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Abstract: Many manufacturing processes involve an interplay of logical and contin-
uous objectives. Hybrid Control Systems are well-suited for studying interactions
between continuous and logical control goals. Here, a technique for generating
the interfaces of a family of Hybrid Control Systems is presented. This amounts to
extracting (untimed and specification-independent) abstractions for a class of non-
linear continuous systems satisfying an integrability property. A two-dimensional
example illustrates an extension of the technique to a larger class of systems.
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1. INTRODUCTION

A Hybrid Control System (HCS) consists of a
discrete-event controller for a continuous plant as
illustrated in Figure 1. The y/si interface converts
the plant output y into a controller symbolic input
si, and the so/u interface transforms the controller
symbolic output so into the plant input u.

Two distinct problems arise with HCSs. The first
problem focuses on control issues in the presence
of known interfaces. The second problem amounts
to developing the interfaces. Herein emphasis is
put on the second problem in the presence of
the following situations: (i) the process has an
actuation taking discrete values (“On”, “Off”,
etc.), and (ii) the process has specifications of the
type “if tank #1 overflows, then close valve #2”.
Notice that such a setup still allows continuous
control objectives.
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Fig. 1. Hybrid Control System

2. MOTIVATIONS

The interfaces of an HCS can be obtained by gen-
erating a finite-state machine (FSM) abstraction
of the continuous system. Abstractions can be
tailored to a specification (called s-abstractions)
or independent of specifications (simply called
abstractions). We favor abstractions because con-
tinuous control tasks are not easily expressible in
terms of s-abstractions. An example of stabiliza-
tion with abstractions is given in (Lunze, 1995).

The abstraction technique presented in (Lunze et
al., 1999) applies to linear systems. The approach
presented in (Raisch, 2000) requires discrete-time



(linear or linearized) models. Since linearization
can destroy controllability (Isidori, 1995), abstrac-
tions based on a linearized model may possess
fewer control capabilities than the original sys-
tem. Among the approaches applying to nonlin-
ear systems and concerned with s-abstractions,
(Broucke, 1998) and (Stiver et al., 2001) use the
notion of dynamical invariants whereas other ap-
proaches are proposed in (Zhao, 1994) (Stursberg
et al., 2000). Even though nonlinear systems
are considered in (Caines and Lemch, 1998), no
abstraction technique is proposed. In summary,
there exists no systematic technique for generat-
ing abstractions of nonlinear systems.

3. BACKGROUND

The continuous plant is modelled by

ẋ(t) = f(x(t), u(t)), y(t) = x(t), t ∈ R≥0 (1)

where x(t) ∈ D, u(t) ∈ U , and y(t), represent
a coordinate function, an input map, and an
output function, respectively. The vector field f
is defined on D, a connected subset of Rn, and
it is assumed to be analytic in x, C1 in u and
complete (Isidori, 1995). The set of input values
U = Σ is known a priori and

Σ := {σk := (σ
1
k, . . . , σ

m
k ) ∈ Rm}k∈IΣ , (2)

with IΣ ⊂ N the index set of Σ and m the
number of inputs involved. The map u : R≥0 →
Σ generates piecewise-constant (from the right)
input signals, which we write u(·) ∈ Ud ⊂ U with
U the class of admissible controls (Isidori, 1995).
The flow of the vector field f(·, σk) is a mapping
φk : I×D → D satisfying φk(t = 0, p) = p for any
p ∈ D and ∂φk(t, x)/∂t = f(φk(t, x), σk), for each
t ∈ I ⊂ R where I is a time interval. We denote
by φ∗k(Ia, ·) the flow over the time interval Ia.

Definition 1. (First Integral). Let f : D → Rn

be a vector field. A Ck (k ≥ 1) real-valued
function γ : D′ → R defined onD′, an open subset
of D, is said to be a time-independent Ck first

integral for the vector field f on D′ if it satisfies

dγ(x) · f(x)|x=p = 0, (3)

for all p ∈ D′ with d := [∂/∂x1, . . . , ∂/∂xn].¦

Namely, a first integral is a function whose tangent
space is parallel to f everywhere in D′. There
exists no generic procedure for extracting the
first integrals of a nonlinear continuous system, in
general (Goriely, 2001). For vector fields as in (1),
a “first integral” means a non-trivial first integral
(dγ(x, u)|x=p = 0 only for some p ∈ D′) that is
analytic in x, Ck in u with k ≥ 1, and defined for

any set Σ ⊂ Rm. For the following definition, we
require the n +m dimensional space D′σ = D′ ×
(σ − ε, σ + ε), where σ ∈ Σ and ε ∈ Rm \ {0} is a
vector whose norm can be made arbitrarily small.

