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Abstract:
Partial Least Squares (PLS) is a technique used to perform regression between
blocks of explanatory variables and dependent variables. PLS uses projections of
original variables along directions which maximize the covariance between these
blocks. It has been popular due to its data-reduction property and its ability to
handle collinearity within the data blocks. In this paper some issues which arise in
the the development of multivariate static models of industrial processes using PLS
regression are studied. An industrial example of the application of PLS regression
for the development of inferential sensors to predict the Bitumen Recovery in a
separation cell is shown. Some of the challenges encountered in the development
and online implementation of the inferential sensors and the proposed solutions
are presented.
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1. INTRODUCTION

In many chemical engineering applications, con-
trol variables may not be available as frequently as
would be desired for satisfactory closed-loop con-
trol. For example, key product quality variables
are available after several hours of lab analysis. Of-
ten, it is possible to estimate the quality variables
using other process variables which are measured
frequently. The relationship or the model that is
used to predict quality variables using other pro-
cess variables is often called a “soft-sensor”. The
quality-variable estimator is called a soft-sensor
since it is based on software calculations rather
than a physical instrument. The soft-sensors de-
veloped in this way can be used for inferential
control or process monitoring. Discussions on in-
ferential control can be found in (Kresta et al.,

1994; Parrish and Brosilow, 1985; Amirthalingam
et al., 2000; Li et al., 2002).

Multivariate statistical techniques such as Princi-
pal Components Analysis (PCA) and PLS have
been applied for process monitoring, fault detec-
tion and static modelling in chemical processes
(Kresta et al., 1991; Qin and McAvoy, 1992;
Qin, 1993; Nomikos and MacGregor, 1995; Ricker,
1988). In addition, extensions of these approaches
for handling dynamic and auto-correlated data
have been proposed (Ku et al., 1995; Lakshmi-
narayanan et al., 1997). In particular, PLS regres-
sion is a popular technique used in the develop-
ment of soft-sensors in the form of static models
for multivariate processes. The main advantage
of using PLS for process modelling comes from
its ability to decompose the problem of obtaining



model coefficients from multivariate data into a
set of univariate regression problems. Univariate
regression is performed on latent variables ob-
tained by projecting the input and output data
onto directions along which the covariance be-
tween these variables is maximized. The models
obtained through this exercise can then be used
for monitoring the current state of the process.
The advantages in using static models for mon-
itoring include the simplicity of the models and
the ease of implementation and maintenance.

2. PLS REGRESSION

The commonly used procedure for PLS is as
follows:

Consider the zero-mean, unit variance data ma-
trices X ∈ <N×m and Y ∈ <N×p where N is
the number of observations, m is the number of
process variables and p the number of quality vari-
ables. A linear static model explaining Y based on
X is given as follows:

Y = XC + E (1)

Using the well known Ordinary Least Squares
regression (OLS) we obtain the solution:

Ĉols = (XT X)−1XT Y (2)
However, because of the high degree of correlation
among the variables within the predictor space the
matrix XT X may be ill-conditioned. In addition
we may be interested in obtaining the directions
along which the common (second-moment) infor-
mation between these blocks is concentrated. To
satisfy these objectives, the following procedure
is adopted in PLS regression. The matrix X is
decomposed into a score matrix T ∈ <N×a and a
loadings matrix P ∈ <m×a, where a is the num-
ber of PLS components used. Hence the following
decomposition is achieved:

X = TPT + E (3)

where E is a residual matrix. Similarly Y is
decomposed as

Y = UQT + F (4)

To obtain the loadings vectors the following algo-
rithm is used:

(1) Initialize, Y1 = Y and X1 = X and i = 1.
(2) Perform SVD on XT

i Yi and calculate ji,
the left singular vector corresponding to the
largest singular value ωi and qi the corre-
sponding right singular vector. This SVD
calculation corresponds to capturing the di-
rection (ji,qi) which maximizes covariance
between Xi and Yi.

(3) Let ti and ui be the corresponding scores.
Perform a univariate regression between ti

and ui to obtain bi.
(4) The loadings vector for Xi is given by

pi =
XT

i ti

tT
i ti

(5)

(5) Deflate Y and X according to

Yi+1 = {Yi − bitiqT
i } (6)

Xi+1 = {Xi − tipT
i } (7)

(6) Set i = i + 1.
(7) Go to step 2.

