputs.
Verhaegen and Yu (1994) extended a Multivari-
able Output Error State Space (MOESP) class of
algorithms to identify P subsystems of an LPTV
process with period P . Gudi, et al. (1995) gen-
erated frequent estimates of the primary output
based on the secondary outputs and the regular
measurement of inputs by an adaptive inferential
strategy. Li, et al. (2001) identified a fast single-
rate model with period mh from multirate input
and output data, with an assumption that m < n.
This work motivates us: Could we do better?



Doing better implies two things: first, a fast-rate
model with period h instead of mh will be iden-
tified; second, a general MRSD system is treated
without the assumption m < n. Note that our
objective includes that of Li, et al. (2001), since a
model with period mh is readily obtained from a
model with period h. The improvement is signifi-
cant: technically, we need to use additional condi-
tions such as observability of lifted models and co-
primeness of the integers m and n (to be clarified
later); in terms of applications, the availability of
the fast-rate model with period h broadens the
choices for multirate control design; the relaxation
of assumptions makes identification of fast-rate
models for more general MRSD systems possible.

The question states precisely as follows: For a
sampling period h, the unknown continuous time
system Gc has a discrete time counterpart real-
ized by the step-invariant-transformation, Gd :=
ShGcHh, represented by a state-space model:

D + C (zI −A)
−1
B =

[

A B

C D

]

. (1)

Given the multirate sampled-data system in Fig.
1, how to identify the so-called fast-rate system
Gd?

To answer this question, we start in Section 2 with
using the lifting technique to associate such an
LPTV system with an LTI system, the so-called
lifted system. The uniqueness of recovering the
fast-rate system from the lifted system is shown
in Section 3. Section 4 analyzes controllability
and observability of the lifted system, which are
essential to the identifiability issues. Section 5
presents two approaches to compute a fast-rate
model. Section 6 illustrates the effectiveness of the
proposed methods through two examples. We end
with some conclusions in Section 7.

2. LIFTING SIGNALS AND SYSTEMS
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Fig. 2. The lifted multirate sampled-data system

Henceforth, we will focus our discussion on the
SISO MRSD system depicted in Fig. 1. Let ψ

be a discrete-time signal defined on Z+ and n

be some positive integer. The n-fold lifting op-
erator Ln is defined as the mapping from ψ to ψ:

{ψ (0) , ψ (1) , · · ·} 7→























ψ (0)
ψ (1)

.

..
ψ (n− 1)









,









ψ (n)
ψ (n+ 1)

.

..
ψ (2n− 1)









, · · ·















.

We lift u by Ln into u, and lift y by Lm into y. The
disturbance vc is fictitiously sampled into v with
period nh, same as the output sampling period,
and v is lifted by Lm into v (see Fig. 2). Thus, u,
y and v share the same period mnh, and form a
discrete-time LTI system (Francis and Georgiou,
1988):

y = Gd u+ v (2)

Here Gd is the so-called lifted system from u to y;
it has a state space representation by matrices A,
B, C and D, which are related to A, B, C and D

of (1) as shown in Chen and Qiu (1994):

[

A B

C D

]

:= (3)















A
mn

mn−1
∑

i=mn−m

A
i
B

mn−m−1
∑

i=mn−2m

A
i
B · · ·

m−1
∑

i=0

A
i
B

C D00 D01 · · · D0,n−1
CA

n
D10 D11 · · · D1,n−1

.

.

.

.

.

.

.

.

.

.

.

.

CA
mn−n

Dm−1,0 Dm−1,1 · · · Dm−1,n−1















where

Dij = Dχ[jm,(j+1)m) (in) +

(j+1)m−1
∑

r=jm

CA
in−1−r

Bχ[0,in) (r)

and a characteristic function on integers is de-
fined:

χ[a,b) (r) =

{

1, a ≤ r < b

0, otherwise.

A noise model can be used to further describe the
character of the noise term v in (2), but it is not
within our current objective. Hence, we adopt an
output error model structure, since for open loop
systems, output error models will give consistent
estimates, even if the additive noise is not white
(Ljung, 1999). An innovation form of the state-
space model with the Kalman filter gain K = 0
represents the overall discrete-time lifted system:

ẋ=Ax+B u+K e, (4)

y =C x+Du+ e. (5)

Here overdot denotes one sample advance, e is a
white noise vector and x is a state vector. If p is
the order of Gd, then the dimensions of A,B,C,D
are p× p, p× 1, 1× p, and 1× 1, respectively, and
those of A,B,C,D,K are p × p, p × n, m × p,
m× n, and p×m, respectively. Note that A and
A share the same dimension.

3. UNIQUENESS OF FAST-RATE SYSTEMS

Before starting the exploration of recovering the
fast-rate system from the lifted one, a question



arises naturally: Is the recovery of Gd from Gd

unique? The answer is affirmative if m and n are
coprime. We observe:

Gd =LmSnhGcHmhL
−1
n (6)

=LmSn (ShGcHh)HmL
−1
n

=LmSnGdHmL
−1
n ,

by properties Snh = SnSh and Hmh = HhHm,
where Sn and Hm are the discrete-time downsam-
pler and the discrete-time zero-order-hold type
upsampler respectively. Since the lifting is one-to-
one, the problem of recovery of a unique Gd from
Gd is equivalent to answering a question: Is the
mapping Gd 7−→ SnGdHm one-to-one?

Proposition 1. Assume Gd is LTI and causal.
Then, the mapping Gd 7−→ SnGdHm is one-to-
one if and only if m and n are coprime.

Proof:

For sufficiency, it suffices to show that SnGdHm =
0 implies Gd = 0. Let us assume SnGdHm = 0 and
let µ be the impulse response of Gd, i.e., µ = Gdδ,
where δ is the discrete-time unit impulse signal.
It follows that for any integer i, SnGdHmU

iδ = 0,
where U is the unit time-delay operator. This
implies, by the definition of Hm,

SnGd

(

U im + U im+1 + · · · + U im+m−1
)

δ = 0.

The time invariance of Gd and the definition of
Sn imply

µ (im+ jn) + µ (im+ jn+ 1) + · · · (7)

+µ (im+ jn+m− 1) = 0, ∀i, j.

Since m and n are coprime, there exist integers
m′ and n′ such that mm′+nn′ = 1. Thus, for any
k, there always exist i = km′ and j = kn′ in (7)
to get im+ jn = k. Hence,

µ (k) + µ (k + 1) + · · · + µ (k +m− 1) = 0, ∀k.(8)

By causality of µ (k), (8) implies that µ (k) = 0,
∀k, e.g., if k = − (m− 1), then µ (0) = 0; if
k = − (m− 2), then µ (1) = 0 and so on. Hence,
Gd = 0.

The necessity is proved as follows. If m and n

are not coprime, there exists a common factor k:
m = km′, n = kn′, where m′ and n′ are coprime.
It follows from (6) that SnGdHm = Sn′GkdHm′

where Gkd = SkhGcHkh, i.e., a discrete-time
counterpart of Gc with period kh. Thus, the
mapping Gd 7−→ SnGdHm is not one-to-one, since
the mapping Gd 7−→ Gkd = SkGdHk is known to
be not injective. 2

Therefore, in order to get a unique fast-rate sys-
tem we assume that m and n are coprime. Note
that any common factor of m and n can be ab-
sorbed into h.

4. LIFTED SYSTEMS

4.1 Controllability and Observability

For a state space system to be identifiable, the
lifted system Gd generally needs to be control-
lable and observable (Ljung et al., 1999). If
the continuous-time system Gc is controllable
and observable and the sampling period is non-
pathological, then the discrete-time system Gd is
also controllable and observable (Kalman, et al.,
1963), which is still valid if a continuous time
delay exists. Francis and Georgiou (1988) have
proved that if Gd is stabilizable and detectable,
and satisfies an additional condition (∗): For every
eigenvalue λ of A, none of the mn− 1 points

λej
2πk
mn , k = 1, 2, · · · ,mn− 1

is an eigenvalue of A, then
(

Amn, AiB
)

is sta-

bilizable and
(

CAi, Amn
)

is detectable, for any
positive integer i. Based on these, we reach:

Proposition 2. Assume A satisfies the condition
(∗). If (C,A) is observable, so is (C,A); If (A,B)
is controllable and A has no eigenvalues on the
unit circle, (A,B) is also controllable.

Proof: The first part follows with some trivial
modifications from Francis and Georgiou (1998) in
which

(

CAi, A
)

was shown detectable. We prove

the second part by showing
(

A,
∑m−1

i=0 AiB
)

is

controllable, i.e., all eigenvalues of A are control-
lable. Now each eigenvalue of A has the form λmn,
where λ is an eigenvalue of A. Define functions:

g (s) :=
smn − λmn

s− λ
,

f (s) :=

m−1
∑

i=0

si.

By non-pathological sampling, g (A) is invertible
(Chen and Francis, 1995). If A has no eigenvalues

on the unit circle, then
∑m−1

i=0 λi 6= 0 . Thus f (A)
is invertible. Therefore,

rank

([

(Amn − λmnI)

m−1
∑

i=0

AiB

])

= rank

(

f (A)
[

A− λI B
]

[

f−1 (A) g (A) 0
0 I

])

= rank
([

A− λI B
])

.



Thus, (A,B) is controllable. 2

4.2 Effect of Time Delays

If there exists a continuous time delay τ larger
than h, A has at least two poles at z = 0 (Åström
and Wittenmark, 1997). Thus, the condition (∗) is
not satisfied. Observability has been shown to be
lost and a remedy is proposed by Li, et al. (2001),
which is summarized below:

First, we can identify an m×n time-delay matrix
Γ from u, y using correlation analysis (Ljung et

al., 1999):

Γ =











l00 l01 · · · l0,n−1

l10 l11 · · · l1,n−1

...
...

