
 
 
 
 
 
 
 

BATCH MONITORING THROUGH COMMON SUBSPACE MODELS  
 
 

S. Lane, E.B. Martin and A.J. Morris 
 
 

Centre for Process Analytics and Control Technology, 
School of Chemical Engineering and Advanced Materials, 

University of Newcastle, Newcastle upon Tyne, NE1 7RU, England, UK 
 
 
 
 

Abstract: Multi-way statistical projection techniques have typically been applied in the 
development of monitoring models for single recipe or single grade production.  As defined, 
implementation of these techniques in multi-product applications necessitates the 
development of a large number of process models.  This issue can be overcome through the 
use of common sub-space models constructed by pooling the individual variance-covariance 
matrices. A second issue with multi-way approaches is the difficulty of interpreting multi-
way contribution plots. An alternative approach is the U2 statistic.  In this paper an extension 
is proposed, the V2 statistic, based on the cumulative contribution of variables at each sample 
point. The methodologies are demonstrated on two industrial applications. Copyright © 2002 
IFAC 
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1.  INTRODUCTION 
 
Over the last decade the emphasis in process 
manufacturing has changed. Quality and product 
consistency have become major consumer decision 
factors and are key elements in determining business 
success, growth and competitive advantage. 
Manufacturing products that meet their quality 
specifications first time result in higher productivity, 
reduced manufacturing costs through less re-work, 
give-away and waste. This all contributes to reducing 
the impact of the process on the environment by 
minimising raw materials and energy usage. The 
achievement of right first time production requires a 
reduction in process variability and thus the 
monitoring of process behaviour over time to ensure 
that the key process/product variables remain close to 
their desired (target) value is essential. This has led to 
a significant increase in the industrial application of 
statistical methods for interrogating the process to 
obtain an enhanced understanding of the process and 
the implementation of Statistical Process Control 
(SPC) for process monitoring and the early warning of 
the onset of changes in process behaviour.  
 
An area of rapidly growing interest for the monitoring 
of processes is that of Multivariate Process 
Performance Monitoring (MPPM). MPPM schemes 
have typically been based on the statistical projection 

techniques of Principal Component Analysis (PCA) 
and Projection to Latent Structures (PLS) and their 
multi-way extensions for batch processes.  Reported 
practical applications of MPPM have focused on the 
production of a single manufactured product i.e. one 
grade, one recipe, etc. with separate models being 
used to monitor different types of products 
(Kosanovich and Piovoso, 1995, Kourti et al, 1995, 
Rius et al, 1997, Martin et al, 1999). However, in 
recent years, process manufacturing has increasingly 
been driven by market forces and customer needs 
resulting in the necessity for flexible manufacturing to 
meet the requirements of changing markets and 
product diversification. Thus with many companies 
now producing a wide variety of products, there is a 
real need for process monitoring models which allow 
a range of products, grades or recipes to be monitored 
using a single process representation.  
 
The elimination of between group variation is a 
prerequisite for statistical process monitoring, so that 
interest can focus on within process (product) 
variability.  This normally requires constructing 
separate control charts for each type of product or 
grade to be monitored. In many process monitoring 
situations this may be impractical because of the large 
number of control charts required to monitor all the 
products being manufactured and the limited amount 
of data available from which to develop a process 



representation. An extension to multi-way PCA and 
multi-way PLS that allows the construction of a 
multiple group model is proposed based on combining 
the variance-covariance matrices of each of the 
individual groups. The loadings for the latent variables 
are then calculated from the pooled variance-
covariance matrix of the individual groups. Previous 
work has been published on the multiple-group PCA 
algorithm, Lane et al, (2001) and thus the paper 
focuses on the multi-group PLS algorithm. 
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where is the matrix of scaled process data for 
group i, Y

isX
is is the matrix of scaled quality data for 

group i, ni is the number of observations in group i, 
and g is the total number of groups. 

 
2. Construct the pooled kernel matrix: 
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2.  PROJECTION TO LATENT STRUCTURES 

 
A brief overview of the PLS algorithm is presented. A 
more detail discussion of the methodology can be 
found in Garthwaite (1994). The objective of PLS is to 
determine a set of latent variable scores that “best” 
describe the variation in the process data set (X) data 
set that is most influential on the quality data set (Y) 
data set. Using these latent variables it is then possible 
to construct a set of latent variable scores for the 
process data i.e. T = XW, where T is the matrix of 
latent variable scores and W is the matrix containing 
the latent variable loadings. A number of different 
algorithms have been proposed to derive the loadings 
for the latent variables associated with PLS.  One 
approach is based on the extensions to the NIPALS 
(Non-linear Iterative Partial Least Squares) method, 
which regresses the columns of X on Y directly. As a 
consequence, it is not feasible to combine a number of 
different data sets into a single model. 
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3. Calculate the loading vector (wk) for the process 

variables, where (wk) is the first eigenvector of the 
pooled kernel matrix (Rp). 