After a stages the approximations are

X≈ t1pT
1 + t2pT

2 + · · ·+ tapT
a (8)

Y≈ u1qT
1 + u2qT

2 + · · ·+ uaqT
a (9)

Hence we get the PLS estimate of the model
coefficients as:

Ĉpls = J(PT J)−1BQT (10)

where, the columns of J and Q contain the singu-
lar vectors of the SVD’s carried out at each stage,
the columns of P contain the loadings vectors of
the X matrix and B is a diagonal matrix contain-
ing the latent variable regression coefficients from
each stage.

3. PROCESS DESCRIPTION

An industrial example of the application of PLS
regression is presented in this section. Soft-sensors
were developed to predict the Bitumen Recov-
ery in a separation cell. These soft-sensors have
been implemented online at Suncor Energy’s Ex-
traction facility at Fort McMurray in Alberta,
Canada. The separation cell is used in the ex-
traction of bitumen from oil sands. Oil sands
are deposits of bitumen, that must be treated to
convert them into crude oil which can then be
refined in conventional refineries. The main pro-
cesses in converting the oil sands to crude oil are
Mining, Extraction and Upgrading. In the mining
stage, the oil sands are mined using trucks and
shovels. This is followed by the extraction stage in
which bitumen is separated from the sand using
processes such as froth-flotation. The bitumen is
then converted to crude oil in the upgrading stage.

The extraction operations can be briefly described
as follows: The oil sand is first passed through a
slurry preparation stage. The main operation in
this stage is to form a slurry using hot water,
oil sands and caustic. Heat is used to reduce
the viscosity of the bitumen. Caustic helps in
the attachment of bitumen to the air in the



froth formation while releasing it from the sand
particles. The bitumen then forms small globules
that are important in the formation of froth.
Agitation also aids in the breaking up the oil sand.
The slurry passes through a series of vibrating
screens that separate and reject any rocks or
clumps of clay still present in the slurry. It is then
pumped into separation cells.
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Fig. 1. Process Flow-sheet for Separation Cell

A schematic of a separation cell is shown in Fig.
1. The separation cell allows the slurry to settle
out into its various layers, the most important
layer being the froth layer which rises to the top.
The tailings sand sinks to the bottom. The middle
layer is called the middlings layer and consists of
bitumen, clay and water. The middlings remain
suspended between the sand and the bitumen
froth until it is drawn off and sent through the
secondary separation cell. The secondary separa-
tion vessel extracts the remaining bitumen from
the middlings. The main objective in the oper-
ation of the separation cell is to maximize the
amount of bitumen in the froth and minimize
the amount of bitumen lost in the tailings and
middlings streams. A measure of the efficiency
of operation of the separation cell is given by
the Bitumen Recovery which can be calculated
from the predictions of quality variables using the
following equation:

Rec =
FfrρfrCfr

FfrρfrCfr + FtρtCt + FftρftCft
(11)

where, Rec is the Bitumen Recovery in the cell,
Ffr, Ft & Fft refer to the Froth, Tailings and
Flotation Tailings flows, ρfr, ρt & ρft refer to the
Froth, Tailings and Flotation Tailings densities
and Cfr, Ct & Cft refer to the concentrations
of Bitumen in the Froth, Tailings and Flotation
Tailings in wt% respectively. Hence the quality
variables of interest are concentrations of Bitu-
men in the Froth, the Tailings and the Flotation
Tailings. In our soft-sensor development, we used
25 process variables, measured every minute, to
predict these 3 quality variables. Of the three
product variables, one was available through lab
analysis every 12 hours and the other two were
available every 2 hours.

4. CHALLENGES IN SOFT-SENSOR
DEVELOPMENT

While there have been other reported applications
of PLS regression for developing soft sensors, we
consider the current application to be especially
challenging. Monitoring the extraction of bitumen
from oil sands is a problem which poses some
unique challenges. These include, in the words of
a practicing engineer from this industry, “chang-
ing process conditions, wide operating regions, bad
data and lack of good software resources”. In addi-
tion we have encountered other challenging prob-
lems for which we have some suggested solutions.
The challenges and the proposed solutions for
bitumen recovery estimation are discussed below.
Many of these solutions may also apply to other
applications.

