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Abstract: Optimization of the fed-batch fermentation of Saccharomyces cerevisiae
is analyzed. Due to the limited oxygen uptake capacity of the cells, the overflow
metabolite ethanol is formed when the substrate concentration is above some critical
value. This value decreases during the course of an experiment due to the reduction in
dissolved oxygen concentration resulting from biomass formation. Optimal operation
corresponds to regulating the substrate concentration along this time-varying critical
value. This paper proposes a novel strategy to implement this optimal solution,
whereby ethanol is fed along with the substrate and its concentration in the reactor
regulated around the inlet concentration value. Sub-optimal strategies of practical
interest are also discussed and simulation results are presented.
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1. INTRODUCTION

Biotechnology has risen to becoming one of the
active research areas in the control community. In
this work, the optimization of a key biotechno-
logical process, the production of baker’s yeast, is
studied. Though presented for baker’s yeast, the
results are generally applicable to fermentation
processes with microorganisms that present an
overflow metabolism.

Numerous models have been proposed to describe
the behavior of Saccharomyces cerevisiae under
different growth conditions (Nielsen and Villad-
sen, 1994). The model used in this work was pro-
posed by (Sonnleitner and Käppeli, 1986). It as-
sumes that the oxidative capacity of S. cerevisiae
is limited and constitutes a bottleneck in the ox-
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idative metabolism. The size of this bottleneck
may change from experiment to experiment and
even during a given experiment due to changes in
the cell metabolism, nutrient limitation, or other
factors (van Hoek et al., 1998). When the sub-
strate uptake rate exceeds the oxidative capacity,
the overflow metabolite ethanol is formed.

Maximization of biomass production is obtained
when the glucose flux exactly matches the ox-
idative capacity of the cells. However, industrial
bioreactors are often operated at substrate con-
centrations well under this critical value in order
to avoid yield losses when substrate is transformed
into ethanol, and/or accumulation of the over-
flow metabolite which might be toxic. This work
proposes a methodology for ensuring optimality
by operating the reactor at this unknown, time-
varying critical value.



Regulating the concentration of the overflow
metabolite has been used for the purpose of opti-
mization in several works (Axelsson, 1989; Chen et
al., 1995; Valentinotti et al., 2003). However, true
optimality would require regulating the ethanol
concentration at zero, which is not possible due
to the non-zero resolution of the ethanol sensor.
Thus, those approaches are at best sub-optimal.

In this work, the non-intuitive idea of adding the
overflow metabolite in the feed stream is used. By
choosing the ethanol regulation set point equal to
its concentration in the feed, optimal operation
can be achieved. The main advantage is that
the sensor resolution is no longer a critical issue.
Furthermore, if desired, sub-optimal operation
can be obtained by adjusting the ethanol set point
relative to its concentration in the feed.

The paper is organized as follows. In Section 2, a
macroscopic process model is presented. Section
3 formulates the optimization problem and its
nominal solution, while Section 4 discusses three
on-line operating strategies. The adaptive control
strategy is presented in Section 5 and simulation
results are shown in Section 6.

2. PROCESS MODELING

A macroscopic description of the metabolism of
S. cerevisiae fermentation includes the following
reactions:

S + a1O2
r1
→ b1X + c1CO2 (1)

S r2
→ b2X + c2CO2 + d2P (2)

P + a3O2
r3
→ b3X + c3CO2 (3)

where S is the substrate, P the reaction product
ethanol that can also be oxidized by the cells,
X the biomass, and CO2 and O2 carbon dioxide
and oxygen, respectively. ai, bi, ci, di and ri are the
yield coefficients and the reaction rate of the ith

reaction, respectively.

In this work, the overflow metabolism (bot-
tleneck) model proposed by (Sonnleitner and
Käppeli, 1986) is used. It assumes a limited res-
piratory capacity of the cells. The uptake of the
glucose fed to the reactor is assumed to occur at
the following rate:

rs = ks
S

S + Ks

[
g of S

g of X h

]
(4)

The rate at which the cells can oxidize the sub-
strate is given by :

ro = ko
O2

O2 + Ko

[
g of O2

g of X h

]
(5)

The rate ro is seen as the bottleneck since it
limits the amount of glucose that can be oxidized.

