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Abstract: Process networks with recycle are well-known to exhibit complex dynamics
and to present significant control challenges, due to the feedback interactions induced
by the recycle streams. In this paper, we address the dynamic analysis and control
of process networks with recycle and small purge streams used for removal of light
inert components (feed impurities and/or reaction byproducts) from the recycle loop.
We establish, through a singular perturbation analysis, that such networks exhibit a
time scale separation in their dynamics, with the slow dynamics induced by the small
amount of inert purged from the recycle loop. We also present a model reduction
method for deriving a nonlinear low-order model of this slow dynamics which can be
used to rationally address the control of the level of inerts in the network.
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1. INTRODUCTION

Process networks consisting of reaction and sepa-
ration units interconnected through material and
energy recycle are the rule rather than the excep-
tion in the process industries. The dynamics and
control of such networks present distinct challenges,
since in addition to the nonlinear behavior of the
individual units, the feedback interactions among
these units, induced by recycle, typically give rise
to more complex overall network dynamics (e.g.
(Morud and Skogestad, 1994; Mizsey and Kalmar,
1996; Morud and Skogestad, 1998; Jacobsen and
Berezowski, 1998; Bildea and Dimian, 1998; Bildea
et al., 2000; Pushpavanam and Kienle, 2001; Kiss et
al., 2002)). Design modifications (e.g. adding surge
tanks between different units to attenuate distur-
bances propagating through the recycle) can in prin-
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ciple be employed to minimize these interactions,
but these are not favored by the recent demands
for lower capital and operating costs, and tighter
process integration. At the same time, the efficient
transient operation of such networks is becoming in-
creasingly important, as the current environment of
frequent changes in market conditions and economi-
cal objectives dictates frequent changes in operating
conditions and targets (e.g. product grade transi-
tions, feed switching, etc.) and tighter coordination
of the plant-wide optimization and advanced control
levels (Marquardt, 2000; Kulhavy et al., 2000). A
major bottleneck towards analyzing, optimizing and
better controlling the dynamics of such networks is
the often overwhelming size and complexity of their
dynamic models, which make dynamic simulation
computationally intensive, and the design of fully
centralized nonlinear controllers on the basis of en-
tire network models impractical (such controllers are
almost invariably difficult to tune, expensive to im-
plement and maintain, and sensitive to modeling er-



rors and measurement noise). Indeed, the majority of
studies on control of networks with recycle (see e.g.
(Luyben, 1993; Luyben and Floudas, 1994; Lyman
and Luyben, 1996; Yi and Luyben, 1997)) are within
a multi-loop linear control framework. In a different
vein, a formal framework for stability analysis and
stabilization of process networks, based on passivity
and concepts from thermodynamics, was recently
postulated in (Farschman et al., 1998; Hangos et
al., 1999). The development of a systematic frame-
work for analyzing the nonlinear dynamic interac-
tions induced by recycle structures, and rationally
accounting for them in the controller design clearly
remains an important open problem.

In our previous work (Kumar and Daoutidis, 2002),
we considered process networks with large material
recycle compared to throughput. Within the frame-
work of singular perturbations we established that
the large recycle induces a time scale separation,
with the dynamics of individual processes evolving
in a fast time scale with weak interactions, and the
dynamics of the overall system evolving in a slow
time scale where these interactions become signifi-
cant; this slow dynamics is usually nonlinear and of
low order. Motivated by this, we proposed: i) a model
reduction methodology for deriving nonlinear low-
order models of the slow dynamics induced by large
recycle streams, and ii) a controller design frame-
work comprising of properly coordinated controllers
in the fast and the slow time scales.

In this paper we focus on process networks with a
recycle stream and a purge stream. The latter is
typically used for the removal of inert components
(feed impurities and/or reaction byproducts); the
presence of the recycle can lead to accumulation of
such inert components in the recycle loop, which can
in turn be detrimental to the process operation (e.g.
catalyst poisoning in the reactor) and the process
economics (Belanger and Luyben, 1998; Luyben,
2000). Understanding the dynamics of the inert
components is therefore critical and controlling the
level of such components in the recycle structure can
be a key operational objective.

In almost all such networks with purge streams, the
magnitude of these streams is significantly smaller
than the one of the throughput and/or the recycle
streams, so that raw materials losses and/or pollu-
tion can be minimized. This suggests the possibility
of a “core” dynamics over a much slower time scale
compared to the dynamics of the individual process
units and possibly the overall network dynamics.
Developing an explicit nonlinear model of this slow
dynamics can be beneficial both for analysis and
evaluation purposes, and for model-based control.

Motivated by the above, we consider a prototype
network comprising of a reactor (with gas effluent)
and a separation system, with a gas recycle stream

and a purge stream to remove the light inert com-
ponents. Within the framework of singular perturba-
tions we establish that such a network does exhibit a
time scale separation, with the slow dynamics asso-
ciated with the small purge flowrate. Furthermore,
we describe a model reduction procedure which leads
to an explicit nonlinear model of this slow dynamics,
suitable for analysis and control, and highlight the
analogies between the case of small purge and the
case of large recycle treated in our previous work.