4.1 Sample consolidation

One of challenges encountered while developing
these soft-sensors is due to the practice of physical
consolidation of samples of the quality variables.
It involves mixing a number of physical samples
of the product collected at different time instants
before performing lab analysis. For the process
under consideration, consolidation is achieved us-
ing a flow totalizer and a triggering mechanism.
When the cumulative flow in a line exceeds a
set point it sets off a mechanism which leads to
the collection of a sample in a container. The
consolidation mechanism is illustrated in Fig. 2.
This process continues for about 12 hours at the
end of which, the container has a mixture of the
samples collected over this period. This liquid is
then stirred for homogeneity and the consolidated
sample is used for analysis. In order to build
realistic models using such samples, it is impor-
tant that the modelling methodology including
the data pre-treatment mimic the process as much
as possible. Hence we resorted to time-averaging
of the input data as dictated by the sample con-
solidation mechanism before the actual regression
was performed.
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Fig. 2. Sample Consolidation mechanism

Let us assume that k + 1 samples were collected
at times T1, T1 + t1, T1 + t2, ..., T2 = T1 + tk, where



Froth Bitumen

V
a

lu
e

Sample
16 32 48 64 80 96 112 128 144 160 176

predicted actual

Froth Bitumen

V
a

lu
e

Sample
16 32 48 64 80 96 112 128 144 160 176

predicted actual

Fig 3. Predictions of Froth Bitumen using PLS Regression

T1 and T2 refer to times when the vessel was
removed for analysis and t1, t2, . . . , tk, refer to the
times when the trigger mechanism was engaged.
Then, assuming that equal volumes of the product
were sampled at the sample instant, the following
equation holds approximately:

Yav ≈ 1
k

tk∑
ti=t1

Y (ti)

Under the assumption that the process can be
represented well using a linear static model of the
form:

Y (ti) = a1u1(ti − td1) + a2u2(ti − td2)

+ . . . + amum(ti − tdm)

where, a1, . . . , am are the static regression coeffi-
cients of the m input variables u1, . . . , um and the
di is the time delay between the ith input and the
output, we get the expression:

Yav ≈ 1
k
{a1

tk∑
ti=t1

u1(ti − td1) + . . .

+am

tk∑
ti=t1

um(ti − td1)}

Hence time-averaging can be used to mimic the
sample consolidation mechanism.

4.2 Large sampling intervals and effect on data
size

Another challenge is in the large sampling times
for the quality variable. The sampling time for the
froth bitumen is 12 hours. This means that even
data collected over the course of a few months
would yield very few values for the froth bitumen.
For example we obtained only 60 samples over
30 days. In addition the ratio of sampling time
of the process variables to that of the quality
variable is 720. Developing multi-rate models with
such large sampling ratios given that we have
25 inputs, is not practical. For static regression

problems where we are interested in capturing
spatial relationships between different variables
rather than temporal relationships, we can use
the data at the slow sample rates. This is the
procedure adopted in the models developed in
this exercise. As pointed before this reduces the
number of samples available for modelling.

4.3 Using interpolated process data while identifying
dynamic models

In problems where dynamic models are required,
it has been pointed out in chemical engineering
literature that one can use simple interpolation
devices such as linear interpolation provided the
measurements are not very noisy (Amirthalingam
et al., 2000). However, it is important to real-
ize the potential dangers in using such interpo-
lation devices. These interpolation devices intro-
duce additional data where there is none. Hence
the identification problem becomes one of iden-
tifying “correct” models from “wrong” data. The
problem with ZOH interpolation is that, when the
ZOH interpolation device is used, the output re-
mains flat till the next sample arrives even though
there might be changes in the inputs. The use of
linear interpolation is generally accepted in the
modelling phase even though it is a non-causal
operation because it is carried out as an off-line
exercise. However, the use of linear interpolation
could lead to the identification of non-causal mod-
els for the particular input-output set considered.
This is because the output starts to move in the
direction of the next value even before the input
starts moving. When using routine operating data
for identification, there may be feedback induced
(controller) correlations hidden in the data. In
these correlations, the output is the cause and
the manipulated input is the effect. Hence the
coefficients being identified may be those of the
controller rather than those related to the process.
One may be further misled by the fact that the
predictions of these models are quite good. Hence
it is important to supplement and validate the
results of “black-box” identification approaches
using process knowledge of gain directions.
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Fig 4. Predictions of Tailings Bitumen using PLS Regression
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Fig 5. Predictions of Flotation Tails Bitumen using PLS Regression
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Fig 6. Online prediction of Bitumen Recovery