Thus, Reaction (1) takes place as long as sufficient
glucose and oxygen are available in the reactor.
Its rate is determined by the smallest of the rates
at which glucose and oxygen are taken up by the
cells, rs and ro/a1, respectively:

r1 = min
(

rs,
ro

a1

)
(6)

The glucose concentration at which the oxidative
capacity saturates is defined as Scrit, for which
rs = ro/a1. It follows that Scrit = roKS/(a1ks −
ro) is a function of the dissolved oxygen concen-
tration O2. When the glucose flux is too large to
fit through the bottleneck, i.e. rs > ro/a1 cor-
responding to S > Scrit, the excess will overflow
into the reductive metabolism resulting in ethanol
production according to Reaction (2). This is in
fact what gives this metabolism its name. The rate
at which this reaction takes place is given by:

r2 = max
(

0, rs −
ro

a1

)
(7)

If the glucose flux does not use up the whole
oxidative capacity of the cells, the ethanol present
in the reactor is oxidized simultaneously via Reac-
tion (3). The excess oxidative capacity is given by
ro−a1rs, and the rate at which ethanol is oxidized
is therefore:

r3 = max
(

0,min
(

rp,
ro − a1rs

a3

))
(8)

rp = kp
P

P + Kp

[
g of P

g of X h

]
(9)

Based on the reaction model (1)-(3), the following
macroscopic mass balances can be derived:

d(V X)
dt

= (b1r1 + b2r2 + b3r3)V X (10)

d(V S)
dt

=−(r1 + r2)V X + FSin (11)

d(V P )
dt

= (d2r2 − r3)V X + FPin (12)

d(V O2)
dt

= kLaV (O∗
2 − O2) − (a1r1 + a3r3)V X

(13)
dV

dt
= F (14)

where F is the substrate feed rate, V the volume,
and Sin and Pin the inlet concentrations of S and
P , respectively. The dissolved oxygen concentra-
tion in the bioreactor is given by (13), where kLa
is the overall mass transfer coefficient, and O∗

2 the
dissolved oxygen equilibrium concentration. For
simplicity, it is assumed that kLa and O∗

2 remain
constant throughout the experiment.

The model parameters are given in Tables 1 and
2, while the operating and initial conditions used
in the simulation are provided in Table 3.



Parameter Value Unit

a1 0.396 g of O2/g of S
b1 0.490 g of X/g of S
c1 0.590 g of CO2/g of S
b2 0.050 g of X/g of S
c2 0.462 g of CO2/g of S
d2 0.480 g of P/g of S
a3 1.104 g of O2/g of P
b3 0.720 g of X/g of P
c3 0.625 g of CO2/g of P

Table 1. Yield coefficients for the pro-
posed reaction mechanism.

Parameter Value Unit

ks 3.500 g of S/g of X h
ko 0.256 g of O2/g of X h
kp 0.170 g of P/g of X h
Ks 0.100 g of S/l
Ko 0.001 g of O2/l
Kp 0.100 g of P/l

Table 2. Kinetic parameters for the
rates rs, ro, and rp.

Variable Value Unit

Sin 300 g/l
Pin 10 g/l
O∗

2 0.039 g/l
kLa 250 h−1

Vmax 8 l
Fmax 3 l/h

Xo 1.5 g/l
So 0.023 g/l
Po 10 g/l
O2o 0.039 g/l
Vo 4 l

Table 3. Operating and initial condi-
tions

3. OPTIMIZATION PROBLEM AND
NOMINAL SOLUTION

From a practitioner’s perspective, the goal is to
maximize the amount of biomass with minimum
batch time, which in fact are two objectives in one.
Thus, from an optimization perspective, these two
objectives need to be combined. In this paper, the
batch time is considered as the cost function to
be minimized, and the biomass productivity as a
constraint to be met. As a result, the optimization
problem is formulated as follows: given opera-
tional constraints, determine the feeding strategy
that minimizes the batch time while ensuring that
the amount of biomass at final time is at least the
prescribed quantity (V X)des:

min
tf ,F (t)

J = tf (15)

subject to (10) − (14)

0 ≤ F (t) ≤ Fmax

V (tf ) ≤ Vmax, V (tf )X(tf ) ≥ (V X)des

where tf is the final time, Vmax the maximal
volume, Fmax the maximum feed rate at which

the substrate can be fed, and (V X)des the desired
minimal amount of biomass computed as:

(V X)des = VoXo + b1Sin(Vmax − Vo) (16)

which corresponds to the amount of biomass that
can be attained from the substrate. Note that, due
to the presence of ethanol in the feed, it is possible
to produce slightly more biomass than (V X)des.
The optimal solution of (15) obtained numerically
is shown in Figure 1.
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Fig. 1. Optimal feed rate profile and evolutions of
oxygen and substrate concentrations.

