
MULTIVARIATE CONTROLLER
PERFORMANCE ASSESSMENT WITHOUT
INTERACTOR MATRIX — A SUBSPACE

APPROACH

Ramesh Kadali and Biao Huang 1

Department of Chemical and Materials Engineering,
University of Alberta, Edmonton, AB, Canada T6G 2G6

Abstract: Several methods for multivariate control performance assessment (MPA)
with or without using the interactor matrix have been proposed in the literature.
They are all equivalent, one way or other, by certain transformations. In this paper
a subspace framework for MPA is proposed for the estimation of MVC-benchmark
variance for feedback multivariate systems. The merit of the new approach is that
we start straight from data, and a performance index is calculated directly from
subspace matrices without relying on a parametric dynamic model. In addition, a
proof that the proposed solution is exactly the same as that of the conventional
approaches is provided.

1. INTRODUCTION

Periodic performance assessment of the controllers
is important for maintaining normal process oper-
ation and to sustain the performance of controllers
achieved when the controllers are commissioned.
Minimum variance control is theoretically the
best possible control (Astrom and Wittenmark,
1984). Controller performance assessment using
MVC-benchmark involves comparing the current
process output variance with the output bench-
mark variance if a minimum variance controller
were implemented on the process. Although the
intention of many industrial controllers is not min-
imum variance control, MVC-benchmark is never-
theless used as a first step in the controller per-
formance assessment (Harris, 1989). Calculation
of the MVC-benchmark variance for univariate
systems from routine closed loop data requires a
priori knowledge of only the process time delay
(Harris, 1989; Huang and Shah, 1999). Calcula-
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tion of the MVC-benchmark variance for multi-
variate systems involves calculation of the interac-
tor matrix (Huang and Shah, 1999) for the system
from the first few process Markov parameters.
Furthermore, the concept of the interactor is not
well known in practice. Hence, estimation of the
MVC-benchmark without the interactor matrix
has been an active area of research.

(Ko and Edgar, 2001) proposed a method for the
estimation of the multivariate MVC-benchmark
using closed loop data, which does not require the
intermediate interactor matrix calculation. It is
shown that their result is equivalent to the result
of (Huang and Shah, 1999). Recent progress in the
subspace approach to closed loop identification
(Kadali and Huang, 2002) inspires an alternative
approach for the estimation of multivariate MVC-
benchmark. In the current paper we will show the
estimation of the multivariate MVC-benchmark
with neither the interactor matrix calculation nor
the Markov parameters. The only a priori knowl-
edge required is the deterministic subspace matrix
directly calculated from data. The important dif-
ference between the “calculation of the subspace



matrix” and subspace identification is that the
former does not extract an explicit “model” and
is also known as model-free approach in the lit-
erature. This will further simplify the procedure
for the calculation of the multivariate performance
index. No concepts such as interactor matrix,
Markov parameter, multivariate transfer function
matrix, state space model etc. are needed to apply
this technique and this will make the multivariate
controller performance assessment technique more
applicable in practice. (McNabb and Qin, 2001)
have also proposed another subspace approach to
multivariate performance monitoring by project-
ing delay-matrix filtered output data onto past
data.

In the subspace method, certain subspace matri-
ces are identified as a first step in the subspace
identification methods. The minimum variance
controller can be designed directly using these
intermediate subspace matrices, without a para-
metric model such as the state space model or
transfer function model. The closed loop subspace
identification method proposed in (Kadali and
Huang, 2002) allows a convenient identification of
subspace matrices from the closed loop data with
external excitations. The MVC-benchmark vari-
ance can be calculated with the knowledge of only
the deterministic subspace matrix and eliminates
the intermediate step of estimating the unitary
interactor matrix or extracting the Markov para-
meters.

