BIOMASS RECONSTRUCTION IN A WASTEWATER TREATMENT BIOFILTER
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Abstract: this paper is concerned with a pilot-scale fixed-bed biofilter used for nitrogen
removal from municipal wastewater. Process dynamics is described by a set of mass
balance partial differential equations, which allow the evolution of the several component
concentrations along the biofilter axis to be reproduced. Based on sets of experimental
data collected over a several-month period, unknown model parameters are estimated by
minimizing an output error criterion. The resulting distributed parameter model and a few
pointwise measurements of nitrate, nitrite, and ethanol concentrations can be used to
design observers, which allow the unmeasured biomass concentrations to be
reconstructed on-line. First, it is demonstrated that asymptotic observers are unsuitable
for the model structure. Then, a receding-horizon observer is designed and tested, which

shows very satisfactory performance. Copyright © 2002 IFAC
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1. INTRODUCTION

Nitrogen removal is an important step in the
treatment of municipal wastewater. Over the past
several years, biofilter systems have received
considerable attention; see for instance the
conference proceedings and journals of the
International Water Association (IWA) (e.g. Oh et
al., 2001). The main advantages of these wastewater
treatment systems are their ease of use, compactness,
efficiency, and low energy consumption.

In a previous study (Vande Wouwer et al., 2002), a
dynamic model was developed based on
experimental data collected from a pilot-scale plant.
The resulting model can be used for simulation
purposes (e.g. for system analysis and design) or as a
basis for the development of a software sensor
(which can be used to estimate unmeasured variables
on-line). In contrast to a similar study by Bourrel et
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al. (1996; 2000), the proposed model does not
assume that steady state biomass conditions are
achieved, but on the opposite explains the very long
transient phases observed experimentally by growth
and inactivation processes associated to the biomass.

The biomass distribution inside the biofilter therefore
appears as a primary determinant of the plant
performance. Based on a few pointwise
measurements of nitrate, nitrite and ethanol
concentrations, and on the biofilter model, the
objective of this paper is to design distributed
parameter observers of the unmeasured biomass
concentration profiles. Asymptotic observers (Bastin
and Dochain, 1990), which do not rely on the
knowledge of the kinetic model and which have good
convergence properties in the case of continuous
systems, would a priori be a very appealing solution.
However, they appear unsuitable for the model
structure, and attention is therefore focused on



receding-horizon observers (Allgower et al., 1999;
Bogaerts and Hanus, 2001), which allow the state
estimation problem for nonlinear distributed
parameter systems to be solved in a very elegant way.

This paper is organized as follows. In the next
section, the experimental setup is described. Section
3 briefly discusses biofilter modeling, i.e. the
derivation of a reaction scheme, reaction kinetics, and
a system of mass balance PDEs. In Section 4,
distributed parameter asymptotic observers and
receding-horizon observers for the unmeasured
biomass concentration profiles are examined. Finally,
Section 5 is devoted to some conclusions.

2. PROCESS DESCRIPTION

The pilot plant under consideration (Fig. 1) is a
submerged biofilter packed with lava rock
(pouzzolane). The biofilter is fed with a synthesis
water composed of raw municipal wastewater and
additions of a concentrated nitrate solution. Several
biological reactions take place inside the biofilter,
e.g. removal of soluble COD and removal of nitrate
and nitrite.

The denitrification process consists of several
consecutive reactions of oxydo-reduction and implies
a transient accumulation of nitrite in the biofilter
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Oxydo-reduction is achieved thanks to an organic
carbon source (as donor of electrons). In this case,
ethanol is used.

Eight sampling points are evenly distributed along
the reactor axis, which allow the several component
concentration profiles (COD, nitrate and nitrite) to be
measured. The manipulated variables are the feed
flow rate F(t) to the biofilter and the inlet ethanol
concentration Sc in(t).
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Fig. 1. Experimental setup

The experiments accomplished with the pilot plant
aimed at sweeping the range of operating conditions
(various C/N and feed-flow rates; on the other hand,
the temperature was kept constant) observed in a full-
scale wastewater treatment plant located in
Montargis, France. The experiments were carried out
at the Institut National des Sciences Appliquées de
Toulouse (INSAT), France (Bascoul, 1995).

3. MODEL DEVELOPMENT
In this section, a system of mass-balance PDEs is
derived, and the unknown model parameters are
estimated from experimental data (for more details
see (Vande Wouwer et al., 2002)).
3.1 Reaction scheme
A macroscopic biological reaction scheme based on

the concept of "pseudo-stoichiometry" (Bastin and
Dochain, 1990) is used

vV, . . v o
v, carbon + —2Z nitrate — biomass +—= nitrite (1)
a, a;

Vg . . . .
v,carbon + —4 nitrite - biomass + Vsnitrogen (2)

a,
active biomass — inactive biomass (3)
where v; , 1 = 1,...,5 are the pseudo-stoichiometric

coefficients, and a; = 1.14, o, = 1.71 are Chemical
Oxygen Demand (COD) conversion factors.