It has been argued in Sonnleitner and Käppeli
(1986) that exactly filling the bottleneck is opti-
mal in some sense. Here, it will be shown that,
for the optimization problem (15), the optimal
solution in fact corresponds to exactly filling the
bottleneck, i.e. regulating S at Scrit. To arrive
at this conclusion, the two cases with S ≥ Scrit

and S ≤ Scrit are considered and it follows that
S = Scrit is indeed optimal.

• For S ≥ Scrit, biomass is produced from
the substrate by Reactions 1 and 2, and
eventually the overflown ethanol is converted
to biomass through Reaction 3. Thus, for
the consumption of one unit of substrate,
the quantity of biomass produced is (b1α +
(b2 + d2b3)(1 − α)), where α = r1/rs, 0 ≤
α ≤ 1. Since b1 > (b2 + d2b3), the maximum
corresponds to α = 1, i.e. r1 = rs where the
bottleneck is exactly filled. So, for S > Scrit,
the desired productivity cannot be achieved
with the substrate alone, and some of the
ethanol in the feed stream must be consumed
in order to produce the difference in the
desired biomass production.

• For S ≤ Scrit, there is space in the bottleneck
for some of the ethanol in the inlet to be
converted to biomass, i.e. r3 = (ro−a1r1)/a3.
So, the rate of production of biomass is:
( b1

a1
β + b3

a3
(1 − β))roXV , where β = a1r1/ro,

0 ≤ β ≤ 1. Since, b1
a1

> b3
a3

, the maximum
value is for β = 1, i.e. r1 = ro/a1. In other
words, the bottleneck should be entirely filled



with substrate in order to minimize time,
though the desired productivity could be
achieved even by partially filling it.

For the initial condition S(0) = Scrit(O2(0)), the
optimal input F ∗ that enforces S = Scrit can be
obtained by differentiating rs = ro/a1 once with
respect to time:

F ∗ = V
N

D

∣∣∣∣
S=Scrit

(17)

where

N = a1KoksS
2(kLa(O∗

2 − O2) − roX) + KskoO
2
2rsX

D = a1KoksS
2O2 + KskoO

2
2(Sin − S)

The first part of the feed rate profile is nearly
exponential when oxygen is not limiting, while
the second part is almost linear when oxygen
limitation occurs after about 10 h. The optimal
solution is t∗f = 16.12 h. Figure 1 also indicates
that Scrit reduces with time.

4. ON-LINE OPERATING STRATEGIES

Since the model parameters might not be accu-
rately known and can vary during the batch, the
feed rate expression (17) cannot be used to imple-
ment the optimal strategy. Instead, it is possible
to use the ethanol concentration measurement P
to adjust the substrate feed rate F .

As seen in the previous section, optimality re-
quires r2 = r3 = 0, i.e. neither production
nor consumption of ethanol. One possibility is
to track the amount of ethanol V (t)P (t) =
(V P )ref (Valentinotti et al., 2003). Another pos-
sibility, which involves tracking the concentration
of ethanol with Pin �= 0, is discussed next.

Application of the chain rule of differentiation to
(12) gives:

dP

dt
= (d2r2 − r3)X +

F

V
(Pin − P ) (18)

Assume that Pin is constant and the ethanol
concentration is regulated around the value Pref .
If P (t) = Pref = Pin, then dP/dt = 0 implies
(d2r2− r3) = 0. However, since r2 and r3 are non-
negative and cannot be positive simultaneously,
r2 = r3 = 0.

In addition, depending on the relative values of
Pref and Pin, sub-optimal solutions are possible:

• Pref < Pin (for r2 = 0 and r3 > 0): Ethanol
is constantly consumed and S < Scrit.