We do not claim that the subspace approach
as proposed in this paper requires less a pri-
ori knowledge than other methods. In fact, the
equivalent information of the interactor matrix
or Markov parameters is implicitly buried in the
subspace matrices. However, avoiding direct use of
the interactor matrix and/or Markov parameter
matrices does have an advantage of easier accep-
tance by practitioners and reduces unnecessary
intermediate modeling step. Another merit of this
paper lies in the direct data based approach, i.e.
from process experiment data, a multivariate per-
formance index is directly calculated. Comparing
with the conventional methods such as that pro-
posed by (Huang and Shah, 1999), our method
is different in the sense of subspace approach
versus conventional transfer function approach.
The method proposed by (Ko and Edgar, 2001),
even though without using the interactor matrix,
is nevertheless following the transfer function ma-
trix approach and is an extension of (Harris et
al., 1996; Huang and Shah, 1999). Our approach,
which may be considered an extension to (Ko and
Edgar, 2001), adopts the subspace framework, and
further avoids the use of the transfer function
matrix and Markov parameters.

2. SUBSPACE MATRICES DESCRIPTION

Consider the following innovations state space
representation of a linear time-invariant system
with l-inputs (uk), m-outputs (yk) and n-states
(xk) as:

xk+1 =Axk +Buk +Kek (1)

yk =Cxk + ek (2)

where the state space system matrices A, B, C
and Kf are (n× n), (n× l), (m× n) and (n×m)
matrices respectively.Kf is the Kalman filter gain
and ek is an unknown innovation sequence.

The matrix input-output equations used in sub-
space identification (Overschee and Moor, 1994;
Overschee and Moor, 1995; Overschee and Moor,
1996) expressed using certain subspace matrices
Lw, Lu and Le (Overschee and Moor, 1996) as

yf =Lwwp + Luuf + Leef (3)

where

yf =


 yt+1

...
yt+N


 ; yp =


 yt−N+1

...
yt


 ; ef =


 et+1

...
et+N


 ;

uf =


 ut+1

...
ut+N


 ;up =


 ut−N+1

...
ut


 ;wp =

[
yp

up

]

The subspace matrices are estimated as an inter-
mediate step by data projections (Overschee and
Moor, 1996). Lu and Le are dynamic matrices
containing the estimated Markov parameters cor-
responding to the process and noise respectively.

Recent results in subspace closed-loop identifica-
tion (Kadali and Huang, 2002) allow the direct
estimation of two of the subspace matrices, Lu

and Le, from the closed loop data with set point
excitation. Note that although the determinis-
tic subspace matrix and closed loop noise ma-
trix contain process Markov parameters and noise
Markov parameters respectively, the two matrices
are directly calculated from closed-loop data by a
projection method and one never needs to know
what are inside these two matrices in order to
apply our algorithms. The only reason to mention
Markov parameters here and in the sequel is to
analytically compare our results with conventional
results available in the literature.

3. DESIGN OF MINIMUM VARIANCE
CONTROL USING SUBSPACE MATRICES

The minimum variance controller (MVC) is de-
signed to minimize the following quadratic cost
function J over the horizon N, as N −→ ∞:



J =
1
N
E{

N∑
k=1

[(rt+k − yt+k)T (rt+k − yt+k)]}(4)

=
1
N

N∑
k=1

[(rt+k − ŷt+k)T (rt+k − ŷt+k)] (5)

where E is the expectancy operator, rt is the
reference for output trajectory. ŷt+k is the k-step
ahead predicted output given the past inputs and
outputs upto time t.

Using equation (3), the optimal predictor equa-
tion can be written as ŷf = Lwwp + Luuf . The
notation in the cost function can be simplified for
regulatory control, by letting rt+k = 0 as:

J =min
u2

f

1
N
[ŷT

f ŷf ]

=min
u2

f

1
N
[(Lwwp + Luuf)T (Lwwp + Luuf)](6)

To obtain the minimum variance control law, we
differentiate J with respect to uf and set it to zero
to obtain the control law as:

uf =−L†
u(Lwwp) (7)

where, † represents pseudo-inverse. The above
control law is the minimum variance control law as
the number of block-rows in the subspace matrices
Lw and Lu tend to infinity.