2. MODELING OF PROCESS NETWORKS
WITH RECYCLE AND SMALL PURGE

Consider the network of a gas phase reactor and a
condenser shown in Fig. 1.
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Fig. 1. Process network with recycle and purge.

Reactant A is fed at a molar flowrate F, to the reac-
tor, where a first-order irreversible reaction A — B
takes place with a reaction rate constant k;. The
outlet stream from the reactor is fed to a partial
condenser that separates the light unconverted reac-
tant A from the heavy product B. The gas phase,
rich in A is recycled back to the reactor. It is also
assumed that a very volatile impurity I is present
in the feed stream in small quantities. A (small)
purge stream P is therefore used to remove this
impurity from the recycle loop. The interphase mole
transfer rates for the components A,B,I in the

condenser are governed by rate expressions of the
S
form: N; = kja | y; — Tng , where kja denotes a

mass transfer coefficient, y; the mole fraction in the
gas phase, =; the mole fraction in the liquid phase,
P; the saturation vapor pressure of the component
Jj (determined with an Antoine type relation) and P
the pressure in the condenser. Assuming isothermal
operation, the dynamic model of the network can be
easily derived and has the form:
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where N = N4+ N+ Ny and Mg, My, M, denote
the molar holdups in the reactor, vapor phase in
the condenser and liquid phase in the condenser,
respectively.

In order to facilitate a perturbation analysis of this
model, the following assumptions are also intro-
duced:

e The flowrates in the recycle loop are assumed
to be O(1).
e The ratio of the purge to the feed flowrate
under steady state conditions is very small, or
s

F——€<<1.

o The mole fraction of the inert in the feed is very
small, or yrg = aye where ay is O(1).
e The mass transfer rate for the inert component
is very small, or kra = aj€? where oy is O(1).
S

P 1
e The inert is very volatile, or ?f = ay— where
€
(6%) is 0(1)

Note that, based on steady state considerations, in
order to remove an appreciable amount of the inert
component from the recycle loop, the mole fraction
of the inert in the vapor phase in the condenser,
yr, has to be O(1). This implies that O(e€) moles
of inert enter and leave the system through the
feed and purge streams. Note also that the last two
assumptions imply that negligible amount of inert
leaves the recycle loop and exits through the liquid
stream from the bottom of the condenser.

Based on the assumptions above, the dynamic model
of the network takes the form:
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In generic form, the above model becomes:

& = f(z,u') +elg(z) + g°u’ + gPu?]  (3)

where u! denotes the scaled inputs corresponding
to the large flow rates, u° is a scaled input corre-
sponding specifically to the large feed flow rate, u?
is a scaled input corresponding to the small purge
flow rate, g(z) is an O(e) term corresponding to
the rate of inert removal from the recycle loop by
mass transfer, and f, g°, gP are appropriately defined
vector functions.

It is evident that the above model has terms of
O(1) and O(e) which suggests potentially a two
time scale behavior. In what follows, we document
the two time scale feature within the framework of
singular perturbations, and address the derivation of
reduced-order non-stiff approximate models of the
fast and slow dynamics.

3. MODEL REDUCTION

We begin with a description of the fast dynamics.
This is readily obtained by considering the dynamic
model of Eq.1 in the limit as € — 0:
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or in its generic form:
& = f(z,u') ()

This is a non-stiff model that approximates the
dynamics in the original (fast) time scale t. The
steady-state conditions for this system have the form
0 = f(z,u!) or more specifically:
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Note that not all of these constraints (or equiva-
lently the differential equations in Eq.4) are linearly
independent. Specifically, it can be shown that there
exist only 8 linearly independent constraints. This
is consistent with the fact that these constraints
correspond to steady state constraints in the limit
as the purge flowrate and the feed impurity become
zero. In this limit, the inert moles leaving the reactor
and the condenser are identical, hence the redundant
constraint.

The above observation implies that the steady state
condition in this fast time scale does not spec-
ify isolated equilibrium points, but rather a one-
dimensional equilibrium manifold, which confirms
the presence of the two time scale behavior.

Note also that in this time scale, only the large
flowrates F, R, L affect the dynamics and can be
used for addressing control objectives such as sta-
bilization of holdups, production rate and product
quality. The purge flowrate has, of course, no effect
on the dynamics in this fast time scale.

Turning now to the slow dynamics, let us define a
slow time scale 7 = te. Considering the limit € — 0,
we obtain a description of the slow dynamics of the
form:
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subject to the quasi steady state constraints of Eq.6.

Note that the O(e) terms in the original system de-
scription have become O(1), and thus significant, in
this slow time scale. Note also that the combination
of O(1) terms in the original model has given rise
to finite, yet indeterminate limits in this slow time
scale; we will denote the vector of these unknown
terms by z.