...
lm−1,0 lm−1,1 · · · lm−1,n−1











where lij is the estimated time delay from the j-th
input uj to the i-th output y

i
, i = 0, 1, · · · ,m− 1

and j = 0, 1, · · · , n − 1. The relation between lij
and τ is (Li, et al., 2001):

(lij − 1)mnh < τ + jmh− inh ≤ lijmnh. (9)

Second, there exists a one-to-one correspondence
between Γ and a positive integer k such that τ
is estimated as kh < τ̂ ≤ kh + h (Sheng, et al.,
2003).

Third, since m and n are coprime, there exist
integers k1 and k2 such that

k = k1m+ k2n. (10)

Then, we shift the measured input data: us [l] =
u [l − k1] and shift the measured output data:
ys [l] = y [l + k2], so that, the time delay between
us and ys is not larger than h. Hence, controlla-
bility and observability will be preserved.

4.3 Causality Constraint

Lifting causes a causality constraint, i.e., D in
(3) is lower triangular. How to identify a model
under such a constraint? A modified sub-space
identification algorithm was proposed by Li, et

al. (2001). As an easier alternative, a structured
state-space model with free parameters (Ljung,
2001) can be used to deal with the constraint.
For instance, if m = 2 and n = 3, D will be
parameterized as:

[

0 0 0
× × 0

]

,

where × marks an adjustable parameter.

5. FAST-RATE MODEL COMPUTATION

Once Gd is estimated, how to extract matrices A,
B, C? Note D = 0 if Gc is causal. The difficulty
lies in that in general A cannot be determined
by taking the mn-th roots of A. Once Â, an
estimation of A, is known, B and C can be
determined as:

Ĉ = C1, B̂ =

(

m−1
∑

i=0

Âi

)−1

Bn

where B, C are partitioned as:

B =
[

B1 B2 · · · Bn
]

, (11)

C =
[

CT
1 CT

2 · · · CT
m

]T
. (12)

Here the dimensions of B1, B2, · · ·, Bn are p × 1
and those of C1, C2, · · ·, Cm are 1×p and p is the
order of the estimated fast-rate model. Note that
the proof of Proposition 2 shows the existence of
the inverse.

We propose two approaches to compute A. The
first approach, the controllability and observ-
ability approach, is based on assumptions that
(Amh, Bmh) is controllable and (C,Anh) is observ-
able, where

Amh := Am, Anh := An,

Bmh := Bn =

m−1
∑

i=0

AiB.

Similar to the proof of Proposition 2, both as-
sumptions can be shown to be valid if the con-
ditions in Proposition 2 are true.

Step 1: Given A and B in (11), (3) implies

Anmh = A,

Bmh = Bn, AmhBmh = Bn−1, · · · , A
n−1
mh B = B1.

Thus, AkmhBmh is known for any k ≥ 0. We form
the controllability matrix Γc of (Amh, Bmh) and
the shifted controllability matrix Γ:

Γc =
[

Bmh AmhBmh · · · Ap−1
mh Bmh

]

,

Γ =
[

AmhBmh A2
mhBmh · · · ApmhBmh

]

.

Since AmhΓc = Γ and the controllability assump-
tion implies that Γc is full row rank, Amh is
uniquely determined by

Âmh = ΓΓTc
(

ΓcΓ
T
c

)−1
.

Step 2: Given A and C in (12), (3) implies

Amnh = A,



C = C1, CAnh = C2, · · · , CA
m−1
nh = Cm.

Thus, CAknh is known for any k ≥ 0. We form
the observability matrix Ψo of (C,Anh) and the
shifted observability matrix Ψ:

Ψo =









C

CAnh
· · ·

CA
p−1
nh









, Ψ =









CAnh
CA2

nh

· · ·
CA

p
nh









.

Since ΨoAnh = Ψ and the observability assump-
tion implies that Ψo is full column rank, Anh is
uniquely determined by

Ânh =
(

ΨT
o Ψo

)−1
ΨT
o Ψ.

Step 3: Now, Amh = Am and Anh = An are
estimated. Since m and n are coprime, there exist
two integers m

′

, n
′

such that

nn
′

−mm
′

= 1.

Thus, we have:

(Amh)
m′

A = (Anh)
n′

.

Therefore,

Â =
(

Âm
′

mh

)† (

Ânh

)n′

.

where † denotes a pseudo-inverse.

The second approach, the matrix roots approach,
is based on a condition that A is diagonalizable,
i.e.,

P−1AP = diag (λ1, λ2, · · · , λp) .

Since A = Amn, A and A share same eigenvectors.
If ρi = αi + jβi is a pole of Gc, then

λi = emnhρi = emnhαiejmnhβi .

Assume |mnhβi| < π for i = 1, · · · , p.

A = P diag
(

λ
1
mn

1 , λ
1
mn

2 , · · · , λ
1
mn
p

)

P−1

where λ
1
mn

i is the principal n-th root of λi; if this
condition is not true, A can be found by searching
through all mn-th roots of A.

6. EXAMPLES

Example 1:

For a system depicted in Fig. 3, take the process
and noise model to be

Gc (s) =
1

20s2 + 4s+ 1
e−5s, Nc (s) =

1

10s+ 1

c
v


c
N


e


u


h
H

3
 c
G
 h
S


2


y


Fig. 3. A SISO MRSD system simulation diagram

and m = 3, n = 2, h = 1 sec. We generate
a low frequency random binary signal (RBS) as
the input signal u. e is a white noise. The signal-
to-noise ratio (SNR) is 3 : 1. The identification
procedure is: First, we estimate the time delay as
6 sec and shift the measured output and input
data as described in Section 4.2; second, we lift
the shifted data to form the lifted signals with a
time delay no larger than h; next, based on the
lifted signals, we choose a 2nd order lifted model
Ĝd and compute a fast-rate model Ĝd with period
h; finally, we incorporate the estimated time delay.
Fig. 4 compares step responses of the actual
system Gd and the estimated fast-rate models Ĝd.
The models are obtained through the proposed
approaches: the controllability and observability
approach and the matrix roots approach. Both
achieve satisfactory results.

Step responses of the actual system and models
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Fig. 4. Step responses of the actual system
(solid) and the estimated fast-rate models by
the controllability and observability approach
(dash) and the matrix roots approach (dot-
ted)

Example 2:

The experiment 2 is implemented on a pilot-scale
process in the compute process control laboratory
at the University of Alberta. It is a SISO system
with the manipulated input u as the cold water
valve position and the measured output y as the
tank water level. Both are represented by currents
(mA), which have linear relationships with the
physical units. Around an operating point u = 11

2 Data and Matlab programs are available online.
http://www.ee.ualberta.ca/∼jwang/paper.html



mA and y = 10.3 mA, a RBS input with a
limiting magnitude of 0.4 mA is designed. The
input updating period is 80 sec and the output
sampling period is 120 sec. Thus, m = 2, n = 3
and h = 40 sec, a dual configuration to Example 1.
With ‘cheap’ data acquisition, we simultaneously
measure the input and output every 40 sec, say,
uf and yf , to be used later for model validation.
Following a similar procedure as Example 1, we
choose a 2nd order fast-rate model with period 40
sec, using the matrix roots approach. To validate
the model, we take uf as the model input and
estimate the model output, which is compared
with yf in Fig. 5. The model captures the process
dynamics and steady states very well.
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Fig. 5. Comparison of the measured water level
(solid) and the estimated water level (dotted)

7. CONCLUSIONS

In this paper, we studied how to estimate a fast-
rate model for a general multirate sampled-data
system under some mild conditions. The idea is
to associate the multirate sampled-data system
with an equivalent lifted system, from which the
fast-rate model is extracted. Some topics are still
open, e.g., how exactly the noise would affect
the estimation? how to get an explicit variance
expression of the estimated model? These are left
to the future investigation.

8. REFERENCES
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Abstract: In this paper, we provide a novel iterative identification algorithm for multi-rate
sampled data systems. The procedure involves, as a first step, identifying a simple initial
model from multi-rate data. Based on this model, the “missing” data points in the slow
sampled measurements are estimated following the expectation maximization approach.
Using the estimated missing data points and the original data set, a new model is obtained
and this procedure is repeated until the models converge. An attractive feature of the
proposed method lies in its applicability to irregularly sampled data. An application of
the proposed method to an industrial data set is also included.
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1. INTRODUCTION

Traditional identification methods assume that the
data are sampled at uniformly spaced sample instants.
There is extensive literature on identification of pro-
cesses from such data (Ljung (1999)). However, in
many chemical processes it is either not physically
possible to measure certain variables at regular inter-
vals or it is impractical to have frequent or rapid lab
assays done. For instance, estimating the composition
of the distillate in a distillation column generally takes
a few minutes while control moves are implemented
at much smaller sample intervals. Such processes with
differing sample times for the measured variables are
termed multi-rate processes in the rest of this paper.
In particular, identification of models for multi-rate
processes at the fastest sample rate is the subject of
this paper. We refer to the fastest sample rate as the
base sample rate and the unavailable data points in the
slowly sampled measurements asmissing data. This
allows us to accommodate systems in which outputs
are irregularly sampled within the same identification
scheme.

A commonly used approach for the identification of
processes from multi-rate data is to interpolate be-

tween available sampled data. Techniques such as lin-
ear or quadratic interpolation are used. Interpolations
of these types do not take into account the variation
in the input during the period over which the inter-
polations are made. There have also been attempts
at solving the multi-rate identification problem using
lifting techniques (Li et al. (2001)). The lifting op-
erator is used to convert the multi-rate identification
problem into a multivariable identification problem.
However, applying these techniques towards process
identification in chemical industries is not easy be-
cause the difference in the sampling rates is generally
large. For example, (input to output) sampling ratios
of 1 : 15 are common and estimation techniques to
identify a 15-input ‘lifted’ process would have to be
considered. Hence, for processes with a number of
inputs and/or large output to input sampling ratios,
the identification problem using lifting techniques can
become unmanageable. In addition, these techniques
are incapable of handling irregularly sampled data.