4. ESTIMATION OF THE MULTIVARIATE
MVC-BENCHMARK

From the very first block-element of Yf in equa-
tion (3) we can write

yt+1 =Lyp


 yt−N+1

...
yt




+Lup


 ut−N+1

...
ut


 + L0et+1 (8)

where Lyp = Lw(1 : m, 1 : mN) and Lup = Lw(1 :
m,mN + 1 : (l + m)N). Equation (8) can be
transformed for an equivalent expression of yt+1

in terms of the past inputs and the past noise as

yt+1 =
[
G1 ... GN

] 
 ut

...
ut−N+1




+
[
L1 ... LN

]

 et

...
et−N+1


 + L0et+1 (9)

where Gi and Li are the i-th impulse response
coefficients (Markov parameters for multivariate

systems) of the process and noise models respec-
tively. In other words, we can express the past
(state) contribution term, Lwwp, as

Lwwp =



G1 ... GN−1 GN

G2 ... GN 0
... ... ... ...
GN 0 ... 0





 ut

...
ut−N+1




+



L1 ... LN−1 LN

L2 ... LN 0
... ... ... ...
LN 0 ... 0





 et

...
et−N+1


(10)

However, the controller output, ut+1 is calculated
using all the data available at time ‘t + 1’, i.e.,
{ut, yt+1, ut−1, yt, ...}. Hence the original subspace
predictor expression in equation (3) and the sub-
space based minimum variance control law in
equation (7) have to be modified to obtain the
closed loop expressions for uf and yf . First, define

LG =



G1 G2 ... GN−1 GN

G2 G3 ... GN 0
... ... ... ...
GN 0 0 ... 0


 ; ũp =




ut

ut−1

...
ut−N+1




LH =




L0 L1 ... LN−1 LN

L1 L2 ... LN 0
... ... ... ... ...

LN−1 0 0 ... 0


 ; ẽp =




et+1

et

...
et−N+1




L̃e =




0 0 ... 0
L0 0 ... 0
... ... ... ...

LN−2 LN−3 ... 0


 ; ẽf =




et+2

et+3

...
et+N+1




Since LG and LH contain the process and noise
model Markov parameters, they can be formed
from the subspace matrices Lu and Le respec-
tively. Therefore the equation based on the first
column of Yf in equation (3) can be alternatively
written as

yf =LGũp + LH ẽp + Luuf + L̃eẽf (11)

Substituting equation (10) in equation (7), we can
write

uf =−L†
u {Lwwp} = −L†

u{LGũp + LH ẽp}(12)

The closed loop expression for yf can be written
as

yf = (I − LuL
†
u) (LGũp + LH ẽp) + L̃eẽf (13)

Now that we have derived closed-loop expressions
for both u and y, the next step is to calculate
their variance expressions which are actually the
H2 norm of the closed-loop expressions weighted



by the variance of e. A simple method to derive
the variance expression is given below.

Let a disturbance enter the process at time =
t + 1, i.e., ut = ut−1 = ... = ut−N+1 = 0;
et = et−1 = ... = et−N+1 = 0; and et+2 = et+3 =
... = et+N = 0. Then the cumulative effect of the
noise et+1 on the process output variance can be
obtained from equation (13), which simplifies to

yf = (I − LuL
†
u)Lh et+1 =


 ψ0

ψ1

...


 et+1 (14)

where Lh =


 L0

...
LN−1


, the vector of noise model

Markov parameters, and ψi represents the Markov
parameter of i-th lag of the closed loop noise
model if a minimum variance controller were
implemented on the system described in equa-
tions (1)-(2). The variance of the closed-loop sys-
tem can be calculated from the Markov parame-
ters/impulse response of the closed-loop system
and the minimum variance control variance ex-
pression for the process output is given by

var[yt]MV C =
∞∑

i=0

ψivar[et]ψT
i (15)

Note that estimation of the interactor matrix is
not required for obtaining the MVC-benchmark
variance. However the above result requires the

knowledge of Lh =


 L0

...
LN−1


, and hence it ap-

pears that estimation of the noise model in the
Markov parameters model is necessary.

However, we will show that the estimation of
 L0

...
LN−1


 is not required. The closed loop noise

model Markov parameters LCL
h =


 LCL

0

...

LCL
N−1


 (the

vector of closed-loop noise model which can be
estimated from the routine operating data) can

be used in the place of


 L0

...
LN−1


 and we can still

be able to obtain the MVC-benchmark variance,
where

LCL
h = (I + LuLc)−1Lh (16)

and Lc represents the dynamic matrix containing
the Markov parameters of the controller.