• Pref > Pin (for r2 > 0 and r3 = 0): Ethanol
is constantly produced and S > Scrit.

The larger the difference |Pref − Pin|, the more
sub-optimal the operation will be.

Though it is preferable to keep the operation opti-
mal, there might be biological reasons for choosing
sub-optimal operation. Consider the optimal case
where the ethanol concentration is regulated at
Pin. Then, for any corrective action needed, for
example, to reject a perturbation, the system has
to switch from oxidative to reductive metabolism
and vice-versa. In other words, if excess ethanol is
produced, some space needs to be created in the
bottleneck for it to be consumed. In contrast, this
change of metabolism need not take place in sub-
optimal strategies. Among the two sub-optimal
strategies, Pref < Pin leads to S < Scrit, implying
that maximal yield is still achieved, but the batch
time is longer. On the other hand, Pref > Pin

leads to shorter batch times at the cost of a
reduction in yield.

The particular case Pin = 0 was considered in
(Valentinotti, 2001). There, Pref had to be as low
as possible in order to be nearly optimal. Thus,
Pref was chosen based on the resolution of the
ethanol sensor, which is no longer the case when a
non-zero Pin is used. Furthermore, with Pin = 0,
it is only possible to control the system in the
overflow situation since negative concentrations
cannot be measured. In contrast, with a non-zero
Pin, the reference is shifted up to Pin and the
system becomes observable and controllable for
all three cases - overflow, critical, and underflow.

5. CONTROLLER DESIGN

In this section, a linear adaptive controller will
be used to maintain the ethanol concentration P
constant. Thus, the computation of a linear model
will be discussed first, followed by the design of the
adaptive controller.

5.1 Linear model

The bioreactor is operated in the fed-batch mode
and hence has no steady-state operating point.
However, for optimal operation, P (t) = Pin and
S(t) = Scrit. So, linearization will be around these
optimal values for P and S while using averaged
values for the others, e.g. V̄ and F̄ .

In order to derive a linear model, it is assumed
that (V S) is at quasi-steady state:

d(V S)
dt

= −(r1 + r2)XV + FSin = 0 (19)

The linearized dynamics will be different depend-
ing on whether the second or the third reaction
takes place in addition to r1. Thus, two cases need
to be considered:

• Case A: r2 �= 0, r3 = 0. Here, r1 = ro/a1

and, from (19), r2X = (F/V )Sin−(ro/a1)X.
Using this expression in (18) leads to:



dP

dt
=

F

V
(d2Sin + Pin − P ) − d2roX

a1
(20)

or, in linearized form:

dP

dt
=− F̄

V̄
P +

d2Sin + Pin − Pref

V̄
F (21)

− F̄

V̄ 2
(d2Sin + Pin − P )V − d2ro

a1
X

dV

dt
= F (22)

The linearized discrete-time model then
reads:

P (kh) =
B1(q−1)
A(q−1)

(F (kh) − w1(kh)) (23)

where B1 = B̄1(1 − (1 − e(F̄ /V̄ )h)q−1), A =
(1 − q−1)(1 − (1 − e−(F̄ /V̄ )h)q−1) and w1 =
d2roX/(a1B̄1), with B̄1 = (d2Sin + Pin −
Pref )/V̄ , h the sampling period, kh the sam-
pling instant, and q−1 the backward-shift op-
erator.

• Case B: r2 = 0, r3 �= 0. Here, r1 = rs and,
from (19), r1X = (F/V )Sin. Furthermore,
assuming that the excess oxidative capacity
is small, i.e. rp > (ro − a1rs)/a3, one ob-
tains r3 = (ro − a1r1)/a3, and thus r3X =
r0X/a3 − (a1/a3)(F/V )Sin. Using this last
expression in (18) gives:

dP

dt
=

F

V
(
a1

a3
Sin + Pin − P ) − roX

a3
(24)

Similarly, linearization and discretization
lead to the following discrete-time model:

P (kh) =
B2(q−1)
A(q−1)

(F (kh) − w2(kh)) (25)

where B2 = B̄2(1 − (1 − e(F̄ /V̄ )h)q−1),
B̄2 = (a1Sin/a3 + Pin − Pref )/V̄ and w2 =
roX/(a3B̄2).