In this paper we present a method which uses an initial
crude model to estimate the unavailable data points
in the slowly sampled variables. The estimated un-
available data points are then used with original data
set to identify a new model. From the new model,



the missing data is again estimated and this process
is repeated until the models converge. This approach
reduces to theExpectation Maximization(EM) algo-
rithm if optimal estimates of the missing data points
are used in the estimation stage. The advantage of
this method lies in the methodical manner in which
the missing data points are estimated instead of using
the traditional interpolation methods. Instead of inter-
polating, the missing data are estimated based on the
current estimate of the process model at each iteration.
Use of the EM algorithm guarantees convergence and
consistency of the identified models (Dempster et al.
(1977)).

The rest of this paper is organized as follows: section
2 lists the assumptions and the notation. In section
3, the EM algorithm is presented and in section 4 a
method for identification of linear dynamical systems
using the EM approach is developed. In section 5 the
EM based identification method is extended to the
missing data case. An industrial example is presented
in section 6 followed by concluding remarks in section
7.

2. ASSUMPTIONS AND NOTATION

Let us assume that the true process is of the form

xt+1 = Axt +But +wt

yt =Cxt +vt (1)

whereA,B,C are the system matrices andxt ∈ Rn is
then-dimensional state vector. Assume thatu(t) ∈Rm

andy(t) ∈ Rp. wt andvt are uncorrelated white noise
sequencesi.e.,

E[wtw
T
t ] = Q ; E[wt ] = 0 ∀ t

E[vtv
T
t ] = R ; E[vt ] = 0 ∀ t

E[wtvt ] = 0 ∀ t (2)

Let us represent the time series data fromt = 1 to
t = N of any variable by(.)1:N. Through out this paper,
we will use the following notation for the expected
values of various variables,

xs
t := E(xt |Y1:s) (3)

and

Ps
t := E(xt −xs

t )(xt −xs
t )

T

Ps
t,t−1 := E(xt −xs

t )(xt−1−xs
t−1)

T

In addition, the following assumptions are made:

Assumptions

A1. Inputs are sampled uniformly everyT units of
time.

A2. Outputs are sampled atT1, · · · ,Tn respectively.
A3. The input sampling time,T, is assumed to be the

smallest sampling timei.e.,

T ≤ Ti ∀ i (4)

A4. Assume that the initial state is zeroi.e.,x0 = 0.

3. THE EM ALGORITHM

The central idea behind the algorithm presented in this
paper is to pose the multi-rate identification problem
in the maximum likelihood framework and solve for
the system matrices. The iterative algorithm presented
in this section is based on the popularExpectation
Maximization algorithm(EM algorithm) developed in
Dempster et al. (1977). Before utilizing this algorithm
in identifying multi-rate processes, a brief summary of
the algorithm is presented below.

The EM algorithm addresses the problem of estimat-
ing model parameters under the maximum likelihood
framework. More often than not, the maximum likeli-
hood function is a complicated nonlinear function of
the unknown parameters. Hence, one of the earliest
methods proposed for solving for the optimal param-
eters was to use the Newton-Raphson method (Gupta
and Mehra (1974)). A simpler method based on the
EM algorithm was proposed in Shumway and Stoffer
(1982).

The EM algorithm can be summarized in the follow-
ing few steps :

• Obtain an initial estimate of the parameter vector,
Θ0.

• Carry out the following steps at each iteration,k,
until convergence:
· Expectation (E-step): Find the expected

value of the complete data log likelihood
function(Q-function) given the observed data
set and the previously estimated parameter
vector,Θk.

· Maximization (M-step): Maximize the Q-
function with respect to the parameter vector

The above steps ensure that the log likelihood func-
tion of the observed data increases at every iteration.
Therefore, the EM algorithm is guaranteed to con-
verge to a local maximum of the likelihood function.
This is an important feature of the EM algorithm.
However, there are a few drawbacks associated with
any iterative algorithm. The EM algorithm can be sen-
sitive to the initial guess and also the rate of conver-
gence can sometimes be extremely slow. In order to
avoid problems with a bad initial parameter guess, we
identify an initial unbiased FIR model of the process.
An example illustrating the use of EM algorithm in
estimating models from multi rate data is presented
below.

Example1. Consider an ARX model



y(k) = 0.8y(k−1)+0.3u(k−1)+e(k) (5)

wheree(k) is normally distributed white noise with
varianceσ2

e = 0.01. Let us assume that the output is
sampled at every alternate sample instant and thaty(1)
is known. Then the following identification objective
function based on squared prediction errors can be
used

VN(θ) :=
1
N

N

∑
k=1

ε(t,θ)2

=
1
N

N

∑
k=1

[y(k)−θ2y(k−1)−θ1u(k−1)]2

whereN is the data length andθ = [θ1 θ2]T . Since
only alternate data points are available, the above
objective function can not be evaluated. Instead, it is
possible to estimate the expected value of the above
objective function given the estimate ofθ from the
previous iteration,̂θ ( j−1) i.e.,

E
[
VN(θ)|θ̂ ( j−1),ZN

]
= E[

1
N

N

∑
k=1

[y(k)−θ2y(k−1)

−θ1u(k−1)]2] (6)

whereZN denotes all the available data. Now let us
consider two cases:
Case I: y(k) is known, then

E [y(k)−θ2y(k−1)−θ1u(k−1)]2 =

(y(k)−θ1u(k−1))2 +θ 2
2 (θ̂ ( j−1)

1 u(k−2)

+θ̂ ( j−1)
2 y(k−2))2 +θ 2

2 σ2
e

−2(y(k)−θ1u(k−1))θ2(θ̂
( j−1)
1 u(k−2)

+θ̂ ( j−1)
2 y(k−2)) (7)

Case II: y(k) is unknown, then

E [y(k)−θ2y(k−1)−θ1u(k−1)]2 =

(θ̂ ( j−1)
1 u(k−1)+ θ̂ ( j−1)

2 y(k−1))2

+σ2
e +(θ1u(k−1)+θ2y(k−1))2

−2(θ1u(k−1)+θ2y(k−1))(θ̂ ( j−1)
1 u(k−1)

+θ̂ ( j−1)
2 y(k−1)) (8)

Using (7) and (8) in (6) it is possible to find the model
parameters at the current iteration,j,

θ ( j) = min
θ

E
[
VN(θ)|θ̂ ( j−1),ZN

]
(9)

The iterations are performed until the parameters con-
verge. A plot showing the two parameters in this ex-
ample and the number of iterations is shown in fig.1.
The estimated model parameters converge to the true
parameters despite missing data. In general, the esti-
mates using the EM algorithm need not converge to
the true parameters with finite data sets. However, the

estimated parameters converge to the true parameters
asymptotically as the data length increases. On the
other hand, the least squares model obtained by in-
terpolating the data iŝθ1 = 0.83andθ̂2 = 0.24, which
is clearly not the true model. There is a small amount
of bias in the estimated model using the interpolated
data. In general, the estimated models are biased if
arbitrary interpolation methods are used to fill the
missing data points.
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Fig. 1. Plot of θ1 and θ2 as a function of number of
iterations

Now it is possible to use this algorithm to estimate the
state matrices of a linear dynamical system described
in (1). As a first step we provide an algorithm to esti-
mate the model from the complete data seti.e., there
are no missing data. Even though the data set is com-
plete the states are unknown/unobserved and hence
the EM algorithm can be utilized. Once a method for
identification of single rate systems is developed, it
can be extended to multi-rate systems.

4. ESTIMATION OF LINEAR DYNAMICAL
SYSTEMS

A maximum likelihood framework is adopted in this
section to identify the system matrices of (1). Two
independent sequences of noise enter the dynamical
system in (1). Hence, the joint log likelihood function
of the complete data set can be expressed as

logL (y1:N,x1:N,Θ) = logL (w1:N,v1:N,Θ)

=−N
2

log|Q|− N
2

log|R|

−1
2

N

∑
t=1

(xt −Axt−1−But−1)TQ−1(xt −Axt−1−But−1)

−1
2

N

∑
t=1

(yt −Cxt)TR−1(yt −Cxt)

where the parameter vectorΘ = {A,B,C,Q,R}. The
Q-function can then be evaluated by taking the expec-
tation of the log likelihood function given the observed
data and parameters from the previous iterate (sayΘk).
Let us define the conditional expectation operatorEk

as follows



Ek(.) = E(.|y1:N,u1:N,Θk) (10)

Now using the above expectation operator the Q-
function can be evaluated,

Q(y1:N,Θk,Θ) =−N
2

log|Q|− N
2

log|R|

−1
2

N

∑
t=1

tr{Q−1Ek(xt −Axt−1−But−1)(xt −Axt−1−But−1)T}

−1
2

N

∑
t=1

tr{R−1Ek(yt −Cxt)(yt −Cxt)T}

where tr(.) denotes the trace of a matrix. At each
iteration in the EM algorithm a new estimate of the
model is obtained by maximizingQ(y1:N,Θk,Θ) with
respect toΘ i.e.,

Θk+1 = max
Θ

Q(y1:N,Θk,Θ) (11)

Complete details on obtaining the new estimate,Θk+1

are given in the appendix.

Example2. Consider the following state space model

A=




0.3688 0.4767 0.0114
−0.5976 0.6095 −0.5408
−0.0156−0.0686 0.0422


 B =




0.34
0.56
0.78




C = [1.2 0.96 1.5] (12)

with the true covariance matrices

Q =




0.0407 0.0001 0.0015
0.0001 0.0407 −0.0020
0.0015−0.0020 0.0428


 ; R= 0.398

Using the method proposed in this section one can
estimate the model parameters. A plot showing the
step responses of the true model, a model obtained
using the subspace identification method - N4SID
and the model obtained using the EM algorithm are
shown in fig.2. The EM algorithm performs as well
as the subspace method. The EM algorithm presented
in this section, theoretically, will provide asymptotic
unbiased estimates. However, in practice the algorithm
may not converge fast enough or if a bad initial guess
is given, it may converge to a local maximum. Hence,
a good initial guess for the EM algorithm is needed.
An unbiased least squares model can be used as the
initial guess.

