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Abstract: Two different quality prediction techniques are incorporated with online
MSPM through PLS modeling in this study. The first technique is based on unfolding
a batch data array by preserving variable direction. An MPLS model between this
matrix and vector of elapsed local batch times is developed to reflect the batch
progress. More data partitions become available as the batch progresses and these
partitions are rearranged into a matrix to develop local MPLS models predicting
quality online. The second technique uses hierarchical PLS modeling in an adaptive
manner resulting in a model that can be used to predict end-of-batch quality online.
Neither technique requires estimation of future portions of variable trajectories and
both are suitable for online multivariate statistical process monitoring and fault
diagnosis. Case studies from a simulated fed-batch penicillin fermentation illustrate
the implementation of the methodology. Copyright c© 2003 IFAC.

Keywords: Online process monitoring, quality prediction, batch processes

1. INTRODUCTION

Online process performance monitoring and prod-
uct quality prediction in real-time are impor-
tant in batch and fed-batch process operation.
Many high-value specialty chemicals are manu-
factured using batch processes. Early detection
of excursions from normal operation that may
lead to deteriorated product, diagnosis of the
source cause(s) of the deviation, and prediction
of product quality in real-time ensure safe and
profitable operation, and provide the opportunity
to take corrective actions before the effects of
disturbances ruin the batch.

Although online measurements of quality vari-
ables are not usually available, multivariate ob-
servations such as temperature, agitator power
input and flow rates are recorded frequently. The
measured variables are autocorrelated in time and
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highly correlated with each other. These trajec-
tories contain valuable information for monitor-
ing the performance of the process and can also
be related to product quality measurements that
usually become available at the end of a batch
run. Multivariate statistical projection methods
such as principal component analysis (PCA) and
partial least squares (PLS) have been suggested
in conjunction with multivariate statistical pro-
cess monitoring (MSPM) (Kourti and MacGre-
gor, 1995; Wise and Gallagher, 1996). These tech-
niques have become an effective alternative to
conventional univariate statistical process control
(SPC) and statistical quality control (SQC).

Batch process measurements made on J variables
at K time intervals for I batches that resulted
with acceptable product quality form a three-way
array X of size (I × J × K). Product quality
measured at the end of batch with M variables
form a matrix Y of size (I ×M). PCA and PLS
techniques have been extended to multiway PCA



(MPCA) and multiway PLS (MPLS) (Wold et

al., 1987) to account for this three-way data array
decomposition of batch processes. Applications
in batch/semibatch polymerization (Nomikos and
MacGregor, 1995a) have been reported. MSPM
framework including multivariate charts for both
end-of-batch and online monitoring have been
proposed (Nomikos and MacGregor, 1995b).

Online monitoring becomes challenging in batch
processes because future portions of process vari-
able trajectories are not available during the
progress of the batch. Different approaches have
been used to fill unmeasured parts of these tra-
jectories based on some assumptions including the
use of missing value prediction capabilities of PCA
and PLS. Each assumption introduces some level
of arbitrariness and should be chosen appropri-
ately depending on the process and disturbance
type. These approaches have been incorporated
into MPCA and MPLS (Nomikos and MacGre-
gor, 1995a).

Techniques that do not require future value esti-
mation have also been suggested. One alternative
is the adaptive hierarchical PCA (AHPCA) that
develops recursive local PCA models relating pre-
vious observations in an exponentially weighted
moving average manner (Rannar et al., 1998).
Another technique uses dynamic PCA and PLS
for online batch monitoring without future value
estimation (Chen and Liu, 2002). Developing local
empirical models by partitioning the total run
time of a batch with respect to some scheduling
points has also been suggested (Louwerse and
Smilde, 2000).

A different online MSPM framework can be es-
tablished by unfolding the three-way data array
by preserving variable direction (Henrion, 1994;
Wold et al., 1998; Guay, M., 2000). In this MSPM
framework, it is not necessary to estimate the
future portions of variable trajectories. MPCA
or MPLS models can be developed and used for
online monitoring. A methodology have been pro-
posed by developing an MPLS model between
process variable matrix that is unfolded in the
variable direction and local time stamp to use in
the alignment of trajectories (Wold et al., 1998).

Enhancements to this new MSPM framework
with online quality prediction is reported in this
study. Simulated data from fed-batch penicillin
fermentation is used to illustrate the methodology.
Remedies are proposed to trajectory alignment
and modeling problems caused by the disconti-
nuity problem due to batch/fed-batch switching.
Quality prediction is also incorporated into this
new MSPM framework based on data partitioning
with respect to batch progress. Furthermore, an
adaptive hierarchical PLS modeling framework is
also developed as a benchmark. Prediction results

are compared via simulated fed-batch penicillin
fermentation case studies.

