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Abstract

In this paper the H,, control problem for de-
scriptor systems is considered. This problem
can efficiently be solved by specialization of a
recent solution of the general quadratic per-
formance control problem to the H,, case.
The solution is given in terms of strict lin-
ear matrix inequality (LMI) conditions. Con-
trary to previous solutions of the descrip-
tor Ho, control problem, these synthesis con-
ditions can easily be evaluated by standard
LMI solvers. The presented synthesis result
is applied to a S/KS Hy, control problem
from binary distillation control. The process
model of the underlying separation process
is given by means of a phenomenological de-
scriptor model which describes the movement
of concentration profiles in rectifying and
stripping section of the distillation column.
Keywords: Descriptor control; Mixed sen-
sitivity problem; distillation control; Lin-
ear matrix inequalities; Generalized Bounded
Real Lemma

1. Introduction

Descriptor systems (sometimes also referred
to as singular, semistate or differential-
algebraic equation (DAE) systems) describe
a broad class of systems which are not only of
theoretical interest but also have great prac-
tical significance. Models of chemical pro-
cesses for example typically consist of differ-
ential equations describing the dynamic bal-
ances of mass and energy while additional al-
gebraic equations account for thermodynamic
equilibrium relations, steady-state assump-
tions, empirical correlations, etc. [3]. In
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mechanical engineering descriptor systems re-
sult from holonomic and non-holonomic con-
straints [11]. Also in electronics and even
in economics modeling in terms of descriptor
systems is frequently encountered [5].

Descriptor systems are able to describe sys-
tem behaviors, that cannot be captured by
“non-descriptor” systems (i.e. systems gov-
erned only by differential equations) [1].
Therefore index reduction techniques (i.e. re-
duction of a descriptor system to an ODE)
necessarily are connected to a loss of infor-
mation for high index systems. Due to this
fact in recent years much work has focused on
analysis and design techniques for high index
descriptor systems (see [4] for an overview).
For linear systems many of the standard de-
sign techniques for state-space systems have
been extended to descriptor systems. Espe-
cially there has been a focus on LMI synthe-
sis techniques which guarantee bounds on in-
duced vector norms (e.g. Hs, Hy-norm) for
input-output descriptions of the form
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Ag(t) + Bw(t), t >0, £(07) =&,
z(t) = C&(t) + Dw(t). (1)

Here £(t) € IR™ denote the descriptor vari-
ables, w(t) € IR™ the external input vari-
ables, and z(¢) € IR™ the external output
variables. E, A, B, C, D are constant sys-
tem matrices of appropriate dimensions with
E being a possibly singular ng X ng matrix
with ng > rank(E) =: r. Usually the LMI ap-
proaches to this kind of problems (e.g. [6, 9])
assume an F-matrix in SVD form, i.e.

_ %0 _yT XT
E_[O 0]’ r=xT e R™". (2



Theoretically there is no loss of generality con-
nected to this assumption since a transfor-
mation to an F matrix of the form (2) is
always possible. However, this transforma-
tion may be ill conditioned. This is espe-
cially the case for mechanical descriptor de-
scriptions where point masses of extremely
different magnitudes are involved. Further-
more the approaches based on (2) result in
synthesis LMIs with all occurring system ma-
trices partitioned according to (2). This is
not only notational inconvenient but means in
fact that the standard case (regular E matrix)
is not included. These shortcomings are over-
come for the general quadratic performance
(GQP) output feedback control problem for
descriptor systems in [10].

In this paper the GQP synthesis result is spe-
cialized to the most important subproblem,
namely the descriptor Hy control problem.
The solution of the controller synthesis prob-
lem is based on congruence transformation
of a corresponding analysis result in descrip-
tor form. The analysis result basically is an
LMI based test (the generalized bounded real
lemma) which allows for a given closed loop
system to decide whether or not a prescribed
Hy, norm bound is met or not. This test is
given here for convenience of the reader. The
transition to the controller synthesis solution
is only briefly outlined. Details can be found
in [10]. The focus here is to show the appli-
cability of the descriptor H, controller syn-
thesis result to realistic control problems in
process control. To our knowledge, this is the
first application of a descriptor Hy, controller
synthesis result to a realistic control setup.