5. ESTIMATION WITH MISSING DATA

The strength of EM algorithm lies in being able to
estimate asymptotically unbiased models even if a
portion of the data is missing. As shown in the pre-
vious section, it is possible to use the EM algorithm
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Fig. 2.Step responses of - the true model, the N4SID
model and EM model

for identification of models from single rate data sets.
However, the computational effort involved in using
the EM algorithm is too heavy to warrant this method
for single rate identification problems. Moreover, tra-
ditional identification methods can provide asymptot-
ically unbiased estimates for single rate data sets. On
the other hand, in general, identification methods in-
volving arbitrary interpolations to substitute for miss-
ing data result in biased estimates; thus, necessitating
the development of new methods for identification of
models from multi-rate data.

It is interesting to note that the EM algorithm pre-
sented in the previous section for identification of lin-
ear dynamical systems from single rate data, treats the
states as unknown/missing data. Hence, it is possible
to extend the same algorithm to include the case of
missing data in the outputs by making appropriate
changes to the Kalman filter and the Kalman Smoother
presented in the Appendix. Full details regarding these
modifications can easily be derived along the lines of
the arguments given in Shumway and Stoffer (2000).

The procedure can be summarized as follows:

Step 1: Obtain an initial estimate of the model. For in-
stance, it is easy to obtain an FIR model.

Step 2: Estimate the missing data points using the initial
estimate of the model. This can be done using the
Kalman Filter and the Kalman Smoother.

Step 3: Predict all missing data points using the current
model.

Step 4: Using the true and the estimated missing data
points identify a new model by minimizing the
Q-function.

Step 5: Repeat the above steps until convergence.

Example3. The process in example 2 is used to gen-
erate multi-rate data. The input is sampled every sec-
ond and the output is sampled every four seconds. Ini-
tially, a model is identified using linearly interpolated
data and the N4SID algorithm. Then the proposed
method is used on the same data set without interpo-
lating the data. The step responses of both the models
are shown in fig.3. Clearly, the EM based method
outperforms the N4SID method.
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6. INDUSTRIAL APPLICATION

In this application, modelling of a mechanical pulp
bleaching process at Millar Western, Whitecourt, AB,
Canada is shown. The system has four manipulated
inputs, two measured disturbance variables and one
output. The output, pulp brightness, is an irregularly
measured quality variable (distribution of sampling
intervals are provided in fig.4). The manipulated in-
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puts are chemical add-rates (Peroxide and Caustic)
to two towers. The measured disturbances are two
wood quality variables (Aspen and Freeness). All in-
puts are sampled every 10 minutes). The process is
known to be a time-delay dominant recycle process.
The step responses of the true model have large delay,
fast dynamics and recycle characteristics. In general,
the presence of a recycle stream can significantly al-
ter the dynamics of a process (Morud and Skogestad
(1994),Kwok et al. (2001)). This is especially evi-
dent when the process dynamics are faster than the
time-delay effects in the process. For example, a step
change in one of the inputs in a time-delay dominant
recycle process, can cause a staircase-like structure in
the output as shown in the fig.5.

When the time-delay in the system is greater than the
settling time, including lagged inputs (the extra lags
being equal to the sum of the delays in the forward
path and the recycle path) as predictors can give a
better model. In this particular modelling exercise,
there was no provision for performing dynamic tests
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Fig. 5. Step response of a Delay-dominant recycle
process

to aid model development. Hence we used routine
operating data to perform model identification. The
routine operating data has enough excitation in the
form of grade changes to justify the exercise of model
identification using this data.

We used the proposed method based on the EM algo-
rithm for identifying the model. The predictions based
on the EM model (without interpolation) and N4SID
model (with zero order hold interpolation) are pre-
sented in fig.6. The models shown have been adjusted
taking the recycle characteristics into account. Hence,
only the forward path dynamics are shown. Though
it appears that the EM model and the N4SID model
perform comparably well for the given data set, it is
clear from the step responses (fig.7) that the EM model
is representative of the true process dynamics (fast
dynamics).
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Fig. 6. Comparison of N4SID and EM model predic-
tions with actual brightness

7. CONCLUSIONS

An identification approach for multi-rate data, based
on the Expectation Maximization approach is pre-
sented. Unlike, traditional identification methods for
multi-rate data, the proposed method does not use
interpolation. An attractive feature of the algorithm is
that it can easily handle irregularly sampled data. It
leads to asymptotically unbiased estimates of the true
model. However, the proposed method is sensitive to
the initial guess and is computationally intensive.
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APPENDIX : ESTIMATES OF SYSTEM
MATRICES AT EACH ITERATION

Let us first evaluate the second term in theQ-function

T2 :=−1
2

N

∑
t=1

tr{Q−1Ek(xt −Axt−1−But−1)

(xt −Axt−1−But−1)T}
= −1

2
tr{Q−1[

Φ1 +AΦ2AT +BΦ4BT +2Φ3AT

+2Φ5BT −2AΦ6BT]} (A-1)

where

Φ1 :=
N

∑
t=1

E[xtx
T
t ] Φ2 :=

N

∑
t=1

E[xt−1xT
t−1]

Φ3 :=
N

∑
t=1

E[xtx
T
t−1] Φ4 :=

N

∑
t=1

ut−1uT
t−1

Φ5 :=
N

∑
t=1

xN
t uT

t−1 Φ6 :=
N

∑
t=1

xN
t−1uT

t−1 (A-2)

All the expectations are evaluated using the previous
model estimatei.e., using Θk = {Ak,Bk,Ck,Qk,Rk}.
Observe that this is the only term in theQ-function
that depends on the system matricesA andB. Now it
is straightforward to differentiate the above expression
to obtain the optimal estimates of the system matrices
at the (k+1)th iteration.

Ak+1 = [Φ3−Φ5Φ−1ΦT
6 ][Φ2−Φ6Φ−1

4 ΦT
6 ]−1

Bk+1 = [Φ5−AΦ6]Φ−1
4 (A-3)

Similarly we can differentiate the first two terms to
obtain the optimal new estimate of the covariance
matrix,Qk+1

Qk+1 =
1
N

[
Φ1 +AkΦ2AkT

+BkΦ4BkT
+2Φ3AkT

+2Φ5BkT −2AkΦ6BkT
]

(A-4)

The fourth term in theQ-function can similarly be
evaluated,

T4 :=−1
2

N

∑
t=1

tr{R−1Ek(yt −Cxt)(yt −Cxt)T}

= −1
2

tr{R−1

[
N

∑
t=1

yty
T
t +CΦ1C

T −2C
N

∑
t=1

xN
t yT

t

]
}

:=−1
2

tr{R−1[
Φ7 +CΦ1C

T −2CΦ8
]} (A-5)

Since the matrixC appears only inT4, the new esti-
mate ofC, Ck+1 can be obtained by differentiatingT4

and equating it to zero.

Ck+1 = ΦT
8 Φ−1

1 (A-6)

In order to obtain an expression for the optimal value
of R at the current iteration, we must differentiate
the third and fourth term in theQ-function. The new
estimate ofR can be shown to be

Rk+1 =
1
N

[
Φ7−ΦT

8 Φ−1
1 Φ8

]
(A-7)

Now we must evaluate allΦis. In order to do so,
we need to use a Kalman filter and a Kalman
smoother. Expressions for the Kalman filter and
Kalman smoother provided in Shumway and Stoffer
(2000) can be modified to suit the current problem.
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Abstract: Identification based PID tuning is studied. The proposed approach consists of 
the identification of linear or nonlinear process model and model based control design. 
The identification test can be performed in both open loop and closed-loop. The so-called 
ASYM method is used to solve the identification problem. The method identifies a low 
order process model with a quantification of model errors (uncertainty). The PID tuning is 
based on internal model control (IMC) tuning rules. Two case studies will be performed 
to demonstrate the methodology. The first one is the adaptive control of the dissolved 
oxygen of a bioreactor; the second one is the nonlinear PID control of a pH process. 
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1. INTRODUCTION 
 
Although MIMO model based control such as MPC  
is becoming more popular in process control, most 
control loops are still PID controllers. PID tuning is 
also part of the pre-test in an MPC project. 
Therefore, good tuning of PID loops is very 
important to maintain good performance of the 
overall process control system.  
 
PID tuning follows basically two approaches: 
Manual tuning and model based tuning. Manual 
tuning is effective for simple loops. The 
disadvantages are that the quality of the tuning is 
dependent on the knowledge of the control engineer 
and the control performance will be, in general, not 
optimal. Moreover, manual tuning will be difficult 
and inefficient for processes with complex dynamics 
and/or nonlinearity. For the control of complex 
industrial processes, a model-based control approach 
has been proven the most effective. There are many 
advantages of a model-based approach. The 
controller can have a high performance because the 
controller parameters can be optimized based on the 
process model. The quality of the tuning is 
independent of the tuning experience of the control 
engineer. More complex dynamics can be controlled. 

Nonlinear processes can be controlled using 
nonlinear models; time-variant processes can be 
controlled using an adaptive PID. 
 
In this paper a model based PID auto-tuning method 
is outlined. The model is identified using open or 
closed-loop test data. Both linear and block-oriented 
nonlinear models can be obtained. Model error 
(uncertainty) is also estimated, which makes the 
robust tuning possible. Internal model control (IMC) 
tuning rules (Rivera et. al., 1986) are used to 
determine the PID parameters. In Section 2, the 
identification method is introduced. Section 3 
discusses the controller tuning and implementation. 
Two case studies are presented in Section 4. 
Conclusions are given in Section 5. 
 

2. IDENTIFICATION OF LINEAR AND 
NONLINEAR MODELS 

 
2.1 Cloced-loop Identification of Linear Models 
 
Single-input single-output (SISO) system (process) 
identification using data from closed-loop operation 
will be introduced here.  
  