Definition 2. (Near Integrability). A system char-
acterized by (1) and with an input map u(·) ∈ Ud
is nearly integrable over D′ if for any input value
σ ∈ Σ there exist a vector ε ∈ Rm \ {0} and
n − 1 first integrals γj(·, σ), j ∈ {1, . . . , n− 1},
satisfying the condition

rank([dγ1(x, σ), . . . , dγn−1(x, σ)]
T ) = n− 1 (4)

on an open and dense subset of D′σ.¦

Definition 3. (ICSS). A system satisfying the
property of Definition 2 is an Integrable Controlled
Switched System (or ICSS). ¦

An ICSS is such that integrability (Isidori, 1995)
holds on some subset of D′ despite a small pertur-
bation in the input values. A first integral γj(·, σk)
with σk ∈ Σ is now written in a compact form as
γkj . To the input value set Σ is associated the set
of m× (n− 1) first integrals

Γ := {γkj | k ∈ IΣ, j ∈ {1, . . . , n− 1}}. (5)

We now present some necessary concepts from
differential topology. A smooth mapping between
differentiable manifolds g : M → N with a
surjective derivative at p is a submersion at p. The
mapping g is a submersion if it is a submersion
for all p ∈ M . Given c ∈ g(M), the preimage of
a submersion g is the set g−1(c) := {p ∈ M |
g(p) = c}. A point c ∈ N , is a regular value of
g if dg|p is surjective for all values of p such that
g(p) = c; otherwise c is a critical value. The set
of regular values for g is denoted by Rg. A point
p ∈ M is a critical point if dg|p is not surjective.
By Sard’s Theorem, the set Rj,k that contains
regular values for γkj ∈ Γ, is dense and open in

R. Let R̃j,k ⊆ Rj,k be the largest open subset
of regular values that are in the image of γkj (D

′).

Given σk ∈ Σ and γ
k
j ∈ Γ,

Lcj,k := {p ∈ D
′ | γkj (p) = c ∈ R̃j,k} (6)

is referred to as a leaf and c is called a first integral
constant (or FIC). The partitions induced by a set
of FICs are called leaf-partitions.

An FSM is a triple (Q,Σ, δ) where Q, Σ, and δ
represent the set of discrete states, the alphabet,
and the transition map, respectively. The tran-
sition map δ : Σ × Q → 2Q provides the state
transitions of an FSM under some input values.
An FSM transition structure is deterministic if
δ : Σ×Q→ Q, or said otherwise, if (∀i ∈ Q)(∀σ ∈



Σ) #δ(σ, i) = 1 whenever δ(σ, i) exists, where #A
stands for the cardinality of set A.

4. PROBLEM STATEMENT

For FSM abstractions, the state set Q is defined
by a partition while continuous dynamics (1) de-
termine the transition map δ. Prior to formulating
the problem, we explain some phenomena charac-
terizing the transition structure.

Any partitioning of a continuum results in sub-
sets, called cells, containing an infinite number of
points. A finiteness issue arises due to the infinite
number of points to consider in the treatment of
each cell. This represents a challenge for obtaining
the transition map δ because the task must be
completed in a finite number of operations.

The vector field f is transversal to the cell bound-
ary ∂ if N(∂, x) · f(x)|x=p 6= 0 for all p ∈ ∂,
where N(∂, x)|x=p stands for the normal to the
boundary ∂ evaluated at p. Namely, the vector
field f is transversal to ∂ if it is nowhere tangent
to it. Given an arbitrary partition and a bound-
ary ∂i, a trajectory initiated at a point p and
intersecting with ∂i can be (a) tangent to ∂i at a
point, (b) transversal to ∂i, or (c) travelling along
∂i, as represented in Figure 2. Transversality is a
nice property since it provides a clear delineation
of trajectories. The presence of non-transversal
trajectories is problematic because small pertur-
bations may alter the partition cells being encoun-
tered.

p
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Fig. 2. Trajectory types

Given a partition cell qi ∈ Q, the set of neighbor-
ing cells contains those cells sharing a common
boundary with qi, i.e., Ni := {qi′ ∈ Q \ {qi} | ∂

i ∩
∂i

′

6= ∅}. Formally, A := (Q,Σ, δ) is an FSM
abstraction for (1) if for each pair qi, qj ∈ Q and
each input value σk ∈ Σ satisfying qj ∈ δ(σk, qi),

(i) qi = qj and (∃p ∈ qi)φk(t, p) = p,∀t ∈ R, or
(ii) qj ∈ Ni and (∃p ∈ qi)(∃p

′ ∈ qj)(∃t ∈ R>0)
φ∗k([0, t), p) ∈ qi and φk(t, p) = p′,

(7)

where qi denotes the set closure of qi, i.e., qi :=
qi∪∂

i. Thus a transition induced by σk from qi to
qj exists if (i) there is an equilibrium point in qi, or
(ii) for at least one point p ∈ qi there is a (positive
time) trajectory leading to a point p′ ∈ qj .