In generic form, the model of the slow dynamics has
the form:
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The model of the slow dynamics of the system
comprises thus of a set of coupled differential and
algebraic equations of non-trivial index, as the vari-
ables z are implicitly fixed by the quasi steady state
constraints, rather than explicitly specified in the
dynamic model. Indeed, this model of the slow dy-
namics has a well-defined index only if the flowrates
u! which appear in the algebraic constraints that
determine the constraint state-space are specified as
functions of the state variables z, via a control law
u!(x). Tt can then be shown that the index of the
above DAE system is exactly 2, which implies that
the dimension of the underlying ODE system is 1.
This system captures the slow dynamics induced by
the small purge and small feed impurity, and can
be used to address the control of the impurity level
using the small purge stream in this slow time scale.

An explicit ODE representation of this DAE system
can be obtained be employing a coordinate change
of the form:

o[l o
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Fig. 2. Time responses of all state variables

In these new coordinates, the model of the slow
dynamics has the form

d 0 0 0
T 5O g g O
n=0

Note that it is possible to chose the function ¢(z) so
o9

that ——z = 0. In this case, the variable ( evolves

indeper:fdently of the ‘algebraic’ variables z, and
is essentially a true “slow” variable in the system
(whereas the original state variables exhibit both
fast and slow dynamics). A meanigful choice of the
function ¢(x) which achieves thisis ¢(z) = Mgyrr+
My yy, i.e. the total impurity holdup in the recycle
loop.

Notice that in the above analysis, the quantity of
inert that is recycled is much larger than the inert
throughput. The presence of a single slow mode
associated with the inert is in complete agreement
with the analysis of (Kumar and Daoutidis, 2002),
which predicts a slow model of dimension equal to
the number of components in the recycle loop.

4. SIMULATION STUDY

In what follows we consider a specific network of
the form shown in Fig.1. The parameter values and
the nominal steady states are given in Table 1.
The objective is to verify the results of the analysis
presented above.

As an initial simulation run, we considered an ‘open-
loop’ experiment, whereby the three holdups are
controlled by proportional controllers and we per-
turbed slightly the state variables from their steady
state values. Fig. 2 shows the responses of all state
variables. Observe that all state variables exhibit
a fast transient, followed by a slow approach to
steady state, which is indicative of the two time scale
behavior of the system.

Table 1: Nominal values for process parameters

Fo 1.000 Yor 0.0030

R 2.082 VAR 0.3916

F 3.082 YIR 0.2552

L 0.993 YA 0.3955

P 7.8:1073 Y1 0.3764

Mg 1.740 za 0.3835

My 6.789 zy  4.309 -10°7

My, 2.784

P-Controller gains Kpv 0.9
Kpr 0.9
Kpr 0.9

Antoine parameters A B C

for A: 15.04 273 0

for B: 15.04 273 0

for I: 17.65 273 0

PL 54889 kaa 1

Ve 925.107% kpa 3

Ve 5341073 kja 1-10°6

T 473 k1 0.9

T, 273

Fig. 3 shows the evolution of the total inert holdup
for the same simulation run; note that this variable
exhibits dynamics only in the slow time scale, a fact
which is consistent with it being a true slow variable.
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Fig. 3. Evolution of the total inert holdup

Fig. 4 illustrates the eigenspectrum of the dynamic
model of the network, linearized at the nominal
steady state. Observe the presence of a single eigen-
value very close to the imaginary axis, with the
remaining eigenvalues further left in the complex
plane.

0.15

-0.05 b

-0.15 b

-0.2 n
-10 -10

Fig. 4. Eigenspectrum of the linearized system



The model of the slow dynamics derived in the paper
was used as the basis for synthesizing a nonlinear
inpout/output linearizing controller which manipu-
lates the purge flowrate to induce the following first
order response for the total inert holdup ¢ :

d
6+59 — o (12)
dr
with 8 = 4000 and integral action imposed on

the v — ¢ dynamics. Fig. 5 illustrates a closed-loop
simulation run which illustrates the effectiveness of
this controller in tracking a change in the setpoint
of the inert holdup. Finally, Fig. 6 illustrates the
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Fig. 5. Closed loop response of the controller to a
5% decrease in the inert holdup setpoint

closed-loop response of the purge flowrate for the
same change in the setpoint of the inert holdup.
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Fig. 6. Purge flowrate change for a 5% decrease in
the inert holdup setpoint

5. CONCLUSIONS

In this work, we have shown that the presence of
a small purge stream for the removal of an inert
component from a process network with recycle, in-
troduces a two-time scale behavior. The slow dynam-
ics of the network was shown to be one-dimensional
and directly associated with the total inert holdup.
A state space realization of this slow dynamics was

derived and employed in the synthesis of an input-
output linearizing controller with integral action for
the total inert holdup. The performance of the con-
troller was tested by numerical simulation, indicat-
ing good setpoint tracking capabilities.
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