     



The control system block-diagram is shown in Figure 
2.1 where u(t) and y(t) are the process input and 
output signals at time t, v(t) represents an 
unmeasured disturbance acting at the output, r(t) is 
the setpoint of the controlled process. It should be 
clear that the open loop situation is a special case of 
closed-loop identification. 

u(t) y(t)
Controller Process_

v(t)

r(t)

 
 

Figure 2.1 Process identification in closed-loop 
operation 

 
A linear time-invariant discrete-time model that 
describes the relation between process input and 
output in terms of the backword shipt operator q-1 is 
given as follows: 
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is called process transfer function model, and 
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is a disturbance shaping filter,  n is called the order 
of the model, {e(t)} is white noise with zero mean 
and variance λ2 and 
 

{a1, …, an, b0, …, bn, c1, …, cn, d1, …, dn}  
 
are the parameters of the model. This model structure 
is called Box-Jenkins model in the literature. 
 
A process identification procedure consists of four 
steps: test design, parameter estimation, order 
selection and model validation. The following is the 
so-called ASYM method (Zhu, 2001) that solves 
these four problems. 
 
1) Test Design 
 
Often binary test signals are used for linear model 
identification. Tulleken (1990) has proposed the so-
called generalized binary noise (GBN) signal for use 
in identification. The character of a GBN signal is 
determined by its power spectrum which is in turn 
determined by its amplitude and average switch time.  
 
A good test design should meet two requirements: 1) 
the test signal should excites the process such that 
the identified model is most accurate for control, 2) 
the test will not disturb normal production, or, the 

disturbance is minimized. The spectrum of the test 
signal should be determined such that the control 
error of the identified model is minimal. An 
approximate optimal spectrum formula of the test 
signal at the setpoint of the closed-loop system is 
given as (Zhu and van den Bosch, 2000) 
 

)()()( ωωµω vr
opt
r ΦΦ≈Φ  (2.2) 

 
where Φr(ω) is the power spectrum of the reference 
signal r, Φv(ω) is the power spectrum of the 
disturbance, and µ is a constant adjusted so that the 
signal power (or amplitude) is constrained. In 
practice, the average switch time of the GBN signal 
is adjusted so that its spectrum approximates the 
optimal one in (2.2). The amplitude is chosen so that 
the process output will stay within a given range. 
 
2) Parameter Estimation 
Parameters of G(q) and H(q) can be estimated in 
several ways. The well known prediction error 
method (Ljung, 1987) estimates the parameters of 
both G(q) and H(q) by minimizing the prediction 
error criterion according to (2.1). This approach is 
numerically difficult. Local minima and non-
convergence can occur.  
 
In the so-called ASYM method (Zhu, 2001), first a 
high order ARX (equation error) model is estimated: 
 
  (2.3) )(ˆ)()(ˆ)()(ˆ tetuqBtyqA hh +=
 
where  and  are polynomials.  )(ˆ qAh )(ˆ qBh

 
The high order model in (2.3) is practically unbiased, 
provided that the process behaves linear around the 
working point. The variance of this model is high due 
to its high order. Using the asymptotic result of 
Ljung (1987) it can be shown that the asymptotic 
negative log-likelihood function for the reduced 
process model is given by (Wahlberg, 1989) 
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                                                                             (2.4) 
The reduced model G  is thus calculated by 
minimizing (2.4) for a fixed order.   

)(ˆ q

 
3) Order Selection 
The best order of the reduced model is determined 
using a frequency domain criterion ASYC which is 
relate to the noise-to-signal ratios and to the test 
time; see Zhu (2001). The basic idea of this criterion 
is to equalize the bias error and variance error of the 
transfer function in the frequency range that is 
important for control.   
 
If the optimal order is higher than 2, a model 
reduction is used to reduce the order to 2 for PID 
tuning. 
 
4) Model Validation 

     



Model validation is to check whether the identified 
model is suitable for control. The main task of model 
validation is to check if the identification test data is 
rich enough for control purpose, and if not, provide a 
test redesign. In Zhu (2001), a stochastic model error 
bound has been derived based on the asymptotic 
properties of high order models. Denote ∆(eiω) as the 
high order model error, then the additive error bound 
∆( )ω  is given as: 
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             w.p. 99.9%   (2.5) 
 
where nh is the order of the high order model, N is the 
number of samples, Φv(ω) is the power spectrum of 
disturbance, Φu(ω) is the power spectrum of input, 
Φue(ω) is the cross power spectrum between input 
and white noise sequence {e(t)}. When the optimal 
model order is higher than 2, the model order will be 
reduced to 2. In this case, the difference between the 
optimal model and the 2nd order model will be 
added to the upper bound (2.5). 
 
One way to use upper bound (2.5) for model 
validation is as follows. First simulate the control 
system using the model and controller. Then check 
the robust stability of the system using the model, the 
upper bound and the controller parameters; see 
Section 3. If the controller simulation show good 
performance and robust test is passed, the identified 
model passes the validation and the controller can be 
implemented. If the robust test is failed, then, 
according to the upper bound formula (2.5), a test 
redesign can be done using the following rules: 
 
• Doubling the test signal amplitude will half the 

error over the whole frequency band.  
• Doubling the test time will reduce the error by a 

factor of 1.414 over the whole frequency band.  
• Doubling the average switch time of GBN signal 

will half the error at low frequencies and double 
the error at high frequencies.  

 
 
2.2 Identification of Block-Oriented Nonlinear 

Models 
 
Commonly used block-oriented models are the 
Hammerstein model, the Wiener model and 
combined Hammerstein-Wiener models. A 
Hammerstein model is formed by a nonlinear gain at 
the input followed by a linear block, hence it can also 
be called a N-L model; see Figure 2.2. A linear block 
followed by a nonlinear gain forms a Wiener model 
or a L-N model; see Figure 2.3. One way to combine 
the Hammerstein Model and and the Wiener model is 
the so-called N-L-N Hammerstein-Wiener model; 
see Figure 2.4. 
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Figure 2.2  Hammerstein model 
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Figure 2.3  Wiener model 
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Figure 2.4  N-L-N Hammerstein-Wiener model 
 
 
Here,  represents a linear time-invariant 
transfer function,  denotes the static nonlinear 
gain. It is assumed that: 1) the nonlinear function 

 is continuous, monotone and invertible; 2) the 
unmeasured disturbance {  is a stationary 
stochastic process.  

)( 1−zG
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One can parametrize the linear part with the 
disturbance using the Box-Jenkins model; and 
parametrize the nonlinear function using cubic 
splines. Recently, identification algorithms have been 
developed for such models by extending the ASYM 
method; see Zhu (1999, 2000, and 2002).  
  
 

3. ROBUST PID TUNING 
 
3.1   Tuning for Linear PID  
 
There are many model-based PID tuning rules, such 
as dominant pole placement, optimization by 
minimizing integral square error (ISE) or integral 
absolute error (IAE), and internal model control 
(IMC) tuning; see Åström and Hägglund (1995).  
 
Here we will use the IMC tuning rules introduced by 
Rivera et. al. (1986). The idea of the IMC tuning is to 
use the two-step IMC design method to derive the 
PID parameters based on a low order (up to 2nd 
order) plus delay model of the process. The PID 
parameters are determined so that the closed-loop 
behavior approximates the behavior given by a first 
order filter 

f s
scl

( ) =
+

1
1τ

   (3.1) 

For controller tuning, the user only needs to specify 
the time constant τcl of the filter, or the desired speed 
of the closed-loop system. In general, a large time 
constant leads to a slow response and a more robust 
controller; a small time constant leads to a fast 
response, but a less robust controller. Tuning 
formulae for typical process models are available in 
tables; see, e.g., Chien and Fruehauf (1990). 
Therefore, when a process model is identified, it is 

     



straightforward to obtain PID parameters. The 
closed-loop system can be simulated using the model 
and the controller. Industrial experience of the IMC 
tuning rules is very positive; see Chien and Fruehauf 
(1990). 
 
Because model errors are inevitable in real process 
identification, a good control performance according 
to simulation does not necessarily mean good 
performance in reality. The robustness of the 
controlled system against model errors can be 
analyzed using the upper error bound in (2.5). 
Denote  as the process model in continuous-
time, 

$ ( )G s
C s( )  as the controller and ∆ as the upper 

bound. Then it can be shown (see, e.g., Rivera et. 
at.,1986) that the controlled system is robustly stable 
for all the errors bounded by the upper bound if and 
only if 

( )ω
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The performance of the true system will be close to 
the simulation if the left hand side of (3.2) is much 
smaller than 1, for example, smaller than 0.5. 
 
3.2 Tuning for Nonlinear PID 
 
When a Hammerstein model or a Wiener model is 
identified, the simplest tuning is to invert the 
nonlinearity and then use the same IMC tuning rules 
to find the linear part of PID controller. The robust 
stability analysis can also be used after the nonlinear 
compensation. Denote as the identified 
nonlinear gain, then the block diagram for the 
nonlinear PID control using the Hammerstein model 
is given in Figure 3.1; and that using the Wiener 
model is shown in Figure 3.2. 