Consistency is a property that ensures that a
sequence of transitions in the abstraction has at

least one corresponding trajectory in the under-
lying continuous system (Kokar, 1995) (Stursberg
et al., 2000). As shown in (Lunze et al., 1999),
consistency has strong ties with the existence of
deterministic transition structures. Moreover, in
(Blouin et al., 2003) the authors demonstrated
that the lack of transversality may induce non-
deterministic transitions.

We are interested in finding, in a finite number of
steps, a consistent FSM abstraction A for (1). Due
to space limitations, only transversality is treated.

5. TRANSVERSALITY

Given a leaf-partition, a boundary ∂i reduces to
a subset of a leaf, i.e., ∂i ⊆ Lcj,k for some k ∈ IΣ,

and c ∈ R̃j,k. By definition a first integral γkj ∈ Γ

satisfies dγkj (x) · f(x, σk)|x=p = 0 for all p ∈ D′.

Thus a trajectory initiated on ∂i travels along the
leaf Lcj,k as long as σk remains active (case (c)
of Figure 2). With two input values σk, σk′ ∈ Σ,
σk 6= σk′ the characterization of nontransversality
is performed by using

dγkj (x) · f(x, σk′) = ψj,k,k′(x), (8)

where the analyticity of the real-valued function
ψj,k,k′ follows from that of γkj and f(·, σk′). In
the presence of leaf-partitions, equation (8) de-
tects the transversality for the whole family of
leaves and flows generated by input values σk and
σk′ , respectively. Thus the characterization of the
trajectory (a) in Figure 2 corresponds to points
p ∈ D′ where ψj,k,k′(x)|x=p = 0, whereas the
trajectory (b) coincides with ψj,k,k′(x)|x=p 6= 0. If
ψj,k,k′ is a submersion, then ψ−1j,k,k′(0) is referred
to as a non-transversality submanifold (NTSM).
Whenever a leaf Lcj,k does not intersect with a
critical point of ψj,k,k′ and if the NTSM exists,
then the NTSM divides the leaf in two regions
R1, R2 ⊂ Lcj,k, such that R1 ∩ R2 = ∅, R1 ∪

R2 = Lcj,k and dγkj (x) · f(σk′ , x)|x=p∈R1 < 0,

and dγkj (x) · f(σk′ , x)|x=p∈R2 > 0. Namely, in one
region the flow goes in one direction with respect
to the normal dγkj while for the other region it
circulates in the opposite direction.

Let us identify the set of critical points of ψj,k,k′

in D′ with Cpj,k,k′ ⊆ D′. Given the set Σ let

Cpj,k :=
⋃

σk′∈Σ\{σk}

Cpj,k,k′ ⊆ D′ (9)

represent the set of all critical points in D′ for
the transversality of the flows generated by input
values in Σ with respect to the jth leaf induced by
the input value σk ∈ Σ. The task of characterizing
non-transversal intersections is facilitated if no
leaf induced by γkj meets with C

p
j,k.



Proposition 1

Let γkj ∈ Γ be a first integral and let σ
′
k ∈ Σ\{σk}

be arbitrary. For each point p ∈ Lcj,k ⊂ D′ \ Cpj,k
such that ψj,k,k′(x)|x=p = 0, the set ψ−1j,k,k′(0)
forms a submanifold of D′ containing p.¦

Let Cvj,k := {p ∈ R̃
j,k | γkj (a) = p, a ∈ Cpj,k} be the

set of critical values for the transversality test and
let R̂j,k = R̃j,k \Cvj,k. Under certain conditions on

R̂j,k and on the ICSS it can be shown that there
exist approximate (possibly exact) leaf-partitions
with well-characterized transversality. This is in
part due to near integrability and the fact that
under a small perturbation ∆u 6= 0 in the input
value u the transversality with input value u′ :=
u+∆u can be investigated.

