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Abstract: In this paper we begin with a state space model of a generally non-
square process and derive the minimum achievable variance in a state feedback
form. We propose a simple control performance calculation which uses orthogonal
projection of filtered output data onto past closed-loop data. Finally, we propose
a control performance monitoring technique based on the output covariance and
diagnose the cause of suboptimal control performance using generalized eigenvector
analysis. The proposed methods are demonstrated on an industrial wood waste
burning power boiler.
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1. INTRODUCTION

With the initial success of minimum variance
single-loop performance assessment (Harris, 1989;
Desborough and Harris, 1992; Qin, 1998; Harris et

al., 1999; Kozub, 1996; Harris and Seppala, 2002)
and industrial case studies (Thornhill et al., 1999;
Miller et al., 1998; Harris et al., 1996b; Perrier
and Roche, 1992; Weinstein, 1992; Desborough
and Miller, 2002), research interest has shifted to
the assessment of MIMO control systems using
the minimum variance benchmark (Harris et al.,
1996a; Huang et al., 1997; Huang, 1997; Shah
et al., 2002) and a covariance-based benchmark
(McNabb and Qin, 2003)

Currently the MIMO performance monitoring
benchmark has been a straightforward extension
of the SISO variance ratio, which looks at only
the trace of the covariance matrix. However, trace
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based monitoring index is insufficient for assessing
the multivariate covariance of the control perfor-
mance. Another drawback of the existing litera-
ture is that research emphasis has been placed
on control performance assessment and little has
been done regarding diagnosis.

The control performance monitoring tehcniques
typically calculate a benchmark performance from
closed-loop operation data based on some minimal
knowledge, such as the time delay information.
Due to interaction, the performance suboptimal-
ity in each variable is not independent from each
other. Therefore, the suboptimality of a MIMO
control system necessarily occupies a subspace
instead of the entire output space. In this paper we
propose a subspace approach to extract the major
directions of suboptimality (MDS) and measure
the variance inflation in each of the directions. To
deal with the MIMO control performance diagno-
sis, we propose to use generalized eigenvectors to
diagnose the directions of suboptimality.



This paper is organized as follows. The extended
state space model is given in Section 2. The
minimum variance control solution in state space
is shown in Section 3. Section 4 introduces the
view of MVC as an optimal subspace and Sec-
tion 5 proposes covariance-based monitoring and
demonstrates the use of generalized eigenvector
diagnosis techniques in this new framework with
an industrial example. The paper ends with a few
concluding remarks.

2. EXTENDED STATE SPACE PROCESS
MODEL

We assume the open loop process is described
by the following state space model in innovation
form:

x(k + 1) = Ax(k) + Bu(k) + Ke(k)

y(k) = Cx(k) + Du(k) + e(k) (1)

where x ∈ <n, u ∈ <m, y ∈ <p , e ∈ <p are the
state, input, output and innovation vectors. A,
B, C, D, and K are matrices with appropriate
dimensions. Denoting
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where d is the time delay order of this multivariate
system. The notation yj(k) and ej(k) will be
used throughout this paper to represent j-element

vectors of y(k) and e(k) extending from time k to
k + j − 1.

We have the following extended equation:

yd+1(k) = Γd+1x(k) + Hd+1ud+1(k)

+Gd+1ed+1(k) (2)

3. STATE SPACE MINIMUM VARIANCE
CONTROL

Because of the time delay, not all elements of
yd+1(k) are affected by u(k). McNabb (McNabb,
2002) and McNabb and Qin (McNabb and Qin,
2003) present a new algorithm for deriving a mul-
tivariate time delay (MTD) matrix L ∈ <(d+1)p×d

for use with the extended state space model (2).
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To extract the multivariate time delay, the algo-
rithm proposed by McNabb (McNabb, 2002) uses
the first few Markov parameters or the {A, B, C,
D} matrices, which shifts the output y(k) forward
successively and forms a new output by a linear
combinations of the shifted outputs,

y(j)(k) = L(j)yj+1(k)

= C(j)x(k) + D(j)u(k)

The matrix L(j) ∈ RP×(j+1)P is chosen such
that D(j) keeps the maximum possible rank. The
algorithm will terminate when D(j) reaches full
column rank. At the end of the iteration, set

d = j

L = L(j) = L(d)

Λ = D(j) = D(d)

ỹ(k + d) = y(d)(k)

The output ỹ(k+d) is known as the MTD-filtered
output which has the following expression,



ỹ(k + d) = Lyd+1(k)

= LΓd+1x(k) + Λu(k) + Lgd+1e(k)

+L

[
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The minimum variance control of system (1) is
achieved by

u(k) = −Λ+L(Γd+1x(k) + gd+1e(k)) (4)

where Λ+ is the Moore-Penrose pseudo-inverse.
The feedback invariant term or the output under
minimum variance control is

ỹmv(k + d) = L

[
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]
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The filtered output shown in Equation (3) can be
interpreted as the combination of two independent
terms; an optimal d step ahead prediction of ỹ(k+
d) and the associated prediction error

ỹ(k + d) = ỹ(k + d|k) + ỹmv(k + d) (5)

where

ỹ(k + d|k) = LΓd+1x(k) + Λu(k) + Lgd+1e(k)(6)

represents the optimal d step ahead prediction of
ỹ(k + d).