3.2. Reaction kinetics

The specific growth rates are taken in the form

SNo3 1
ul = ul,m X (4)
* Snos Koz 14X, /Ky
Sno2 1
HZ = uZ,m X (5)
* Sno2 T Koz 14X, /Ky,
M3 :u3,max (6)

where the limiting substrates are nitrate (Syo3) and
nitrite (Syoz). The active biomass X, has an inhibition
effect on the two growth-associated reactions (1-2).
The inactivation process is assumed to have first-
order kinetics (the simplest possible model in the
absence of detailed knowledge about this process). In
the experiments considered in this study, the carbon
source is always in excess so that its limiting effect
cannot be quantified.

3.3. Mass balances
Based on this reaction scheme and kinetics, it is

straightforward to derive the following mass balance
PDEs
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where plug-flow conditions are assumed, v =—A is
€

the fluid flow velocity (A: cross-section area of the

. . c_1-
biofilter, € : bed porosity), and v; = —8Vi .
€

These equations are supplemented by boundary
conditions corresponding to the inlet concentrations.

PDEs (7-10) are solved numerically using a standard
method of lines procedure (finite differences with
about 30 nodes).

3.4. Parameter estimation

Pseudo-stoichiometry and kinetics involve 11
unknown model parameters (V; , 1 = 1,..,4, Himax, 1 =
1,..,3, Knos, Knoz, Kxar and Kxg»), whose numerical
values have to be inferred from experimental data.

Based on the assumption of constant (but unknown)

relative errors on the measurement data, the
following output-error criterion is defined:

8
Z (1n(yi,mes (Zl H tk )) - ln(Yi,mod (Zl H tk )))2
1=1
(11)
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where:

e constant relative errors on the measurements
Vimes are equivalent to constant absolute errors
on the logarithms of the measurements In(y; mes),

* 15 sample times, at each of which 3 component
concentrations (Sc¢, Syoz and Syo;) in 8 different
spatial locations are measured, representing a
total of 360 data points.

The output-error criterion (11) is minimized with
respect to the unknown model parameters using a
Levenberg-Marquardt algorithm. Positivity
constraints on the parameters are imposed through a
logarithmic transformation.

The model prediction is compared to the measured
signals (direct and cross-validation); see for instance
Fig. 2, which shows the spatial concentration profile

of nitrite, at a particular sample time. The model
agreement is satisfactory.
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Fig. 2: Spatial nitrite concentration profile (direct
validation - solid line: model prediction, circles:
measured values).

4. STATE ESTIMATION

The long transient phases observed in real-life
operations can be explained by biomass growth and
inactivation processes, i.e. the global rate at which
biomass develops determines the overall dynamics of
the biofilter. The uniformity of the biomass
distribution inside the porous bed is also a primary
determinant of the biofilter performance in face of
large variations of the feed conditions. For process
monitoring, it would therefore be interesting to
visualize the biomass concentration profiles on-line.
However, these profiles are difficult to measure in
practice, and it is required to resort to state estimation
techniques. With regard to the modeling
uncertainties, particularly of the reaction kinetics, it is
appealing to design an asymptotic observer (Bastin
and Dochain, 1990), which is the first solution
considered in the following.

4.1. Asymptotic observers

The mass balance PDEs (7-10) can be reformulated
in a more compact form as follows

08 _ _ %8

o Vo, KO (12)
or

0|&|_ —VBa& Ky

e e e @

where v is the velocity vector, K is the pseudo-
stoichiometry matrix, @ =pX, is the reaction rate

vector, and the state §2[5N03 Syo2  Sc Xa]T

is decomposed into the components in solution in the



fluid phase &; = [SNO3 Sno2 SC]T , which can be

measured on-line in a few locations along the reactor
axis, and the component anchored on the solid phase
& = [Xa] , which is not measured.

Following (Bastin and Dochain, 1990; Dochain and
Vanrolleghem, 2001), the procedure to develop an
asymptotic observer is to partition & into two

subvectors &, and &, &= [é a ﬁb]T , such that the
corresponding partition of the pseudo-stoichiometry
matrix K :[Ka Kb]T with

_Vl
1 1 -1

is of full row rank. Here, rank (K) =M = 3 (M is the
number of independent reactions in the reaction

scheme), so that rank (K,) should be 3.

This condition excludes the commonly used partition
into measured and non measured components, i.e.
£, =&, and &, =&, as rank (K,) = 2 only. Hence,

the following partition is selected

£ SNo3
£, { af}: Sxo, | and &, =[S¢] (15)
Eas X

a

which leads to a full row rank submatrix K,.

It is then possible to define a new state vector z by

z2=A,8, +&, :[AOf AOS]|:2af:|+ab (16)

where the matrix A is the unique solution of
A)K, +K, =0 (17)

The evolution of z is given by

E“AOf ﬁgaf +A05 éas +6E.’b (18)

Substituting the time derivatives by their expressions
(13), the equations of the asymptotic observer, from
which the reaction Kkinetics are eliminated, are
obtained

9% __, Ao ATINLTY (19)
ot 0z 0z

é’as :A(;sll:qi_AOf [&.’af _éb) (20)

For this observer to be completely defined, the
inverse A, (which, in the particular case under
consideration, is a scalar) is required. This
information can be obtained by solving equation (17),
which gives Ay, =0 !