6. BOUNDED LEAF-PARTITIONS

So far, we have assumed that the cells of a leaf-
partition were bounded. Even though a visual
inspection is possible for systems in Rn=2, the task
of verifying this assumption becomes extremely
complex when n > 2. This section investigates
when a leaf-partition generated from first integrals
taken in Γ̂ ⊆ Γ has all its cells bounded by leaves.

A nonempty open set P ⊂ D′ is L-bounded if
there exists “a closed box made out of leaves”
bounding P . An L-partition is a leaf-partition
for which each cell is L-bounded. One can inter-
pret L-boundedness as a homogeneity requirement
among the cells of a leaf-partition.

Definition 4. (Lε-boundedness). Given an open
set P ⊂ D′, a point p ∈ P is Lε-bounded if there
exist a neighborhood of p, Np ⊂ P , and an open
subset of Np containing p and whose boundary is
made of leaves.¦

Let A be a set and define its closure as A = A∪∂A
with ∂A the boundary points of A. A boundary

point p ∈ ∂A is a point whose neighborhoods
contain a point in A and a point in Ac, the
complement of A. An internal boundary point,
p ∈ ∂intA, is a boundary point of A for which any
neighborhood Np satisfies Np ⊂ A. The external
boundary ∂extA complements ∂intA in ∂A.

Proposition 2

Let Ra and Rb be two open, distinct, and

nonempty intersecting L-bounded sets with bound-

ing boxes made out of leaves Ba = ∂Ra and

Bb = ∂Rb, respectively. Then Ra ∪Rb ∪ ∂int(Ra ∪
Rb) is a L-bounded set.¦

Proof: (Blouin et al., 2003).¤

Partition cells normally form a collection of ad-
jacent L-bounded sets. The above result implies

that any adjacent L-bounded cells can be “glued”
together to form a larger L-bounded cell. This
construct enables one to link Lε-boundedness to
L-boundedness in the following manner.

Lemma 1. Consider an ICSS with a set of first
integrals Γ̂ ⊆ Γ as well as an open set P ⊂ D′. If
each point p ∈ P is Lε-bounded, then there exists
a connected and nonempty open subset P ′ ⊂ P
that is L-bounded.¦

Proof: (Blouin et al., 2003).¤

Lemma 1 provides a sufficient condition for the
L-boundedness of a subset of D′ that relies on the
notion of Lε-boundedness. A sufficient condition
for Lε-boundedness at a point is to encounter a
leaf while travelling from that point in all possi-
ble directions. Rather than testing all directions,
one can exploit the information about the non-
transversality of a set of leaves. Given a set of
first integrals Γ̂ ⊆ Γ, the set of points in D′ where
nontransversality occurs is

Ω(Γ̂) := {p ∈ D′ | rank(dΓ̂(x)|x=p) < n}, (10)

where rank(dΓ̂(x)|x=p) stands for the rank of the
codistribution formed by the differential of all
first integrals in Γ̂. Thus Ω(Γ̂) forms a closed
set of measure zero, which may fail to be convex
(Sussman, 1973). The tangent cone to Ω(Γ̂) at a
point p in Ω(Γ̂) is given by

CΩ(Γ̂)(p) := {v ∈ Rn | d0
Ω(Γ̂)

(p, v) = 0}, (11)

where d0
Ω(Γ̂)

(p, v) is the generalized directional

derivative of dΩ(Γ̂)(p), the distance function from

a point p ∈ D′ to the set Ω(Γ̂) (Clarke, 1990).

Lemma 2. Consider an ICSS with a set of first
integrals Γ̂ ⊆ Γ and its set of nontransversality
points Ω(Γ̂). Let P be an open subset of D′. A
point p ∈ P is Lε-bounded if p 6∈ Ω(Γ̂) or p ∈ Ω(Γ̂)
and for any nonzero vector v ∈ CΩ(Γ̂)(p), there

exists a first integral γkj ∈ Γ̂ such that

dγkj (x) · v|x=p 6= 0.¦ (12)

Proof: (Blouin et al., 2003).¤

Lemma 2 requires that CΩ(Γ̂) is everywhere
transversal to some leaf induced by the first in-
tegrals of Γ̂. As (12) involves the differential of
first integrals in Γ̂, it does not depend on FICs,
and is, therefore, invariant to further refinements
or aggregations of the partition. In (Blouin et

al., 2003), various examples show how the Lε-
boundedness property is affected by the set of first
integrals constituting Γ̂, the set of input values Σ,
and the selection of P .