(.)ˆ 1−f

Go(z-1)f(u)
r(t) u(t)

v(t)
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-
f-1(w)PID
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Figure 3.1  Nonlinear PID for Hammerstein model 
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Figure 3.2  Nonlinear PID for Wiener model 
 
 

4 CASE STUDIES 
 
4.1  Adaptive Control of the Disolved Oxygen of a         
      Bioreactor 
 

The setup is a 20 liter fermentor (Figure 4.1). In this 
setup, base and acid are used to control the pH value; 
heating and (water) cooling are used to control 
temperature and airflow is used to control dissolved 
oxygen.  
The production specifications for the three controlled 
variables are: 
1) pH   Normal range: setpoint ± 
0.05. Worst case range: setpoint ± 0.05. 
2) Dissolved oxygen Nornal range: setpoint ± 
2.0%. Worst case range: setpoint ± 5.0%. 
3) Temperature Normal range: setpoint ± 0.1 °C. 
Worst case range: setpoint ± 1.0 °C. 
Each variable is controlled using a PID controller. 
Experience has shown that, when fixed PI controllers 
are used, the controls of pH and dissolved oxygen are 
difficult, but the control of temperature is easier. 
The main disturbances to the dissolved oxygen are 
changes in the oxygen consumption rate during the 
fermentation, the addition of anti-form the changes of 
the medium properties.  
Applikon ADI 1065 unit that is connected to the 
sensors and actuators controls the fermentor. The low 
level PID control loops are run in a PC. The 
supervisory controller sets the PID parameters. The 
supervisor controller runs in another PC under  
Matlab/Simulink/ Stateflow. The sampling time is 5 
seconds.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1. The bioreactor setup 
 

The adaptive control scheme is as follows. 
 
1) Control loop performance monitoring 

Is control performance OK? 
Yes, goto 1); no, goto 2) 

2) Identification test; identifying model and 
error bound 

3) Performing PID tuning and simulating 
closed-loop responses 

4) Performing robust stability test 
Is the control system robust? 
Yes, goto 5);  
No, goto 2) (for collecting more test data), 
or, goto 3) (detune the controller) 

5) Implement the new PID parameters 
Goto 1) 
 

     



In this work, control performance monitoring (Huang 
and Shah, 1999) is not studied; only identification 
and PID tuning are shown. 
 

0 5 10 15
48

50

52

54

56
B efore adaptation, s tep response too s low

38 42 46 50 54 58

45

50

55
Identification tes t, GB N at input

58 60 62 64 66 68 70 72
48

50

52

54

56
A fter adaptation, s tep response as  des ired

Tim e [m in.]

Dashed line: S etpoint   
S olid line: M easured DO 

Dashed line: A ir flow   
S olid line: M easured DO 

Dashed line: S etpoint   
S olid line: M easured DO 

 
Figure 4.2  DO control loop before, during and after 

the adaptation 
 
 
Figure 4.2 shows the signal plots of the real-time 
measurements during the test. First the existing PID 
tuning is made very slow; see the first plot of Figure 
4.2. Then the identification test is started. A GBN 
signal is added at the process input. The test lasted 
for about 20 minutes; see the second plot of Figure 
4.2. At the end of the 20 minutes, the input/output 
data is used to identify a model and its error bound, 
and PID parameters are computed. The desired 
settling time of the closed-loop is 1 minute. The 
closed-loop system is simulated and the robust 
stability is tested using the model and the control 
parameters see Figure 4.3. It shows that the new PID 
controller has good performance with robust 
stability. The new PID parameters are implemented 
in the low level controller and the step responses is 
measured after the adaptation; see the third plot of 
Figure 4.2. 
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Figure 4.3  Identification and robust PID tuning 

 
It can be seen that the performance of the adaptive 
control is very satisfactory. The simulation and the 
real-time measurements agree very well. Only a few 
seconds are needed to carry out the off-line 
identification, PID tuning and robust stability 
analysis. 

 
When the closed-loop is in oscillation, the identified 
model is very poor. This results in a large error 
bound and the robust stability test will fail. Therefore 
the new control parameters will not be implemented. 
To solve this problem, and oscillation detection is 
performed before the identification test. The existing 
controller is detuned until the oscillation disappears. 
 
The adaptive control of the pH and the temperature 
can be done in the same way. 
 
4.2 Nonlinear PID Control of a pH Process 
 
The pH process consists of a continuous stirred tank 
reactor (CSTR) with two input streams and one 
output stream. The scheme is shown in figure 4.4. 
The first input flow consists of solution of strong 
acid and the second flow consists of a solution of 
strong base. The acid flow has a constant rate and the 
rate of base flow can be adjusted using a controlled 
pump. These two flows react with each other and 
produce a pH value. The pH of the solution inside the 
CSTR is measured by using a pH sensor. The base 
flow rate is used to control the pH value of the 
solution inside the tank. 
 
Closed-loop identification test has been carried out. 
Staircase test signal with different step length is 
applied at the pH setpoint. Wiener model is identified 
using the test data. The linear model has an order of 
2, but a first order model is almost as good. The 
nonlinear part has degree 10. Figure 4.4 shows the 
identified nonlinear gain which decreases as the pH 
increases.  
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Figure 4.4  Identified nonlinear gain 

 
Based on the identified Wiener model, a nonlinear 
PID controller is designed and tested for the pH 
process. In the control scheme, the inverse of the 
nonlinear gain is placed in the feedback path and 
before the setpoint as shown in Figure 3.2. Figure 4.5 
shows the control result of the nonlinear PID (step 
responses); Figure 4.6 shows the result of linear PID. 
One can see that the system with linear controller 
becomes slower when the pH value is high, but with 
the nonlinear controller the performance is nearly the 
same for low and high pH values.  
 
The control scheme is implemented in a LabView 
environment. See Erol (1999) for more details on the 
study. 
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Figure 4.5  Step responses of the nonlinear PI 

controller 
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Figure 4.6  Step responses of the linear PI control 

 
 

5. CONCLUSIONS 
 

An identification based robust PID tuning method is 
proposed. Both linear and simple nonlinear models 
can be identified in a possibly closed-loop operation. 
An error bound of the linear model part can be 
estimated, which makes the robust tuning possible. 
The linear or nonlinear PID controller is determined 
using the so-called IMC tuning rules. The robust 
stability analysis is then carried out using the 
identified model, the error bound and the controller 
parameters. There are many ways to implement the 
proposed method to solve industrial control 
problems. The first way is to use the linear method in 
an auto-tuner to tune fixed PID controllers. The 
second way is to use the linear identification and PID 
tuning in an adaptive controller. The third way is to 
design a time-invariant nonlinear PID controller. The 
two case studies have shown the capability of the 
methodology.  our experience, the use of such test 
signals is often permitted in industrial environments. 
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Abstract: This paper proposes an incremental approach for the identification
of complex reaction kinetics in chemical reactors. The reaction fluxes for the
various species are first estimated on the basis of concentration measurements
and balance equations. This task represents an ill-posed inverse problem requiring
appropriate regularization. In a further step, the reaction rates are estimated
without postulating a kinetic structure. Finally, the dependency of the reaction
rates on concentrations, i.e. the kinetic laws, are constructed by means of feed-
forward neural networks. This incremental approach is shown to be both efficient
and flexible for utilizing the available process knowledge. The methodology is
illustrated on the industrially-relevant acetoacetylation of pyrrole with diketene.

Keywords: Identification, reactor modeling, input estimation, regularization,
neural networks

1. INTRODUCTION

The description of reaction kinetics often repre-
sents the most challenging part in the model-
ing of chemical reactors. A reliable description is
rarely available a priori. For example, it is well
known that reaction kinetics cannot necessarily be
derived from stoichiometries (Connors, 1990), in
particular in the case of catalyzed reactions. Thus,
a reliable kinetic model needs to be identified from
experimental data.

The model-based techniques used in process con-
trol and optimization require a model that ade-
quately describes the process dynamics, i.e. also
the kinetics in reaction systems. For the case
where a kinetic structure is not available, Psi-
chogios and Ungar (1992) proposed a hybrid ap-

1 Corresponding author. E-mail: marquardt@lfpt.rwth-

aachen.de

proach to process modeling as an alternative to
recurrent neural networks for describing the dy-
namic system. The hybrid model combines prior
knowledge on mass and energy balances with a
feed-forward neural net model that serves as a
substitute for the constitutive equations that can-
not be determined from first principles. These
authors found that the hybrid model has bet-
ter properties than standard black-box neural
net models, i.e. interpolation and extrapolation
are more accurate and the model is easier to
analyze and interpret. Parameters in the neural
net part of the hybrid model can be estimated
from experimental data. Recently, Tholudur and
Ramirez (1999) used a two-step approach for the
identification of kinetics: Reaction rates are first
identified, assuming known curve characteristics,
and subsequently correlated with the independent
state variables using a feed-forward neural net
approximation. Van Lith et al. (2002) combined



an extended Kalman filter for the estimation of
states and rates with subsequent fuzzy submodel
identification.

In this work, an incremental approach for the
identification of reaction kinetics is proposed when
no prior kinetic knowledge is available. The ap-
proach is applicable to all reactor types, i.e. also to
those exhibiting transient behavior and possibly
variable feed and effluent streams. The reaction
fluxes for the various species are estimated from
noisy concentration data using the approach of
Mhamdi and Marquardt (1999). Then, the in-
dividual reaction rates can be calculated using
knowledge of reaction stoichiometry. These reac-
tion rates and the concentration data serve as
input to a Bayesian algorithm to train a feed-
forward neural network yielding the kinetic model.
The approach is especially suited for nowaday’s
high resolution measurement techniques such as
IR (Alsmeyer et al., 2002) or Raman spectroscopy
(Bardow et al., 2003), where concentration data
can be obtained continuously in-situ.

2. PRELIMINARIES

2.1 Model of the reaction system

Consider a homogeneous, not necessarily isother-
mal, chemical reaction system with R reactions
involving S species. The time evolution of the
number of moles of species i, ni [mol], is given by:

dni

dt
= f in

i − fout
i + f r

i , i = 1, .., S (1)

where f in
i and fout

i [mol/min] are the molar flow
rates of species i into and out of the reactor and
f r

i [mol/min] is the reaction flux of species i, i.e.
the net molar flow rate of species i produced or
consumed by the various chemical reactions.

The reaction flux of species i can be expressed in
terms of the individual reaction rates:

f r
i = V

R∑
j

νijrj , i = 1, .., S (2)

where νij is the stoichiometric coefficient for
species i in the jth reaction, rj [mol/l min] the
rate of the jth reaction, and V [l] the volume.