Lemma 1: Ψ can be obtained using the vector of
Markov parameters of the closed loop noise model,
LCL

h , in place of the Lh in equation (14) .

Proof: The above statement is equivalent to saying
that (I − LuL

†
u)Lh and (I − LuL

†
u)L

CL
h yield

the same result. Now, (I − LuL
†
u)L

CL
h = (I −

LuL
†
u)(I +LuLc)−1Lh. Therefore on observation,

we need to show that

(I − LuL
†
u) = (I − LuL

†
u)(I + LuLc)−1 (17)

to prove the lemma, which is equivalent to show-
ing

(I − LuL
†
u)(I + LuLc) = (I − LuL

†
u) (18)

Expanding the left hand side term in the above
equation

(I − LuL
†
u) (I + LuLc) = I − LuL

†
u (19)

The last equation follows since LuL
†
uLu = Lu.

Lemma 1 is essentially the subspace version of
the invariance property of the first few Markov
parameters of the interactor-filtered noise model
under the transfer function framework originally
derived in Huang and Shah (1999)(Huang et al.,
1997). This invariance property has also been
proved in (Ko and Edgar, 2001).

Hence the Markov parameters of the closed loop
noise model can be used in place of Markov para-
meters of the open loop noise model and we can
still get the same benchmark variance. Therefore,
we need the subspace matrix Lu (which contains
Markov parameters of the process and is esti-
mated from data) for the calculation of the min-
imum variance control benchmark. The subspace
matrix Lu can be estimated from closed loop data
with set point excitation as explained in (Kadali
and Huang, 2002). The Markov parameters of the
closed loop noise model (or noise subspace matrix)
can be easily estimated from the routine operating
data (Kadali and Huang, 2002).

5. EQUIVALENCE OF SUBSPACE
APPROACH AND THE CONVENTIONAL
TRANSFER FUNCTION APPROACH IN
OBTAINING THE MVC-BENCHMARK

In the transfer function approach,

D(z) =
[
Ddz

d + ...+D1z
]

represents the interactor matrix for a process rep-
resented by the transfer function matrixG(z−1) =[
G0 +G1z

−1 +G2z
−2 + ...

]
, then the condition

for the interactor matrix from theorem 3.2.1 in
(Huang and Shah, 1999) is

lim
z−1−→0

DG=K (20)



where K is a full rank matrix. The above expres-
sion can be alternatively expressed as two matrix
conditions

Condition-1

[
D1 ... Dd

] 
 G0 ... 0

... ... 0
Gd−1 ... G0


 =

[
0 ... 0

]
(21)

Condition-2

[
D1 ... Dd

]
G1

...
Gd


 = K (22)

with rank(K) = min{m, l}.
We need to show that the coefficients obtained in
the subspace approach are same as those obtained
in the transfer function domain approach, i.e. the
above two conditions are satisfied by using the
matrix

(
I − Lu L†

u

)
. Therefore we have to prove

the following theorem for the subspace approach:

Theorem 1:
(
I − Lu L†

u

)
contains interactor

matrix for the process. An interactor matrix can be
constructed directly from this expression. The sub-
space approach for the calculation of the minimum
variance control benchmark is equivalent to that of
the conventional transfer function approach.

Proof:

(
I − Lu L†

u

)

G0 0 ... 0
G1 G0 0 ...
... ... ... ...


=

(
I − Lu L†

u

)
Lu

= Lu − Lu L†
uLu = 0 (23)

since Lu L†
uLu = Lu. From the above equation

condition-1 expressed in equation (21) is satisfied.

Next, consider the transformedMarkov parameter

matrix


 Ĝ1

...

Ĝd


 = (I − LuL

†
u)


G1

...
Gd


. Note that

the matrices Lu and


G1

...
Gd


 are essentially disjoint

(see appendix A). Following the corollary 17.2.10
in ref.(Harville, 1997) :

rank


 Ĝ1

...

Ĝd


= rank


G1

...
Gd


 (24)

Now let

K = Ĝ1 + ...+ Ĝd =
[
Im ... Im

]
 Ĝ1

...

Ĝd


 (25)

The matrix
[
Im ... Im

]
is (m× dm) dimensional

with rankm. ConsiderA =
[
Im ... Im

]
m×dm

and

B =


 Ĝ1

...