 
4. Once (wk) has been estimated, the latent variable 

scores for each group (tik) can be calculated: - 
 

kisik wXt =  (3) 
 

where tik is the matrix of principal component 
scores for group i and dimension k, wk is the 
common latent variable loading for dimension k 
and isX  is the scaled data matrix for group i. 

  
Lindgren et a,l (1993) presented a kernel algorithm for 
determining the latent variables that is based on the 
eigenvector decomposition of the variance-covariance 
matrix, . By adapting the kernel 
algorithm, a multiple group model can be constructed 
by pooling the individual variance-covariance 
matrices (R

XYYXR TT=

i). In this way the formal statistical basis 
for the multiple group model, as given by Flury 
(1987), can be extended. The variance-covariance 
approach is based on the hypothesis that the first a 
eigenvectors of each of the individual variance-
covariance matrices span the same common subspace. 
Although the model introduced by Flury (1987) 
related to common principal components, the 
hypothesis is also appropriate for PLS, since it is the 
variance-covariance matrices that are of interest. 
Krzanowski (1984) had previously shown that the 
common loadings for the latent variables could be 
extracted from a weighted sum of the individual 
variance-covariance matrices.  

5. The loading vectors (pi) and (qi) are then 
calculated as: 

  

ik
T
ik

is
T

i
ik

tt

Xt
p =           

ik
T
ik

is
T
ik

i
tt

Yt
=q  

(4) 

 
where is the matrix of scaled quality data. isY

 
6. The process and quality data matrices are then 

deflated:  
 

T
iikisnewis ptXX −=    
T
iikisnewis qtYY −=  

(5) 

  
The next (k + 1)th latent variable is then calculated:  

 
11 ++ = knewisik wXt  (6) 

   where wk+1 is the first eigenvector of the updated 
pooled kernel matrix: 3.  THE MULTIGROUP PLS ALGORITHM 

  The algorithm for constructing the multiple group 
model based on the kernel algorithm is as follows: 
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1. Calculate the kernel matrices for each individual 

group:   
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The iteration process continues with new values for pi 
and qi being calculated. Finally the data matrices 
Xisnew and Yisnew are deflated. The iteration process 
steps (1 to 6) are repeated until the required numbers 
of latent variables have been extracted.  
 
 
4. MPCA AND MPLS FOR MONITORING BATCH 

DATA 
 
Batch processes differ from continuous processes in 
that each variable, j, is measured at k time intervals for 
a total of I batches. The data set is thus three-
dimensional (I x J x K). As a consequence interest is 
in both the “between” and “within” batch variability. 
The application of MPCA or MPLS to the three-
dimension data array associated with batch 
manufacturing is equivalent to performing standard 
PCA or PLS on a large two-dimensional data matrix 
formed by unfolding the original three-dimensional 
array. The unfoding approach adopted in this paper is 
that proposed by Kourti et al, (1995) and demonstrated 
in Fig. 1. This approach allows the variability between 
batches to be analysed by summarising the variability 
in the data with respect to both variables and their 
time variation. The data contained in the two-
dimensional matrix is mean centred and scaled prior to 
applying either MPCA or MPLS. By subtracting the 
mean of each column from the two-dimensional data 
matrix the non-linearities are effectively removed 
from the data. 

Sample points
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Batches
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Fig. 1. Data unfolding 
 
 

5.  MULTIPLE GROUP MPCA AND MPLS 
 

As described in Section 3, the pooled correlation 
(variance-covariance) approach is based on the 
existence of a common eigenvector subspace spanned 
by the first a eigenvectors of the individual correlation 
(variance-covariance) matrices. A formal statistical 
model was given by Flury (1987), who computed the 
common principal components using Maximum 
Likelihood Estimation (MLE). Krzanowski (1984) had 
previously demonstrated that the common principal 
components derived using the pooled correlation 
(variance-covariance) matrix were almost identical to 
those computed from MLE. In practice the pooled 

correlation (variance-covariance) approach proposed 
by Krzanowski (1984) is simpler to apply than the 
MLE approach, which requires the implementation of 
an iterative algorithm. The pooled correlation 
(variance-covariance) approach compares the 
subspaces defined by the eigenvectors associated with 
the largest eigenvalues. No conditions are placed on 
the MLE proposed by Flury (1987). This is a major 
consideration when determining the method to be used 
for calculating the latent variables for process 
monitoring. In process monitoring, it is convention to 
construct the process models using the eigenvectors 
corresponding to the largest eigenvalues. As a 
consequence determining the common latent variables 
from the pooled correlation (variance-covariance) 
matrix is more appropriate for industrial applications. 
 