2. BATCH DATA ALIGNMENT

It is a common situation in batch processes that
the total duration of the batch runs and/or the
duration of individual phases within a batch run
are not the same due to seasonal changes in en-
vironmental variables, variations in quality and
impurity concentrations of raw materials used in
the recipes, etc. Unequal batch data length causes
problems for vector-matrix calculations involved
in empirical modeling. In addition, critical local
features in process variables in each batch corre-
sponding to certain phases of process dynamics
may occur at different times, resulting in unsyn-
chronized batch profiles.

Different techniques have been suggested to over-
come unequal and unaligned batch data prob-
lem. Dynamic time warping (DTW) is one of
these techniques which has its origins in speech
recognition. It locally translates, compresses, and
expands the patterns so that similar features are
aligned.Recent applications for data alignment of
a batch polymerization (Kassidas et al., 1998)
and batch fermentations are reported (Gollmer
and Posten, 1996; Undey et al., 2002). Recently,
the curve registration (CR) technique has been
suggested to align batch trajectories with respect
to process landmarks (Undey et al., 2002). It is a
twofold process of identifying landmarks within
a trajectory followed by warping the test tra-
jectories to the reference trajectory containing
landmark locations. The indicator variable (IV)
technique provides a simpler alternative. An IV is
selected so that process variables are sampled with
respect to this variable instead of time (Kourti
et al., 1996; Neogi and Schlags, 1998; Undey et

al., 2002). This variable should be chosen such
that it shows the maturity of the evolving batch,
is smooth, monotonically increasing or decreasing,
and should span the operation range for all of the
variables. Each new observation is taken relative
to the progress of this variable. The data align-
ment technique used in this study is a variant of
IV technique and it is described in Section 3.

3. EMPIRICAL MODELING FOR ONLINE
MSPM AND QUALITY PREDICTION

Two different quality prediction techniques are in-
corporated with online MSPM through PLS mod-
eling in this study. Neither requires estimation
of the future portions of the trajectories. Both
techniques also offer efficient fault detection and
diagnostic capabilities.



Online Quality Prediction via Local MPLS

Modeling with Partial Data. An MPLS model
developed between the process measurements ma-
trix X of size (IK × J) from reference good
batches and local batch time vector z generates
a predicted local time vector that can be consid-
ered as a maturity index which has contributions
from a wide range of process variable trajecto-
ries (Fig. 1a). This predicted maturity index can
be used to align and equalize reference batches.
Variable trajectories can be re-digitized based on
for example, percent increments on this variable
by using linear interpolation. It is advantageous
to use this type of MPLS modeling for online
monitoring because it is not necessary to estimate
future portions of variable trajectories. However,
this technique lacks online prediction of end-of-
batch quality in real-time. A two-step integrated
modeling approach is proposed to account for
online quality prediction. After reference batch
data are aligned using the IV technique, batch
progress is determined according to percent in-
crements on local batch time (or another IV) so
that batches in the reference set are partitioned
based on these increments that are chosen ar-
bitrarily such as 10%, 20% of zpred (Fig. 1a).
Each partition of X (IK × J) is rearranged and
inserted into matrix X (I ×KJ) as shown in Fig.
1b. Whenever a partition is rearranged, i.e. some
percent of the batch is completed, another MPLS
model is developed between this partial data and
the final product quality matrix Y. This gives
an opportunity to predict end-of-batch quality on
percent progress points reflected by partitions.
The number of quality predictions will be equal
to the number of partitions in this case. To dif-
ferentiate the two MPLS techniques depending on
different types of unfolding, the one that preserves
variable direction is called MPLSV (Fig. 1a) and
the conventional technique that preserves batch
direction is called MPLSB (Fig. 1b).

MPLSV decomposes X and z into a combination
of scores matrix T (IK × R), loadings matrix
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Fig. 1. (a) Partitioning of process measurements
space and (b) restructuring for online quality
prediction framework.