2. The Generalized Bounded Real
Lemma

In contrast to state space system descriptions
a descriptor system may allow non-unique so-
lutions which possibly contain impulses. This
certainly does not fit into the internal sta-
bility requirement which goes along with the
H,-norm bound requirement in the standard
H, control problem. As a generalization one
therefore considers regular (i.e. descriptor sys-
tems with a unique solution) and impulse-free
descriptor systems. Descriptor systems which
additionally are stable are termed admissible

[6]. An LMI based characterization of admis-
sible descriptor systems (E, A, B,C) (i.e. de-
scriptor systems (1) with D = 0) which are
H-norm bounded is given in the following
proposition:

Proposition 2..1 (Generalized bounded real
lemma, GBRL) A system (E, A, B, C) is a
stable index one system with

IGlloo <7, G(s):=C(sE~A)'B (3)

iff there exists a matrix X with

E™X =XTE>0 (4)
ATX + XA XTB 7T

B(v,X) := BTXx —~I 0 | <O.
C 0 —~I

(5)

Proof. See [10]. O

Remark 1. The consideration of the case
D = 0 in the previous proposition is not re-
strictive since every descriptor system (1) can
be reformulated as a descriptor system with
D = 0 if additional descriptor variables with
€,44(t) := Dw(t) are introduced.

Remark 2. The LMI (4) is non-strict. The
key towards a strict inequality is the symme-
try constraint ETX = XTFE expressed in (4).
All X fulfilling this constraint can be parame-
terized in terms of the fundamental subspaces
of F as

X=XE+E*wW, X=XT (6)

with E+ denoting a full rank matrix such
that ETE+- = 0 and X, U being matrices of
appropriate dimensions. The parameteriza-
tion (6) in X, W is valid since we may write
(4) as VETUTU-TXVT = VXTU-IUEVT
with Fy,q := UEVT being a SVD decompo-
sition of E. With X' := U TXVT we get

!

ET X' = X'"Eyg, ie. X' = [;}5 )?4] with
a block structure corresponding to E,,g. This
X' clearly can be parameterized as in (6). Fi-
nally we observe that the (1,1)-element in (5)
implies the regularity of X. In view of (4)
the parameterization (6) can be strengthen by
X > 0. A strict inequality characterization of
a H,,-norm bound < then can be derived by
substituting (6) into (5) and replacing (4) by
X >0.



AY; + YTAT + B,Cx + (BzéK)T
(A + BzﬁKcz)T + Ak

(A + BzﬁK02) + fi’}r{ B,
ATX, + XFTA+ BxCy + CTBY XTB1  CT | <0, (7)

yirer

BT BT X, —I 0
Clyvl 01 0 —’YI
Y, := RET+ETWy, R>0, R Et
_ L T+ >0 (8)
X, = SE+ E'wWyg, S >0, E S

Note that the matrix X is over-parameterized
by (6) with respect to the variables not af-
fected by the positive definiteness requirement
in (4). This may be used to put further con-
straints on X in (6).

The previous remark shows how to check H,-
norm bounds with standard strict LMI solvers
as e.g. the LMI toolbox in MatLab. However,
the main importance of this remark will be-
come clear in the context of the corresponding
H, controller synthesis problem for DAE sys-
tems which is addressed in the next section.

3. The H,, Control Problem for
Linear Descriptor Systems

Consider a generalized plant X g that is a de-
scriptor system

Ex(t) = Ax(t)+ Biw(t)+ Bou(t)
XE z(t) = Ciz(t)
y(t) = Carx(t)

(9)

where x(t) € IR™* denotes the descriptor vari-
ables, u(t) € IR™ the control input, w(t) €
IR™ the external input, 2(t) € IR™ the ex-
ternal output, and y(¢) € IR™ the measured
output. A, B;, C; are constant matrices of ap-
propriate dimension and E is a possibly sin-
gular matrix having the same dimension as
A. Notice that there is no loss of generality
in the descriptor setup in neglecting a direct
fed-through of control/external input to the
measured/external output since such a depen-
dency also can be expressed by means of an
augmented descriptor vector x [6].

The control problem is to find a linear output
feedback controller such that the undisturbed
closed loop (w = 0) is an admissible system
and such that the transfer matrix from the
external input w to the external output z is

Hy-norm bounded by a prescribed number
v > 0.