McNabb and Qin (McNabb and Qin, 2003) show
further that L corresponds to a unitary interactor
and

E
(

ỹT (k)ỹ(k)
)

= E
(

yT (k)y(k)
)

In other words, the sum of the variance of each
original output variable is minimized by the MVC
law in Eq. 4.

4. CALCULATION OF MVC VARIANCE BY
SUBSPACE PROJECTION

The optimal prediction ỹ(k + d|k) under a time-
invariant controller is related to (McNabb, 2002),

ỹ(k + d|k) = Θryr(k − r + 1) (7)

where yr(k−r+1) =
[

yT (k − r + 1), · · · , yT (k)
]T

and r is sufficiently large. As a consequence,
Equation (5) can be rewritten as

ỹ(k + d) = Θryr(k − r + 1) + ỹmv(k + d) (8)

Again yr(k−r+1) depends on data before time k
and ỹmv(k + d) depends only on innovations from
time (k+1) through (k+d), which are independent

of yr(k− r + 1). Therefore, E{ỹmv(k + d) · yT
r (k−

r+1)} = 0. Formulating three data matrices with
column dimension N
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. . . ỹmv(k + d + N − 1)]

Zr,N =
[yr(k − r + 1) yr(k − r + 2)

. . . yr(k − r + N)]

we have 1
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r,N → E{ỹmv(k + d)yT
r (k− r +

1)} = 0 as N → ∞. Therefore, defining Π⊥

Z = I −

ZT
r,N

(

Zr,NZT
r,N

)−1
Zr,N , we have
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The MVC covariance is

cov(ỹmv(k)) =
1
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as N → ∞ (9)

and the associated multivariate control perfor-
mance index is

η =
tr {cov(ỹmv(k))}

tr {cov(ỹ(k))}
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From the above derivation we demonstrate that:

(1) The output of the process under minimum
variance control can be calculated by a single
row projection of the MTD filtered output
data onto the row space of the normal closed-
loop output data, and

(2) The minimum variance output occupies an
optimal subspace of the general closed-loop
output.

The variance index has a value between 0 and 1,
with 1 corresponding to the minimum variance.
The limitation of η, however, is that it only con-
siders the trace of the covariance matrix, ignoring
the off-diagonal terms of the covariance.

5. PERFORMANCE MONITORING BASED
ON OUTPUT COVARIANCE

Most of the MIMO performance indices are based
on the sum of variances of each output, i.e., the
trace of the covariance matrix. This type of index
is adequate when all variables are fairly indepen-
dent. In practice, however, the output variables
are rarely independent, especially in the case of ill-
conditioned plants and highly interacting plants.
In these cases, it is more appropriate to use the
covariance of the output to monitor controller



performance. The benchmark covariance can be
the minimum variance benchmark, but it can be
any other benchmarks.

5.1 Covariance-based Indices and Suboptimality

Directions

To find a direction in ỹ(k) along which the worst
suboptimality occurs, we find the direction p with
‖p‖ = 1 and project ỹ(k) and ỹmv(k) to this
direction:

Πpỹ(k) = pT ỹ(k)/pT p = pT ỹ(k)

Πpỹmv(k) = pT ỹmv(k)/pT p = pT ỹmv(k)

The variance of the projections are, respectively,

var(Πpỹ(k) = pT cov(ỹ(k))p

var(Πpỹmv(k) = pT cov(ỹmv(k))p

The direction p along which the largest variance
ratio occurs is

p = arg max
pT cov(ỹ(k))p

pT cov(ỹmv(k))p
(10)

The direction of p after maximization shows the
direction with the most potential to improve the
performance. The solution to this problem is a
generalized eigenvector problem,

cov(ỹ(k))pi = µicov(ỹmv(k))pi

where pi is the generalized eigenvector corre-
sponding to the ith largest generalized eigenvalue
µi. The ”volume” of the suboptimality or variance
inflation due to poor control performance is:

l
∏

i=1

µi

where l is the number of selected directions. The
volume-based performance can be defined as

Iv(l) =

(

l
∏
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)−1

McNabb and Qin (McNabb and Qin, 2003) show
that for all possible projections Π,

cov (Πỹmv(k)) ≤ cov (Πỹ(k))

Therefore, µi ≥ 1 and Iv is between zero and one.
When ỹ(k) achieves the minimum variance perfor-
mance, Iv approaches one. On the other hand, Iv

close to zero indicates a very poor performance.