Ĝd




dm×l

. Using the corollary 17.5.2 from

(Harville, 1997) we can write

rank{K} = rank[A] + rank[B]− (dm)

+rank
[
(Idm −BB†)(Idm −A†A)

]
(26)

We can expand

(I −BB†)(I −A†A)

= (I −A†A)−B†B(I −A†A) (27)

For using the item (3) in appendix B, we take,

R = (I −A†A); S = −B; T = B†; U = (I − A†A)

Using equations (26) and (B.2), we write,

rank[K] = rank[A] + rank[B]− dm− rank[B†]

+rank[(I −A†A)] + rank[(AB)†(AB)B†]

= rank[(AB)†(AB)B†] (28)

In the above equation we used rank[B] =
rank[B†] and rank[(I − A†A)] = (d − 1)m. Con-
sider the two cases,

(i) m ≥ l : In this case (AB)†(AB) = Il.
Therefore rank[(AB)†(AB)B†] = rank[B†] = l
and rank[K] = l.

(ii) m < l : In this case rank[(AB)†(AB)] =
m. Since B is a full rank matrix rank[(AB)†(AB)B†] =
m. Therefore rank[K] = m.

Hence K is a full rank matrix and condition-2
expressed in equation (22) is satisfied. Hence the
theorem is proved.

To summarize, the matrix
(
I − Lu L†

u

)
performs

the same function as an interactor matrix in the
transfer function domain. But the calculation of
interactor matrix is not required in deriving the
MVC-benchmark variance of the process output
for controller performance analysis. Therefore a
priori knowledge of only the subspace matrix Lu

or equivalently the first ‘d’ process Markov para-
meters is the requirement for obtaining the MVC-
benchmark, the same conclusion as obtained in
the previous literature, but expressed here in a
much more simplified notation..

6. CONCLUSIONS

Calculation of the multivariate performance index
without using the interactor matrix is an impor-



tant step toward practical application of multi-
variate performance assessment techniques. It is
shown in this paper the design of multivariate
minimum variance controller can be done using
subspace matrices. Using the subspace matrices
the MVC-benchmark variance for the process out-
puts is obtained from closed loop data without
having to first calculate the unitary interactor ma-
trix or knowing the first few Markov parameters of
the noise model. The equivalence of the subspace
approach to the conventional transfer function
approach for obtaining the MVC-benchmark vari-
ance is also proved.
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Appendix A. ESSENTIALLY DISJOINT
CONDITION

From (Harville, 1997)
Lemma 17.1.4. Let U and V represent subspaces
of Rm×n, then

(1) U and V are essentially disjoint if and only if,
for matrices U∈U and V∈V , the only solution to
the matrix equation

U+V= 0 (A.1)

is U = V = 0; and

(2) U and V are essentially disjoint if and only if,
for every non-null matrix U∈U and every non-null
matrix V∈V , U and V are linearly independent.

We assume that the process transfer function
G(z−1) is full rank with proper and stable trans-
fer functions. Therefore, the matrices Lu =
G0 0 ...
G1 G0 ...
... ... ...


 and


G1

G2

...


 are essentially disjoint.

Appendix B. COROLLARIES

(1) Corollary 17.5.2 Let A represent an m× n
matrix and B an n× p matrix. Then,

rank(AB) = rank(A) + rank(B) − n

+rank
[
(I −BB†)(I −A†A)

]
(B.1)

(2) Corollary 17.2.10 Let A represent an
m × n matrix, B an m × p matrix. Then
rank

[
(I −AA†)B

]
= rank (B) if and only if C(A)

and C(B) are essentially disjoint.

(3) From chapter 18 Let R represent an n× q
matrix, S an n × m matrix, T an m × p matrix,
and U a p× q matrix. Then,

rank(R + STU) = rank(R) + rank(Q) + rank(M)

+rank(N)− rank(T )

+rank
[
(I −MM †)XQ†Y (I −N †N)

]
(B.2)

where ER = I−RR†; FR = I−R†R; X = ERST ;
Y = TUFR; M = X(I − Q†Q) and N = (I −
QQ†)Y . Refer to (Harville, 1997) for proofs of the
above corollaries.