In vector form, equation (2) reads:

f r = V Nr (3)

where f r is the S-dimensional reaction flux vector,
r the R-dimensional reaction rate vector and N

the S × R stoichiometric matrix.

Equation (3) indicates that, if S ≥ R, the reaction
rate vector can be calculated from the reaction
fluxes as follows:

r =
1

V
N+f r (4)

where N+ is the Moore-Penrose inverse of N.

For a constant-density semi-batch reactor with a
volumetric feed of rate F [l/min] and concentra-
tion cin

i [mol/l] and no outflow, the mole balance
equation (1) expressed in terms of the molar con-
centration ci = ni/V [mol/l], and the total mass
balance give

dci

dt
=

F

V
(cin

i − ci) +
f r

i

V
(5)

dV

dt
= F, (6)

implying no volume change by the reactions.

2.2 Estimation of reaction fluxes

The reaction fluxes f r
i (t) can be estimated inde-

pendently for each species. A generic model of the
problem is developed as follows. Let

yi(t) = ni(t) − ni(t0) −

∫ t

t0

ui(τ) dτ, (7)

where ui(τ) = f in
i (τ) − fout

i (τ). This transforma-
tion, applied to (1), leads to

dyi(t)

dt
= f r

i (t), yi(t0) = 0, (8)

where f r
i (t) is considered as an unknown input

that must be determined on the basis of a noisy
measurement

ỹi(t) = yi(t) + εyi
(t). (9)

Here, the superscript (̃·) is used to denote a noisy
quantity and εy represents the measurement noise
contained in ỹ.

This estimation problem represents an ill-posed
inverse problem according to the definition of
Hadamard (Engl et al., 1996). Since the measure-

ment is noisy, the estimate f̂ r
i (t) of f r

i (t) can be
arbitrarily large if no regularization of the solu-
tion is considered. Mhamdi and Marquardt (1999)
used Tikhonov-Arsenin filtering for the estimation
of f r

i (t). The quality of the estimation is greatly
influenced by the choice of the regularization pa-
rameter that weighs the tradeoff between noise
reduction and bias in the estimate. Adequate reg-
ularization parameters can be determined by the
L-curve criterion (Hansen, 1998), for example.

Another approach to filtering is the use of smooth-
ing splines (Craven and Wahba, 1979). Splines
are piecewise polynomial functions that possess
certain smoothness and differentiability properties
at the nodes. General cross validation (GCV) is
often used to select a suitable regularization pa-
rameter (Craven and Wahba, 1979).



3. INCREMENTAL IDENTIFICATION
APPROACH

The incremental identification approach mirrors
the steps taken when developing a model for a
given process. During model development, the bal-
ance equations are set up first and the unknown
fluxes are then described by constitutive equa-
tions. If needed, variable parameters in the con-
stitutive equations can be modeled as functions of
the system states. Transferring this procedure to
the identification process, the incremental identi-
fication approach features the stepwise identifica-
tion of quantities as they are used in the modeling
process. In an adaptive model identification con-
text (Marquardt, 2002), the incremental approach
allows the utilization of as much information as
can be safely provided by first-principle modeling
or sound empirical approaches. The process of
identification then reduces to modeling uncertain-
ties, i.e. unknown parameters in a given structure
or the model structure itself. This way, the iden-
tification procedure is split up into a sequence of
decoupled identification problems. This offers two
main advantages: i) the solution at a given step
becomes more simple as e.g. process dynamics are
considered in the first step and can be omitted
subsequently, and ii) physical insight is provided
for tackling the following steps.

The incremental identification approach for the
identification of reaction kinetics is depicted in
Figure 1. It includes the following steps:

(1) The fluxes f̂ r
i (t), i=1, .., S are estimated using

mole balances (Model 1). Use equations (7)-
(9) and ñi = c̃iV .

(2) With additional information on stoichiom-
etry (Model 2), the reaction rates r̂j(t),
j=1, .., R are then calculated using (4).

(3) Furthermore, if the rate laws (e.g. r =
kcAcB) are known (Model 3), (time-variant)

rate constants k̂j(t) are calculated from the
reaction rate r̂j(t) and concentrations ĉi(t).

(4) Model 4 in addition assumes a temperature
dependency of k such as the Arrhenius law

(k = k0e
−E

RT ). The rate constant parameters

(k̂0j , Êj) can then be estimated from k̂j(t)

and T̂ (t).

If parts of the kinetics are unknown, such as the
Arrhenius law, the outputs of Model 3 can be
taken as inputs to a data-driven approach for
describing k = k(T ). For an unknown rate law
(Model 2 known), ĉi, T and r̂j serve as inputs
to the data-driven models rj = rj(ci) and rj =
rj(ci, T ) for the isothermal and non-isothermal
cases, respectively. If the reaction stoichiometry
is unknown, target factor analysis (Bonvin and
Rippin, 1990) can help identify the stoichiometry
based on the estimated fluxes.
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Fig. 1. Incremental approach for reaction kinetics
identification

For describing functional relations in a data set,
methods can be grouped in two categories based
on the quality and amount of prior knowledge.
If a model structure is available, the unknown
model parameters can be identified from the data.
Lacking such a model structure, black-box ap-
proaches are usually used, with the choice of basis
functions based on some prior knowledge. Their
ability to approximate any function arbitrarily
well, given a sufficient number of parameters,
may imply overfitting where the error on the
training set is small, but a large error results if
new data are presented to the model. To avoid
overfitting and improve the predictive capability
of the model, regularization, model discrimina-
tion or data validation techniques are commonly
used. Feed-forward neural networks with Bayesian
regularization (MacKay, 1992) may serve as an
automated regularization procedure for training.

4. ILLUSTRATIVE EXAMPLE

4.1 Simulated reaction system

The incremental approach for identifying reaction
kinetics is illustrated on the acetoacetylation of
pyrrole with diketene (Ruppen et al., 1997):

P+D
K
→ PAA (10a)

D+D
K
→ DHA (10b)

D → oligomers (10c)

PAA+D
K
→ F (10d)

In addition to the desired reaction of diketene (D)
and pyrrole (P) to 2-acetoacetyl pyrrole (PAA)
(10a), there are several undesired side reactions
(10b)-(10d). These include the dimerization and
oligomerization of diketene to dehydroacetic acid
(DHA) and oligomers as well as a consecutive
reaction to the by-product F. The reactions take
place isothermally in a laboratory-scale semi-
batch reactor with an initial volume of 1 liter,
to which a diluted solution of diketene is added
continuously.



Reactions (10a), (10b) and (10d) are catalyzed by
pyridine (K), the concentration of which continu-
ously decreases during the run due to addition of
the diluted diketene feed. The dilution of catalyst
is modeled by normalizing the corresponding rate
constants with respect to the volume. Reaction
(10c), which is assumed to be promoted by other
intermediate products, is not normalized. Hence,
the effective reaction rates are described by the
following constitutive equations

rj(t) =
V0

V (t)
r?
j (t), j = {a, b, d}, (11)

rc(t) = r?
c (t), (12)

with the formal reaction rates

r?
a(t) = kacP(t)cD(t), (13a)

r?
b (t) = kbc

2
D(t), (13b)

r?
c (t) = kccD(t), (13c)

r?
d(t) = kdcPAA(t)cD(t), (13d)

where ka, kb, kc and kd represent the rate con-
stants and V0 the initial volume.

The mole balances for the species D, P, PAA and
DHA read

dcD(t)

dt
=

F (t)

V (t)
[cin

D − cD(t)] +
f r
D(t)

V (t)
, (14a)

dcP(t)

dt
= −

F (t)

V (t)
cP(t) +

f r
P(t)

V (t)
, (14b)

dcPAA(t)

dt
= −

F (t)

V (t)
cPAA(t) +

f r
PAA(t)

V (t)
, (14c)

dcDHA(t)

dt
= −

F (t)

V (t)
cDHA(t) +

f r
DHA(t)

V (t)
, (14d)

with the initial conditions cD(0) = cD0, cP(0) =
cP0, cPAA(0) = cPAA0 and cDHA(0) = cDHA0. The
reaction fluxes f r

D, f r
P, f r

PAA and f r
DHA can be re-

lated to the reaction rates using the stoichiometry:

f r
D = (−ra − 2rb − rc − rd)V, (15a)

f r
P = −raV, (15b)

f r
PAA = (ra − rd)V, (15c)

f r
DHA = rbV. (15d)

4.2 Experimental design

To assess the capability of the incremental iden-
tification approach and allow a comparison of the
modeled and true kinetics, concentration trajecto-
ries are generated using the model described above
and the rate constants given in Table 1.

The measured concentrations are assumed to stem
from a high-resolution in-situ measurement tech-
nique such as Raman spectroscopy, taken at a

Table 1. Values of rate constants

ka kb kc kd

[ l

molmin
] [ l

molmin
] [ 1

min
] [ l

molmin
]

value 0.053 0.128 0.028 0.001

Table 2. Range of independent variables

cD0 cP0 cPAA0 cDHA0 F cin

D

[ mol

l
] [ mol

l
] [ mol

l
] [ mol

l
] [ l

min
] [ mol

l
]

min 0.07 0.40 0.10 0.02 0.5e-3 4.0

max 0.14 0.80 0.20 0.04 1.5e-3 6.0

sampling frequency fs = 60 min−1 and corrupted
with normally distributed white noise of standard
deviation σc = 0.01 mol/l. The batch time is
tf = 60 min. Concentration data are available for
the species D, P, PAA and DHA, but not for the
oligomers and the side product F since the latter
are difficult to obtain.

The reaction system (10a)-(10d) suggests that rb

and rc are univariate functions of cD, whereas ra

and rd are expected to be bivariate functions of
cP, cD and cPAA, cD, respectively.