The volume based performance index can be very
small due to the multiplication effect of several

small numbers. To normalize this effect, we define
a radius-based performance index as follows:

Ir(l) = (Iv(l))
1/l

=

(

l
∏

i=1
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)−1/l

This index also ranges between zero and one. It
provides a geometric average of the poor perfor-
mance in all l directions. Note that Iv(l) and
Ir(l) consider the covariance matrices of ỹ(k) and
ỹmv(k), whereas the η index focuses on variance
only.

After a significant suboptimality is detected by
using Iv(l) or Ir(l), the major directions of sub-
optimality are already calculated as pi. These
directions can then be used to locate the main
sources of suboptimality.

5.2 Industrial Example

This example uses industrial data from a wood
waste (hog fuel ) burning power boiler. Five second
samples of process variables (PV) with their cor-
responding setpoints (SP) and controller outputs
(OP) were collected from the DCS over an eleven
day period. The process and instrumentation dia-
gram of the boiler process is shown in Figure 1. We
selected five PV’s with associated SP’s as shown in
Table 1. Full open loop testing was not possible on
the power boiler. We therefore assume that each
PV had a single time delay associated with the full
set of manipulated variables, corresponding to a
diagonal interactor. The individual time delays for
each of these loops (in units of sample periods)
were 1, 34, 1, 2 and 1, respectively. All analysis
was performed on data scaled to zero mean and
unit variance.

Table 1. Power boiler tags used in anal-
ysis

Variable # Tag Description

1 FC1 Total air flow

2 PC1 Boiler master (900# header pressure)
3 PC2 Forced draft fan pressure

4 PC3 Furnace pressure
5 PC4 Overfire air pressure

Time series plots of (PV −SP ) for each of the five
loops are shown in Figure 2 and are divided into
50 sequential 250 minute periods.

To apply the covariance based monitoring to this
problem we first select the significant number of
principal components of the five process variables.
We choose the number of PC’s to be four and
calculate the volumetric performance index (Iv)
and the radius-based performance index (Ir) as
shown in Figure 3. Both indices show a clear drop
from Period I to Period II. For Period I the Ir

index is around 0.6, which means on average each
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Fig. 2. Time series of setpoint error (PV − SP )
for five power boiler loops

variable is about 60% of its optimal performance.
For Period II the average performance drops to
about 40% of its optimal performance.

In reality, however, it is usually the case that
some loops are worse performers than others.
To identify the directions of suboptimality and
the contributing variables, two 250 minute blocks
were chosen for more detailed analysis. The period
extending from 3500 minutes to 3750 minutes (the
15th analysis block) is used to represent the be-
havior before the shift in control performance and
the period extending from 10000 minutes to 10250
minutes (the 41st analysis block) is used to rep-
resent the system behavior following the shift in
control performance. The generalized eigenvector
analysis was performed separately on these two
periods as shown in Equation (10). The upper and
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Fig. 3. Trends of the Iv index (top plot) and the Ir
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lower plots on the left of Figure 4 show the eigen-
values for the two time periods (labeled as dataset
#1 and dataset #2). The middle plots show the
first eigenvectors and the right plots show the
second eigenvectors for both time periods. It is
clear that for both time periods, the major subop-
timality lies in two directions, although there are
five controlled variables. The first direction of sub-
optimality is dominant in both time periods, with
dataset #1 about 70-fold and dataset #2 about
110-fold for potential improvement. Since the sub-
optimality is adequately captured in two direc-
tions, the covariance-based MIMO performance
monitoring indicates that the suboptimality in
the five controlled variables is highly correlated.
It is possible that by improving the performance
of one loop, the other loops are improved due to
correlation or interaction. For both time periods
the directions of suboptimality point to variable 1
(FC1) for the most potential to improve and vari-
able 2 (PC1) for the least potential to improve. It
is likely that by improving the performance of FC1
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other loops will be improved due to interaction.
By examining the process diagram in Figure 1, it
is confirmed that this is likely because FC1 is the
total air flow which directly affects all other loops
except PC1, which is the steam header pressure.
A significant shift in the second direction occurs
between datasets #1 and #2. In dataset #1 PC2
dominates the second eigenvector but in dataset
#2 FC1 and PC3 dominate.

6. CONCLUSIONS

The main contributions of this paper are the use of
covariance based monitoring and the application
of a generalized eigenvector based technique for
identifying the major directions of suboptimality
of MIMO feedback control systems. This frame-
work provides a systematic performance diagnosis
method as well as covariance-based performance
assessment indices. Future work will focus on the
impact of sensor and actuator faults on control
performance.
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