The asymptotic observer is therefore not applicable
with the model structure (13) since the partition of
the state vector leads either to a submatrix K, which
is not full row rank or to a null matrix A . The only

way round would be to simplify the model and to
abandon the equation describing the biomass
inactivation process (as was the case in the work of
Bourrel et al., 2000), which we know is not
acceptable.

4.2. Receding-horizon observers

As the concentration measurements are rare and
corrupted by noises, the concept of full-horizon
observer (Bogaerts and Hanus, 2001), which uses all
the measurement information available up to the
current time, is extended to the distributed parameter
model of the biofilter.

The prediction step (between samples t, <t <t,,,)
corresponds to the solution of the model PDEs (12)

ﬁzw%+KM)

0st<t 21
at k+1 ( )

subject to initial conditions

&(0) =&y, (22)

and boundary conditions corresponding to the inlet
concentrations.

The correction step (at sampling times) corresponds
to the following optimization problem:

&o/k = ArgminJ, (&) (23)

&

with J, (§,) given by

_Z(ymes(t )= Y inod (1)) T Q) ™ ¥ mes () = ¥ imoa (1))

_| =1
24)

1 .
3e(€0) = 2 2 Wines (1) ~ ¥inaa (1) QU™ W (1) = Yo (1)
=1
where y..s represents the vector of measurements

(nitrate, nitrite and ethanol concentrations in 8
locations along the biofilter axis), Ymoq the



corresponding model prediction, and Q the
covariance matrix of the measurement errors.
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Fig. 3: Temporal evolution of the real (dots) and
estimated (solid lines) nitrate concentrations in
the 8 measurement locations, and concentration
measurements (circles) together with their 99%
confidence intervals.
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Fig. 4: Temporal evolution of the real (dots) and
estimated (solid lines) nitrite concentrations in
the 8 measurement locations, and concentration
measurements (circles) together with their 99%
confidence intervals.

In order to reduce the dimensionality of the
optimization problem (27-28), the vector of initial

conditions &, is expressed as a set of exponential
profiles, i.e.

€0, (z) = Exp(-P; 2) (25)

(1 = Sons, Son2, Sc, X,) which leads to the on-line
determination of 8 parameters.

The observer is first tested in simulation. The
biofilter model is used to generate simulation data,
which are corrupted by noise. Figures (3-4) compare
the temporal evolution of the real and estimated
concentrations in the 8 measurement locations

distributed along the biofilter axis, as well as the
measured concentrations together with their 99%
confidence intervals. Figure (5) compares the
biomass estimates with their real values (which are
not measured), whereas figure (6) illustrates the time
evolution of the corresponding spatial profiles.

As it is apparent from figures (3-6), the performance
of the full-horizon observer is very satisfactory.
Experimental application confirms this observation,
as depicted in figures (7-8) which show the initial
nitrite concentration profiles (initial measured profile
and initial exponential guess) and the same profiles
after 404 hours. The convergence of the observer is
satisfactory, despite the modeling errors and the
measurement noise. The observer performance
cannot however be fully tested, as biomass
measurements are not available.
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Fig. 5: Temporal evolution of the biomass
concentration estimates (solid lines) and of the
real, non measured, concentrations (dots).
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Fig. 6: Temporal evolution of the biomass spatial
profiles (solid lines) and of the real, non
measured, concentrations (dots).

5. CONCLUSION

In this paper, a distributed parameter model of a



fixed-bed biofilter used for nitrogen removal in
municipal wastewater treatment is derived. The
unknown model parameters are estimated from
experimental data collected over a period of several
months. The main contribution of this modeling
study is to show that the long transient phases
observed in real-life operations can be explained by
biomass growth and inactivation processes, i.e. the
global rate at which biomass develops determines the
overall dynamics of the biofilter.
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Fig. 7: Initial measured profile (circles) and
exponential initial condition (solid line) of
nitrite concentration.
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Fig. 8: measured profile (circles) and estimate (solid
line) of nitrite concentration after 404 hours.

As the biomass distribution cannot be measured in
practice, it is appealing to design a software sensor
(or state observer) to reconstruct this information on-
line. To this end, two options are considered: (a) an
asymptotic observer, and (b) an exponential observer.

The asymptotic observer does not rely on the
knowledge of the reaction kinetics, which is a
decisive advantage with regard to the model
uncertainties. However, the asymptotic observer
appears unsuitable for the considered model
structure, and an exponential observer, e.g. an
extended Kalman filter or an extended Luenberger
observer, is the only feasible solution. In this latter

class of observers, receding-horizon (or full-horizon,
when measurements are rare and corrupted by noises)
observer provide a very simple, yet rigorous, solution
to the nonlinear state estimation problem in
distributed parameter systems with stochastic
disturbances.
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