With a controller Kg,

k. PCWH=AkC(t)+Bry(t)
P u(t)=Ck((t)+Dxy(t), ((t) € R™

(10)

parametrized by Ax, Bk, Ck, Di the closed
loop system is given by
Eaé(t) = Aa(t) + Baw(t) (11)
z(t) = Cu€(t), &(t) € R,

B, — E 0 A, — A—i—BzDKCz BQCK
cl — O E ) c — BKC2 AK
B
By = |:0 ! :| y Co = [Cl Onzxnz] . (12)
Mg XNy

Then all controllers Kg solving the H,, con-
trol problem for descriptor systems are char-
acterized by the following theorem:

Theorem 3..1 Consider a plant (9) and a
controller (10). There exists a controller pa-
rameterization A, Bi, Ck, Dk such that
the undisturbed closed loop system (11) is ad-
missible with ||Gelle < 7 (with Gg(s) =
Cu(sEy — Ay)"'By) if and only if the LMIs
(7), (8) at the top of the pagel admit a solu-
tion {R, S, Wy, Wx, AK, BK, C’K, ﬁK}

Proof. The Theorem is a special case of the
GQP result in [10]. Here only a brief sketch
of the proof is imparted.

Application of the generalized bounded real
lemma (Proposition 2..1) to the closed loop

'Here ET denotes any generalized inverse with the
property EETE = E.



system matrices (12) renders the necessary
and sufficient LMI/BMI conditions

EYX = XTE,; >0, (13)
ATX XA, XTB, CT
cl + cl cl cl
BYX —~I 0 | <0. (14)
Cq 0 —~1

This matrix inequality is clearly nonlinear due
to products of unknown controller matrices
with the matrix X. The idea in the fol-
lowing is to introduce new matrix variables
(“linearizing change of variables”) such that
(13), (14) can be replaced by LMIs. This is
not possible directly but with an intermediate
step, i.e. a congruence transformation of (13),
(14). Then, new variables can be introduced
such that we get synthesis LMIs. These LMIs
are constructive since the new variables pa-
rameterize a system of linear equations which
uniquely can be solved for the controller ma-
trices. With Y := X! and

i X1 Xo _ i Y,
= el vl

X;,Yi € B>, (15)

non-singular transformation matrices
I X
o L I o

can be defined such that XII; = II, holds
true. Since II; is non-singular, a non-singular
congruence transformation

i ELXTL =TI XTELIO; >0 (17)

T
o7 Ach+XAC, XTB, CX
T BIX —I 0 |¥g, <0
Ca 0 —~I

with Upy, := diag(Tl;,I,I)  (18)

of (13), (14) is possible. The matrix inequality
(18) together with the linearizing changes of
variables

Dg:=Dg (19)

Ck :=Cg Y3+ DgCY;

By :=X3Bx+X{ByDg

Ag:= XT(A+ BaDgCo)Yi+ XTApYs+
+ X3 BgCyY1+X{ BoCk Y3

leads to (7). Inequality (17) becomes

= 2[R BT Y=o e

with R > 0, S > 0. The strict inequality in
(8) can be ensured by means of the degrees of
freedom in R, S (see Remark 2).

To show sufficiency an inversion of the con-
gruence transformation (17), (18) has to be
established. More precisely the validity of
XTIy = IIs with non-singular matrices Iy, Iy
as in (16) has to be shown. Some lengthy cal-
culations show that this condition always can
be established if

X1Y1+XoY3=1 (21)
XaYi + XaY3 = 0 (22)

hold true with non-singular matrices X3, Y3
(these equations correspond to the block ma-
trices of X, Y in (15) together with the sym-
metry constraints

E™,=XJE, EY, =Y, ET, E™X, = X E.
(23)

A detailed analysis shows that (21), (22) al-
ways can be established provided the synthe-
sis LMIs (7), (8) admit an solution. O
The preceding (conceptual) proof is construc-
tive: with a solution of the LMIs (7), (8) it is
possible to establish (21), (22) by simple fac-
torization techniques. Then the linear equa-
tions (19) can be solved for the controller ma-
trices DK, CK BK, AK