Theorem 6.1

Consider an ICSS with the set of first integrals

Γ̂ ⊆ Γ and its set of nontransversality points Ω(Γ̂).
Let P ⊆ D′ be an open set. If the conditions of

Lemma 2 hold for all p ∈ P then there exists a

nonempty L-bounded connected subset P ′ ⊂ P .¦

Proof: By Lemma 1 and Lemma 2.¤

As Lε-boundedness characterizes the family of
leaves induced by Γ̂, Theorem 6.1 provides insight
into the existence of L-partitions.

7. DISCUSSION

The material presented so far holds for systems of
arbitrary dimension n. In (Blouin et al., 2003) it
was shown that n = 2 represents a special case
of the theory. An algorithm providing, in finite
steps, the leaf-partition and the corresponding
FSM abstraction of two-dimensional systems was
developed. In what follows, the theory is extended
to non-integrable systems evolving in D ⊆ R2.

In practice many chemical processes do not have
known first integrals. In this category one finds
nonisothermal continuous stirred-tank reactors
(CSTR). An instance of a two-dimensional model
involving a first-order irreversible reaction A→ B
with constant hold-up is given by

dC

dt
= −DC − k0e

(−E/RT )C +DCin

dT

dt
= −DT + βk0e

(−E/RT )C +DTin − u

,(13)

where C (mol/L) and T (oC) represent the con-
centration of A and the temperature of the mix-
ture, respectively (Ogunnaike and Ray, 1994).
The input u corresponds to the heat transferred
through the coil. The following parameters are
used: k0 = 1.287e+12, E/R = 9758.3, β = 1.4936,
D = 14.19 h−1, Cin = 0.5 and Tin = 100.

For two-dimensional systems modeled by dx1/dt =
f1(x1, x2) and dx2/dt = f2(x1, x2), the corre-
sponding one-form is ω = ω1d(x1) + ω2d(x2) =
f2d(x1)−f1d(x2). Any function V satisfying dV =
ω is a first integral. An approximate first integral
V̂ is such that dV̂ − ω = ε with ε an error term.
If V̂ is expressed as V̂ =

∑k
i=1 aiφi(x1, x2), where

φi’s represent approximating functions, then the
identification of the weight vector a = [a1, . . . , ak]
can be performed by solving

∫

Θ

n∑

j=1

(
ωj −

k∑

i=1

ai
∂φi
∂xj

)
∂φh
∂xj

dΘ = 0, (14)

for h = 1, . . . , k over a domain Θ. Thus one gets
AaT = b where

b =



β1

...

βk


 , A =



α11 · · · α

1
k

...
...

α1k · · · α
k
k


 , (15)

with

αhi =

∫

Θ

(
∂φi
∂x1

∂φh
∂x1

+
∂φi
∂x2

∂φh
∂x2

)
dΘ

βh =

∫

Θ

(
f2
∂φh
∂x1

− f1
∂φh
∂x2

)
dΘ

(16)

as ω1 = f2 and ω2 = −f1. Here, Θ is a region
defined to be [Cl, Ch] × [Tl, Th] with Cl = 0.3,
Ch = 0.65, Tl = 350 and Th = 450. Figure 3 shows
trajectories of (13) induced by the input value set
Σ := {−5000, 5000} over Θ. The φi’s are elements
of a polynomial of order r. Thus i = 1, . . . , r2 and

V̂ =

r∑

a=1

r∑

b=1

aiφi, with φi = CaT b. (17)
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Fig. 3. Trajectories over Θ for u ∈ Σ.

In Figure 4, some approximate first integrals V̂ for
u ∈ Σ are shown. The FICs for u = −5000 and
u = 5000 are (−2500,−1200,−500, 100, 500, 800)
and (3200, 3800, 4400, 5000), respectively. The cir-
cled integers are labels for the L-bounded cells of
the leaf-partition. That is, the FSM abstraction
has the state set Q := {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
Polynomials of order 5 and 3 were used for u =
−5000 and u = 5000, respectively. The corre-
sponding FSM abstraction is presented in Figure
5. The transition structure of this FSM abstrac-
tion is deterministic because at each state an input
value induces an unique transition. Transitions
marked by an “×” are disabled because they lead
outside the set of L-bounded cells.

Even though the FSM abstraction was obtained
in an ad hoc manner, the algorithm could be
modified so that the abstractions are obtained
systematically from exact or approximate first
integrals. In the above example the selection of a
smaller region Θ or the choice of some other φi’s
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Fig. 5. Approximate FSM abstraction

could provide a better fit between the trajectories
and the approximate first integrals.

An extension of the algorithmic procedure to
handle higher-dimensional systems is the topic of
future research.
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