P (J × R) and vector q (R × 1) and weight
matrix W (J ×R) with R latent variables (model
dimensions)

X = TPT +E, z = Tq+ f (1)

where E and f are the residuals matrix and vector,
respectively. During the progress of a new batch,
a vector xnew of size (1× J) becomes available at
each sampling time k. After applying the same
scaling to new observations vector as that of
reference set, scores can be predicted for time
instant k by using the MPLSV model parameters
in Eq. 1

t̂k = xnewW(PTW)−1, (2)

ek = xnew − t̂kP
T , zpred,k = t̂kq. (3)

SPEk =
J∑

j=1

e2jk ∼ gχ2
h (4)

zpred in Eq. 3 can be calculated for each batch in
the reference set and control limits (plus or minus
three standard deviation of zpred for each time
interval k) can be constructed to monitor batch
maturity. SPE values that are calculated for each
time interval k over J variables using the residuals
vector in Eq. 4 are well approximated by the chi-
squared (χ2) distribution where g is a constant
and h is the effective degrees of freedom. The up-
per and lower control limits for new independent
t-scores under the assumption of normality are
defined as

±tn−1,α/2sref(1 + 1/n)1/2, (5)

where tn−1,α/2 is the critical value of the t-student
test with n− 1 degrees of freedom at significance
level α/2, n and sref are the number of observa-
tions and the estimated standard deviation, re-
spectively, of the t-score sample at a given time
interval k.

T 2 and the corresponding statistical limits are
also calculated by using the mean-centered score
matrix. T 2 detects small shifts and deviations
from normal operation defined by the model. T 2

values for each sampling time k follow an FR,I−R
distribution

T 2
k = (t̂k − t̄k)

TS−1
k (t̂k − t̄k)

I(I −R)

R(I2 − 1)
(6)

where t̂k is the predicted score vector of the new
batch calculated using Eq. 2, I the number of
batches in the reference set, and R the number
of latent variables retained in the model.

Online Quality Prediction with Adaptive

Hierarchical PLS Modeling. HPLS is an ex-
tension of consensus PCA and is a refinement of



Table 1. Input (1-4), process (5-14) and
product variables (y1−5) of simulated

fed-batch penicillin fermentation

Variable No. Definition

1 Aeration rate

2 Agitator power input

3 Substrate feed rate

4 Substrate feed temperature

5 Substrate concentration

6 Oxygen saturation (%)

7 Biomass concentration

8 Penicillin concentration

9 Culture volume

10 Carbon dioxide concentration

11 Hydrogen ion concentration (pH)

12 Temperature in the fermentor

13 Generated heat

14 Cooling water flow rate

y1 Final penicillin concentration

y2 Overall productivity

y3 Yield of penicillin on biomass

y4 Yield of penicillin on substrate

y5 Amount of penicillin produced

the PLS method with multiple X and one or more
Y blocks (Wold et al., 1996). In hierarchical PLS
modeling, one PLS model dimension from each
X block is arranged into a matrix called super
score matrix that is then used to develop a super
model to predict Y block(s). We have modified
HPLS modeling for developing an online predic-
tive framework in this study. In this framework,
a batch data array of reference batches is divided
into K time slices of two-dimensional X blocks of
size (I×J) and local PLS models are developed re-
cursively between the super scores of these blocks
at each time interval and the product quality
matrix. A weighting factor dk balances the contri-
butions of the new information (rk) and current
history (rk−1) for each model dimension, playing
a similar role as exponential weighting factor in
an EWMA model). The adaptive HPLS model is
used in both online process performance monitor-
ing and fault detection/diagnosis, and in end-of-
batch quality prediction during the progress of the
batch.

4. ILLUSTRATIVE CASE STUDIES

A data set of 40 batches of penicillin fermenta-
tion containing 14 process variables and 5 end-
of-batch quality variables was simulated under
normal operating conditions (NOC) with small
perturbations in input and parameter spaces to
mimic real fermentation processes. Variable defi-
nitions and numbers are shown in Table 1. Each
batch has a different completion time resulting in
unequal number of measurements on each variable
and there also exist temporal variations in the
occurrence of local features. Variable trajectories
are equalized and aligned using the IV technique.
Because penicillin fermentation has two opera-
tional phases (batch and fed-batch, respectively),

there is no IV that spans the entire batch op-
eration. MPLS modeling for entire batch evolu-
tion generated poor results on local batch time
prediction due to this operational discontinuity.
We overcome these problems by dividing process
data into two parts phase-wise. Batch alignment is
performed based on the predicted local batch time
stamps in each phase. We have arbitrarily chosen
each 50% and 20% batch completion points calcu-
lated by MPLS model in phase 1 and phase 2, re-
spectively, to rearrange into new matrix partitions
that are used to develop predictive models with
quality matrix Y. This gives an opportunity to
predict end-of-batch quality on percent progress
points reflected by these partitions. The number
of quality predictions will be equal to the number
of partitions that is 7 in this case.