The following averaged linearized discrete-time
model will be used:

P (kh) =
B(q−1)
A(q−1)

(F (kh) − w(kh)) (26)

where B = (B1 + B2)/2 and w = (w1 + w2)/2.

Though the expressions for w1 and w2 are differ-
ent, it is interesting to note that when Pref =
Pin, w1 = w2. In both linearized models, w is
the input disturbance corresponding to the sub-
strate flux needed for biomass growth. Since the
biomass grows exponentially in the first phase and
linearly in the second, the key problem is that
of rejecting an unstable disturbance, for which
standard PID-type controllers are inappropriate
(Axelsson, 1989). Thus, an adaptive controller
based on the internal model principle for dis-
turbance rejection is used here (Valentinotti et
al., 2003).

5.2 Adaptive controller design

The RST polynomial control law with Q-parame-
terization is given by (Tsypkin, 1991):

RoF = −SoP + TPref − Q(AP − BF ) (27)

where Ro, So, and Q are polynomials in the
backward-shift operator q−1. The closed-loop
characteristic polynomial is independent of the
choice of Q and is given by Ac = A Ro + B So.

The resulting closed-loop system using the control
law (27) is shown in Figure 2. The closed-loop
output is given by:

P =
BT

Ac
Pref − (Ro − Q B)

Ac
wB (28)

with wB = Bw a filtered version of the distur-
bance w.

F
w

PPref 1/Ro B/A

Q

So

T

B A

-

-

-

-

w
B

Fig. 2. Block diagram of the controlled system.

The goal of adaptation is to minimize the second
term in (28) by adjusting Q:

min
Q

‖ε1 − ε2Q‖2 (29)

where the signals ε1 and ε2 are defined as ε1 =
Ro

Ac
wB and ε2 = B

Ac
wB . Note that wB can be esti-

mated from the input and output using ŵB(kh) =
AP (kh) − BF (kh). Equation (29) corresponds to
a linear regression problem for the elements of Q,
for which on-line adaptation can be done using
standard algorithms (Ljung, 1987).

6. SIMULATION RESULTS

The optimal and the two sub-optimal strategies
proposed in Section 4 are implemented in simula-
tion on the model presented in Section 2 using the
controller described in Section 5. The substrate
concentration and the feed rate for the various
strategies are shown in Figures 3 and 4, and the
numerical results are given in Table 4.

Strategy Pin Pref X(tf ) V (tf ) tf
1 10 8 74.71 7.95 16.26
2 10 10 74.25 8.00 16.12
3 10 12 74.25 8.00 16.14

Table 4. Optimization results with the
various strategies for (V X)des = 594 g.

For the optimal Strategy 2, the substrate is always
at its critical value Scrit(O2). Strategies 1 and 3
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implement S < Scrit and S > Scrit, respectively
(see Figure 3).

For the case Pref < Pin, since the bottleneck is
not filled with substrate alone, part of the ethanol
in the feed is converted to biomass. This way, a
slightly higher X(tf ) is obtained. Though the feed
stops before the reactor is full, the final time is
larger. On the other hand, when Pref > Pin, there
is overflow and the reactor is filled slightly faster.
However, once the reactor is full, the productivity
is less than the desired one. Thus, there is a small
batch phase with F = 0 (see Figure 4) so as to
produce the required biomass from ethanol.

As seen in Table 4, the minimal time is obtained
with Strategy 2. Implementation is by regulating
P (t) around Pin. Note that no information regard-
ing the model parameters is used in the controller,
and the optimal solution is enforced solely from
the ethanol measurement through feedback.

7. CONCLUSIONS

A non-intuitive approach for the optimal oper-
ation of fed-batch fermentations has been pre-

sented. This consists of adding a small amount of
product in the feed solution and maintaining the
product concentration in the fermenter constant
at its inlet value.

The proposed operating strategy allows main-
taining the desired metabolism (either overflow,
critical or underflow) even when changes in the
value of Scrit occur due to oxygen limitation. In
fact, when the oxygen concentration is limiting,
regulating P forces the substrate concentration
S to decrease in order to match the oxidative
capacity of the cells.

Although the analysis and the simulation study
were done for S. cerevisiae, it is possible to use
the proposed approached with other microorgan-
isms presenting an overflow metabolism such as
E. coli, a bacteria used for recombinant protein
production.
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