To obtain reliable approximations of the reaction
rates, in particular for the bivariate functions,
experiments are designed so as to obtain concen-
tration data over a large domain. Six indepen-
dent variables can be considered: the four initial
conditions cD0, cP0, cPAA0 and cDHA0, feed rate
F chosen to be constant during a run, and feed
concentration cin

D . The possible ranges of these
independent variables are given in Table 2. Since
cD0, cP0, F and cin

D have the largest impact on
the resulting transient behavior, a 26−2 factorial
design consisting of 16 experiments is selected.
Fewer experimental runs would reduce the valid-
ity range and/or the predictive capability of the
model, while additional runs would improve them.

4.3 Various modeling scenarios

In the following, three different modeling scenarios
are presented, each differing in the amount of prior
knowledge regarding the reactions. The fluxes,
reaction rates and reaction kinetics are identified
from noisy concentration measurements.

Scenario 1 In the first scenario, we assume
knowledge regarding the existence of reactions
(10a)-(10d), including their stoichiometric coeffi-
cients. Moreover, it is known that the rates of the
reactions (10a), (10b) and (10d) are proportional
to the catalyst concentration, see (11).

The reaction fluxes for the various species are ob-
tained from (8) using appropriate regularization.
Here, smoothing splines with GCV are used for
determining the regularization parameters.

From the time-dependent reaction fluxes f r
i , i =

{D,P,PAA,DHA}, the time-dependent reaction



rates rj , j = {a, b, c, d}, can be calculated using
(15a)-(15d). Since the influence of the catalyst on
the reaction rates is known, the formal reaction
rates r?

j are determined from (11) and (12).

Finally, the concentrations and the reaction rates
from one or several runs are correlated as r?

a =
r?
a(cP, cD), r?

b = r?
b (cD), r?

c = r?
c (cD) and r?

d =
r?
d(cPAA, cD), as proposed by stoichiometry. A

feed-forward neural net with Bayesian regular-
ization as training algorithm and 3 nodes in the
hidden layer is utilized.

Scenario 2 In the second scenario, no informa-
tion regarding the effect of catalyst on the kinetics
is postulated. This corresponds to r?

j = rj . Other-
wise, the procedure is identical to that of Scenario
1.

Scenario 3 We consider the case where little is
known a priori about the reaction system. Besides
the known desired reaction (10a), there is evidence
that diketene (D) and pyrrole (P) are involved
in other reactions, including the formation of the
dimerization product DHA. Hence, the stoichio-
metric model

P+D → PAA (16a)

D + ν1PAA → ν2DHA + G (16b)

is postulated, where the possible side reactions
are lumped into reaction (16b) with the unknown
stoichiometric coefficients ν1 and ν2 and some
unknown side products G.

From the estimated reaction fluxes, the reaction
rates r?

a(t) for Reaction (16a) and r?
lump(t) for

Reaction (16b) as well as the stoichiometric co-
efficients ν1 and ν2 can be determined as solution
of the reconciliation problem:

f r
D(t) = [−r?

a(t) − r?
lump(t)]V (t) (17a)

f r
P(t) = −r?

a(t)V (t) (17b)

f r
PAA(t) = [r?

a(t) − ν1r
?
lump(t)]V (t) (17c)

f r
DHA(t) = ν2r

?
lump(t)V (t). (17d)

The rates r?
a(t) and r?

lump(t) can subsequently be
correlated with the concentrations, as discussed in
Scenario 1.

4.4 Identification results

Reaction fluxes and concentrations Exemplarily,
the true and estimated reaction fluxes for species
D are shown in Figure 2 (right). Integration of
(14a) yields an estimate of the concentration cD,
as shown in Figure 2 (left).

Reaction rates For Scenario 1, the estimated rate
r?
b in the univariate case is shown in Figure 3,

along with training data and true rate.
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Kinetic model The validity range of a model is
defined as the smallest n-dimensional (e.g. n = 2
for the bivariate case) box containing all concen-
tration combinations taken for training. The mean
and maximum values of the neural net predictions
in the validity range are compared to the true
(simulated) reaction rates in Table 3.

The predictions obtained in Scenarios 2 and 3 are
comparable which can be accredited to the fact
that the volume change remains small during the
runs (the increase in volume does not exceed 3%
for the low and 9% for the high feed rate). Pre-
sumably, the importance of the catalyst dilution
becomes more obvious for large volume changes.
Rate r?

d, whose value is small compared to the
other rates, is mainly influenced by noise and
cannot be identified satisfactorily.

For the lumped model in Scenario 3, the main
reaction rate r?

a is identified with reasonable accu-
racy despite the error introduced by lumping all
side reactions in (16b). Here, the stoichiometric
coefficients ν1 and ν2 were calculated as 0.0028
and 0.2227, respectively. Since the rates r?

b , r?
c and

r?
d were not modeled, they are not identified in this

case.

Table 3. Reaction rate prediction errors

r
?
a r

?

b
r

?
c r

?

d

Scenario 1 Mean error 2.95 6.15 5.16 185

Max. error 11.24 26.42 20.92 3245

Scenario 2 Mean error 4.48 7.33 4.88 117

Max. error 15.69 25.84 18.58 466

Scenario 3 Mean error 4.64 - - -
Max. error 62.99 - - -



4.5 Validation of the hybrid model

To check the predictive capability of the hybrid
model consisting of the mole balance equations
and the neural-net-based kinetic laws, concentra-
tion trajectories are simulated using (13a)-(13d)
and the neural net approximations used to predict
them. Ten runs were simulated with experimen-
tal conditions chosen randomly within the ranges
given in Table 2. The mean and maximum values
of the prediction errors are listed in Table 4.

Table 4. Hybrid model prediction errors

[%] cD cP cPAA cDHA

Scenario 1 Mean error 0.81 0.11 0.40 1.10

Max. error 2.80 0.63 1.48 5.58

Scenario 2 Mean error 0.79 0.24 0.61 1.10

Max. error 2.30 0.43 1.19 5.04

Scenario 3 Mean error 0.60 0.20 0.53 4.13

Max. error 1.91 0.42 1.28 15.58

Hybrid model predictions show excellent agree-
ment with the true (simulated) values. The fact
that the model predictions are good even for a
poorly estimated reaction rate r?

d illustrates the
difficulties experienced in estimating this rate.
These results suggest omitting reaction (10d) in
the postulated reaction scheme. Comparison of
the three scenarios also indicates that the hybrid
model derived from the lumped model equations
performs nearly as well as the detailed models.

5. CONCLUSIONS

This work has proposed an incremental approach
for the identification of unknown kinetics in a
chemical reactor. The approach consists of: (i)
model-free estimation of the reaction flux asso-
ciated with each species, (ii) calculation of the
reaction rates using the (partially) known system
stoichiometry, and (iii) identification of kinetic
models using neural nets to represent the corre-
lation between reaction rates and concentrations.
Here, information on stoichiometry helps choosing
the independent variables.

The predictive capability of the hybrid model
was very satisfying as were the kinetics identified
in the case of known stoichiometry. The errors
observed were largely caused by missing initial
information regarding the reaction fluxes, a phe-
nomenon that requires further investigation.

It should be emphasized that the proposed incre-
mental modeling approach is by no means limited
to the use of neural net submodels. Mechanistic
models using target factor analysis, multidimen-
sional sparse grids or multigrid methods may also
take advantage of the incremental approach.

ACKNOWLEDGEMENTS

This work was partially funded by the Deutsche
Forschungsgemeinschaft (DFG) within the Col-
laborative Research Center (SFB 540) ”Model-
based experimental analysis of kinetic phenomena
in fluid multiphase reactive systems”

REFERENCES

Alsmeyer, F., W. Marquardt and G. Olf (2002). A
new method for phase equilibrium measure-
ments in reacting mixtures. Fluid Phase Equi-
libria 203, 31–51.

Bardow, A., W. Marquardt, V. Goeke, H.-J. Koss
and K. Lucas (2003). Model-based measure-
ment of diffusion using Raman spectroscopy.
AIChE Journal 49(2), 323–334.

Bonvin, D. and D. W. T. Rippin (1990). Tar-
get factor analysis for the identification of
stoichiometric models. Chemical Engineering
Science 45(12), 3417–3426.

Connors, K. A. (1990). Chemical Kinetics: The
Study of Reaction Rates in Solution. VCH
publishers. New York.

Craven, P. and G. Wahba (1979). Smoothing noisy
data with spline functions. Numer. Math.
31, 377–403.

Engl, H. W., M. Hanke and A. Neubauer (1996).
Regularization of Inverse Problems. Kluwer
Academic Publishers. Dordrecht.

Hansen, P. C. (1998). Rank-deficient and Discrete
Ill-posed Problems. SIAM. Philadelphia.

MacKay, D. J. C. (1992). Bayesian interpolation.
Neural computation 4(3), 415–447.

Marquardt, W. (2002). Adaptivity in process sys-
tems modeling. In: Proc. European Sympo-
sium on Computer Aided Process Engineer-
ing (ESCAPE-12). Elsevier. The Hague, The
Netherlands. pp. 42–56.

Mhamdi, A. and W. Marquardt (1999). An in-
version approach to the estimation of reac-
tion rates in chemical reactors. In: Proc. Eu-
ropean Control Conference (ECC’99). Karls-
ruhe, Germany. Paper F1004-1.

Psichogios, D. C. and L. H. Ungar (1992). A
hybrid neural network - first principles ap-
proach to process modeling. AIChE Journal
38(10), 1499–1511.

Ruppen, D., D. Bonvin and D. W. T. Rippin
(1997). Implementation of adaptive optimal
operation for a semi-batch reaction system.
Computers Chem. Engng. 22(1–2), 185–199.

Tholudur, A. and W. F. Ramirez (1999). Neural-
network modeling and optimization of in-
duced foreign protein production. AIChE
Journal 45(8), 1660–1670.

Van Lith, P. F., B. H. L. Betlem and B. Roffel
(2002). A structured modeling approach for
dynamic hybrid fuzzy first-principles models.
J. Proc. Cont. 12, 605–615.


	011.pdf
	011.pdf
	Yucai Zhu