The same aligned reference batch data set is used
in testing both online quality prediction schemes.
The adaptive HPLS model is developed with an
arbitrary choice of weight coefficient d = 0.38.
Two cases are considered for illustration. A nor-
mal batch is investigated first. As expected, the
SPE plot produced no out-of-control signal and
final product quality on all five variables (shown
as a solid star) is successfully predicted by both
models (Figs. 2 and 3). The prediction capability
of the partial MPLS model is somewhat poor
in the beginning because of limited data, but it
gets better as more data become available. In
the second case, where a drift of magnitude -
0.067% h−1 is introduced into substrate feed rate
at the beginning of the fed-batch phase until the
end of operation, SPE plot signaled the out-of-
control status right after the third quality pre-
diction point at 179 h for MPLS model. Because
models are not valid beyond out-of-control points
no further confidence limits are plotted on y1−5

in Fig. 4. Although model predictions might not
be accurate beyond out-of-control points, MPLS-
based framework generated fairly close predictions
of the inferior quality. In another fault scenario,
a small downward drift of magnitude -0.01% h−1

into substrate feed rate is introduced and it is then
corrected. Monitoring and prediction results are
presented in Fig. 5. Fault is detected successfully
in this case. Since it is corrected its effect on prod-
uct quality is minimal hence giving close estimates
for end-of-batch quality values.

T 2 and mean-centered latent variable (LV) plots
are also used to investigate the disturbance (Fig.
6). Because the fault is introduced in fed-batch
phase, charts are plotted only for this phase
against the IV used in the alignment. Detection
of out-of-control times are depicted with a vertical
dotted line. Results of fault detection and diagno-
sis performances are summarized in Table 2. LVs
have signaled out-of-control situation in different
times. Although SPE has detected out-of-control
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Fig. 2. SPM and quality estimation of an NOC
batch with partial MPLS modeling.
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Fig. 3. SPM and quality estimation of an NOC
batch with adaptive HPLS modeling.

status the earliest, averaged variable contributions
to SPE right after a few observations from the
out-of-control time diagnose only the root cause
(variable 3) as it exceeds its contribution limits
(dashed lines) (bottom-left portion of Fig. 7).
Investigating T 2 and LV plots provide further
interpretation on the variables that are affected by
the deviation of the disturbed variable. Averaged
variable contributions in Fig. 7 along with their
control limits (dashed line) between the first out-
of-control signal point following six consecutive
observations indicated that different variables are
diagnosed as affected by the root cause. Had we
used contribution plots for SPE and T 2 alone, we
would have diagnosed only the root cause (vari-
able 3) and, 6 and 9 as affected variables. Based
on our process knowledge, we infer that these
variables are affected by the deviation in substrate
feed rate (variable 3). Variable contributions to
LVs at different out-of-control points indicates the
entire spectrum of the variables that are affected
by the disturbance.
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Fig. 4. SPM and quality estimation of a faulty
batch with partial MPLS modeling.
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Fig. 5. SPM and quality estimation of a corrected
faulty batch with MPLS modeling.
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Fig. 6. Latent variable (LV) plots and T 2 chart of
the faulty batch based on MPLS technique.

5. CONCLUSION

The integration of online process monitoring tech-
niques with quality prediction has been investi-
gated. MPLS using a batch data matrix unfolded
by preserving variable direction and adaptive hi-
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Fig. 7. Variable contributions to latent variable
plots, SPE and T 2 based on MPLS technique.

Table 2. Fault detection and diagnosis
results

Statistic Detection Diagnosis

SPE 26 % 3
LV 2 26.9 % 3,6,7,10,14
LV 3 32.2 % 3,5,6,10
T 2 38.5 % 3,6,9
LV 5 39 % 3,5,9
LV 1 65.5 % 3,5,6,7,10,11,13,14

erarchical PLS are used to develop online process
monitoring, and fault detection/diagnosis tools
as well as predicting end-of-batch quality. These
two techniques were applied to monitoring and
quality prediction in a simulated fed-batch peni-
cillin fermentation. Both techniques were useful in
providing information for an early assessment of
final product quality, indicating trends that may
cause inferior quality and effective detection and
diagnosis of process disturbances. An advantage of
adaptive HPLS is its capability to estimate final
product quality at each time instant during batch
progress. MPLS with partial modeling provides
quality estimates on the scheduled points. To ob-
tain estimates more frequently the number of local
MPLS models can be increased. Variable contri-
butions to latent variables are also investigated
for further diagnosis of trends. These contribu-
tions provided an opportunity for thorough trend
analysis.
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