 

6.  V2 CONTRIBUTION PLOTS 
 

The contribution plots introduced by Miller et al, 
(1998) are formulated from the weighted contribution 
of each variable to the principal component (latent 
variable) score at the sample points of interest. In the 
batch monitoring approach adopted in this paper there 
are a large number of variable contributions (variable 
x sample points) to analyse. In some situations this 
can make the contribution plots difficult to interpret.  
Furthermore the deviations usually impact on the 
manufacturing process over a number of sample 
points. As a consequence the development of a 
contribution plot that indicates the cumulative 
contribution of each variable to the principal 
component (latent variable) scores at each sampling 
point is desirable. The cumulative contribution of each 
variable is better related to the latent variable scores, 
whose deviation from the centre of the control region 
is usually caused by the cumulative affect of small 
deviations from the mean batch trajectory.  
 
The V2 statistic is an extension of the U2 statistic of 
Runger (1996) and Runger and Alt (1996) and is 
proposed as a technique for examining the cumulative 
contribution of each variable individually or as a 
group of variables, at each sample point.  The V2 
statistic is calculated as the difference between two T2 
statistics.  The first includes the entire variable set and 
the second excludes the variable or groups of variables 
whose contribution is of interest. To examine the 
cumulative contribution to the batch scores, a V2 
statistic is calculated at each sample point this 
requiring the calculation of: 
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where  excludes the variable or variables of 
interest at the first sample point. At the second sample 
point (V ) is calculated from:   
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where T2
2 excludes the variable(s) of interest at both 

the first and second sample points. The calculation is 
repeated at each sample point to obtain V3

2 , V4
2, etc. 

until the end of the batch run. Each individual V2 
statistic can then be plotted as a bar graph, which 
shows the cumulative contribution of each variable or 
group of variables at each sample point. 
 
 

7.  PROCESS PERFORMANCE MONITORING 
 

7.1 Case Study 1 
 
To demonstrate the application of multiple group 
multi-way PCA, three sets of data from a metal etcher 
process were considered (Wise et al, 1999). Data was 
supplied from an A1-stack etching process that was 
being performed using a Lam 9600 plasma-etching 
tool. The objective of the process is to etch the 
NiN/A1-0.5% Cu/TiN/oxide stack with an inductively 
coupled BCI3/CI2 plasma. The standard manufacturing 
process consists of a series of six steps. The first two 
are for the achievement of gas flow and stabilisation. 
Steps 3 and 4 are the brief plasma ignition step and the 
main etch of the A1 layer terminating at the A1 
endpoint respectively. The next step acts as an over 
etching for the underlying TiN and oxide layers whilst 
the final step is associated with the venting of the 
chamber.  
 
Etching of an individual wafer is analogous to a single 
batch in a chemical process. Changes in the process 
mean are a result of a residue building up on the inside 
of the chamber following the cleaning cycle, 
differences in the incoming materials resulting from 
changes in the upstream process and drift in the 
process monitoring sensors themselves.  As a result of 
the changes in the process mean there are three 
distinct operating levels identified in the data set. 
When the data is combined into a single data set, the 
scores of principal component 1 and principal 
component 2 identify the discrete operating levels as 
seen in Fig. 2.  
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Fig. 2. Bivariate scores plot (Mixed covariance model) 
 
In this case the major source of variation explained by 
the individual principal components is the variation of 
each variable from the overall mean of the data set and 
thus identifies the different operating conditions of 
each variable. This between group variation present in 
the data set causes the principal component scores to 

cluster according to which operating region, or grade 
of product, they represent. When such clustering 
occurs there are two issues that impact on process 
monitoring: (i) the control limits may be conservative 
and assignable cause process events may not be 
detected and (ii) an assignable cause reflected in the 
movement of a principal component score into another 
cluster when the operating conditions have not been 
changed may result in the real process event not being 
detected. As a consequence of the clustering observed 
and due to the changing mean levels, the process data 
was divided into three subsets one for each of the 
operating levels. The composition of each of these 
data sets is presented in Table 1. 
 