4. Descriptor Control of a Binary
Distillation Column

We consider separation of a binary mixture
in a 40 tray distillation column with one feed
stream. A schematic representation of the
process is given in Fig. 1 (a). Exemplary
we consider the separation of two alcohols
(Methanol,n-Propanol). The mixture is fed
in the column with the feed flow rate F'. Feed
flow rate F' and feed composition zp (mo-
lar fraction) are determined by upstream pro-
cesses. The stationary feed flow rate and feed
composition are corrupted by disturbances.
The feed stream separates the column into
rectifying- (upper part of the column) and
stripping section (lower part of the column).
Separation is achieved due to intensive heat
and mass transfer between liquid flow and
countercurrently rising vapor flow. At the
bottom of the column the liquid flow splits
up into a liquid product stream which is re-
moved with flow rate B from the column and
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Figure 1: (a) Distillation column (scheme)
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a stream which is, after being heated in the
reboiler, recirculated back to the column as
vapor flow with flow rate V. At the top of the
column the vapor flow with the accumulated
more volatile product is completely condensed
in the condenser. The condensate is partly
pumped back in the column with a flow rate
L (reflux stream) and is partly removed as
the distillate product with a flow rate D [2].
We consider the distillation column in “LV”
configuration, that is: liquid flow rate L and
vapor flow rate V are considered to be control
inputs. Measured variables are the concentra-
tions on trays 14 and 28.

The control objective is to stabilize the prod-
uct concentrations at the top and bottom of
the column at their stationary values. The
control relevant dynamics of the process can
be captured by a reduced model of the distil-
lation column [8]. This model assumes that
the concentrations of the lighter component
(molar fractions, denoted by z in the follow-
ing) in the rectifying and stripping section can
be described by the movement of a concentra-
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(b) Subsystems of the column

Azpg 0 = * %
As, 0 =* x %
Azpyr| + [+ = [ ] + [% * [ ]
Asg 00 AF * ok AV
Azp 00 0 =*

[Azp, As,, Az, Asg, Azp) " (24)

tion profile. A descriptor model with concen-
tration xp in the reboiler, position of profile
sy in the rectifying section, concentration s
for the feed tray, position of profile s; in the
stripping section, and concentration xp in the
condenser as descriptor variables is given in
(24). Here “¢” denotes numerical entries. A
detailed derivation of the model and numeri-
cal values are given in [7].

4.1. S/KS Mixed Sensitivity Prob-

lem Setup

The control problem is solved in terms of a
mixed sensitivity problem depicted in Fig. 2
with G representing the plant, K the con-
troller, and Wy, Wy, V frequency depen-
dent weighting matrices. Controller design
by “loop shaping” requires a selection of the
weighting matrices such that the solution of
the H, control problem
H Wi(I+GK) 'V (25)

!
—WoK(I +GK)™'V Hoo <7



results in a well behaved closed loop system.
In this setup V' can be interpreted as a filter

Yy u + ] *1
K %%
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Figure 2: A mixed sensitivity configuration

which models the disturbance considered to
be relevant for the problem at hand. With
S(s) := (I + GK)~! being the sensitivity ma-
trix of the closed loop the expression (25) with
v = 1 suggests to choose W; to be approxi-
mately the inverse of the wanted behavior for
S(s) and analogously Ws to be the inverse of
K - S. General indications on selecting these
weighting matrices can be found in [12].

In case of the distillation control problem at
hand an indirect approach is taken: with sta-
bilizing the measured concentrations x14, Z2g
also the stationary profiles are fixed and thus
approximately also the product concentra-
tions. In order to realize this idea the descrip-
tor S/KS Hy control problem depicted in
Figure 2 (with G being the descriptor model
(24)) is solved by the outlined descriptor H,
synthesis procedure. The synthesis LMIs are
jointly optimized with respect to 7. A final
value of 4y = 1.01 shows that the control ob-
jectives are approximately met. The result-
ing controller is tested in simulation with a
first principles model of the distillation pro-
cess and shows a good control performance
even for large input disturbances.

5. Conclusions

We presented a constructive solution to the
descriptor H,, control problem. Synthesis
conditions are given as numerically feasible
strict LMI conditions. The resulting con-
troller computation is successfully applied to
a realistic control problem from chemical pro-
cess control. To our knowledge this is in fact
the first application of descriptor Hy, control
to a control problem with real physical back-
ground. Future work is concerned with ro-
bustness considerations in case of descriptor
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models of the distillation column with norm
bounded uncertainties.
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