4.4 Estimating time delays in industrial processes

The problem of time-delay estimation was found
to be particularly challenging. This is tackled in
the identification literature using correlation anal-
ysis or by looking at cross-correlation between
variables at different lags. However these are very
difficult to apply in practice because of the non-
stationarity of the signals, the multivariate nature
of process data and correlations induced by oper-
ational and control strategies. In practice, using
transport lags obtained from process knowledge
or specific tests gives more reliable results. In this
exercise we estimated the time delays using our
knowledge of the physical locations of the sensors
while making sure that material recycles were
taken into account. We have assumed the trans-
port delays to be constant. Hence, the variation
in these transport lags due to varying throughput

is of concern. It is not easy to fix this problem
in the current framework and hence we have not
attempted it here. However the problem of time
delay estimation from routine operating data is an
important problem which needs to be addressed
by the chemical process community.

4.5 Nonlinear transformations

While developing models of systems using linear
regression it is desirable to have normally dis-
tributed errors affecting the system and a linear
relationship between the variables in the system.
However, in practice these conditions may not
hold. For example, the presence of a nonlinear
relationship between the dependent and indepen-
dent variables, or non-normality of the indepen-
dent variables or the errors manifests itself as non-
normality of the dependent variable. Hence it is



important to check whether it might be inappro-
priate to identify a standard linear model using
a given set of data. If non-linearity is suspected,
we may need to use suitable transformations of
the variables to coax the dependent variable to
normality or to produce a linear relationship be-
tween X and Y. A dependent variable may not
be normally distributed if its values are bounded,
creating a skewed distribution. When it comes to
inference of parameters from regression, it is im-
portant to ensure that the errors are normally dis-
tributed. A non-normal dependent variable does
not necessarily mean a non-normal distribution of
errors. However, the converse is often encountered.
This argument is also supported by the common
practice of drawing conclusions about the error
distribution from the distribution of the resid-
uals. When the dependent variable is found to
be non-normal, one may consider using transfor-
mations to normalize the dependent variable. A
few common transformations that can be used for
dependent variables, include the logarithmic (Z =
log(Y )), exponential (Z = eY ), power (Z = Y p)
and logistic (Z = log(Y )

1−log(Y ) ) transformations.

For the Bitumen recovery separation cell, the dis-
tributions of two of the quality variables show
significant deviation from normality. They are
the Bitumen concentrations in the Tailings and
Flotation tailings. These quality variables take
non-negative values which are generally low, ex-
cept during upsets, which are characterized by
large spikes in these variables. Performing linear
regression without transformation leads to poor
prediction of these spikes. Due to the nature of the
distribution a specific nonlinear transformation
was applied on these dependent variables which
led to a significant improvement in the quality of
the predictions.

5. ONLINE RESULTS

The results of the predictions are shown in Fig. 3,
4 and 5, from which it is clear that there is great
potential for the use PLS regression for predicting
bitumen recovery.

The soft sensors developed using PLS regression
have been implemented online in Suncor Extrac-
tion’s Distributed Control System (DCS) and
their Plant historian (Fig. 6) and the results are
encouraging. These predictions are being used for
monitoring the bitumen recovery in the separation
cell. The plant personnel are happy to have a
simple tool which gives them advance warning of
a fall in the recovery and are satisfied with the
performance of the soft-sensors.

6. CONCLUDING REMARKS

An industrial application of PLS regression tech-
niques for developing soft-sensors for predicting
infrequently measured quality variables in a Bitu-
men extraction process has been described. Some
of the challenges in applying these techniques
to industrial problems have been presented with
some proposed solutions.
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