Table 1. The Metal Etcher Data Sets 

Operating 
level 

Observations Variables Batches 

1 90 17 17 
2 90 17 16 
3 90 17 18 

 
A reference model for the multiple group application 
was then constructed using the three data sets.  By 
analysing each of the data sets, it was inferred that the 
different operating levels share common 
characteristics that determine the process behaviour 
and as a consequence the use of the multiple group 
modelling approach was validated. Ten principal 
components were selected from cross-validation 
explaining 68%. A bivariate scores plot for principal 
components 1 and 2, Fig. 3, shows that the scores are 
independent and identically distributed. As a result it 
was inferred that the multiple group monitoring model 
provided a good representation of the overall etch 
process. 
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Fig. 3. Bivariate scores plot (Pooled covariance 

model) 
 
To evaluate the detection and diagnostic capabilities 
of the multiple group model, a data set containing an 
increase in the TCP power was projected onto the 
reference model. This was done in a manner so as to 
simulate an on-line monitoring situation. Each 
observation that is projected onto the monitoring chart 
represents the status of an ‘on-line batch’ at successive 
sampling points during the etch process. The bivariate 
scores plot of principal components 1 and 2 (Fig. 4) 
detects the change in the operating conditions as a 
slow drift away from the centre of the control region. 



At the beginning of the etch run, the principal 
component scores lie in the centre of the control 
region. After the first few sample points the scores 
gradually drift away from the centre towards the 
control limits. An out-of-statistical-control signal is 
flagged as the scores cross the action limits. In this 
particular example no remedial action was taken and 
the scores continue to drift away from the control 
region until the conclusion of the process run. 
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Fig. 4.   Bivariate scores plot  
 
The V2 contribution plot, Fig. 5, identifies the variable 
indicative of the out-of-statistical-control signal. For 
clarity only the contribution from a single variable is 
plotted and it can be seen that the contribution from 
the variable follows a similar profile to the principal 
component scores shown in Fig. 4. These results 
demonstrate the power of the multi-group modelling 
approach and confirm the findings of Wise et al, 
(1999). 
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Fig. 5. V2 Contribution Plot 
 
7.2 Case Study 2 
 
The industrial process used to demonstrate the on-line 
application of the multiple group multi-way PLS 
model is a polymer film manufacturing process. The 
manufacture of polymer film can be considered as a 
series of unit operations that are applied to convert 
polymer pellets to a rolled film product (e.g. Weighell 
et al, 2001). A number of different film types are 
manufactured using the same process equipment 
through changes in the operating conditions being 
made and the types of polymer pellets used. Following 
the production of each roll of film, a number of quality 
attributes are measured at the end of the roll. As a 
consequence each roll of film can be considered as a 
separate batch of product. In this example, 105 
process variables and 3 quality variables are included 
in the model. These provide a description of the “well 

being” of the process and its manufacturing 
performance, although at present the process operators 
only monitor a few “key” process variables.  
 
Separate performance monitoring charts were 
constructed for each unit within the manufacturing 
process. In this example the unit of interest is the sheet 
forming process. Two grades of film manufactured 
using two different production lines were used to 
construct the multiple group model. In this particular 
plant there are a number of different lines 
manufacturing polymer film and as a consequence 
there is both between line variation in the data as well 
as the between polymer grade variation. The 
composition of each data set is shown in Table 2.  
Again as in the previous Case study, initially all the 
data was combined into a single data matrix. For 
comparative purposes, standard single group MPLS 
was carried-out on the combined data matrix. 
 

Table 2. The Films Production Line Data 
 
Data 
Set 

Line Grade Obs. Proc 
Vars 

Qual 
Vars 

Btch’s 

1 1 1 100 19 3 23 
2 1 2 100 19 3 23 
3 2 1 100 19 3 19 
4 2 2 100 19 3 19 

 
Inspection of the bivariate scores plot of latent 
variables 1 and 2 showed, as expected, the scores to be 
clustered into four distinct regions (not shown). 
Combining the data into a single matrix and applying 
standard multi-way PLS does not result in a 
satisfactory model for on-line process monitoring 
(Lane et al, 2001). Inspection of the bivariate scores 
plot of latent variables 1 and 2 for the multiple group 
model showed the latent variable scores to be 
independent and normally distributed (not shown), 
implying that the multiple group model was 
appropriate for monitoring the polymer film 
manufacturing process.  
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Fig. 6.  Bivariate scores plot of latent variable 3 versus 

latent variable 4 
 
A data set containing a process fault, a reduction in the 
pressure, was projected onto the reference model. Fig. 
6, represents the on-line status of the batch at 
successive sample points during the manufacturing 
process. The bivariate scores plot of latent variables 3 
and 4, Fig. 6, detects a process disturbance. As with 
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