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Abstract: Qualitative trend analysis (QTA) is a process-history-based data-driven
technique that works by extracting important features (trends) from the measured
signals and evaluating the trends. QTA has been widely used for process fault
detection and diagnosis. Recently, Dash et al. (2001, 2003) presented an interval-
halving-based algorithm for off-line automatic trend extraction from a record of
data, a fuzzy-logic based methodology for trend-matching and a fuzzy-rule-based
framework for fault diagnosis (FD). In this article, an algorithm for on-line extraction
of qualitative trends is proposed. A framework for on-line fault diagnosis using QTA
also has been presented. Some of the issues addressed are - (i) development of a
robust and computationally efficient QTA-knowledge-base, (ii) fault detection, (iii)
estimation of the fault occurrence time, (iv) on-line trend-matching and (v) updating
the QTA-knowledge-base when a novel fault is diagnosed manually. Some results
for FD of the Tennessee Eastman (TE) process using the developed framework are
presented. C’opym'ght©2003 IFAC.
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1. INTRODUCTION

Modern plants are data rich and information poor.
Vast amount of process data is available which can
be used to assess the process state by utilizing
the important features present in the measured
data. Qualitative trends (e.g. increasing, constant
etc.) are the most natural representation of fea-
tures that have been widely used for FD. Ev-
ery diagnostic system that uses process trends to
achieve fault classification has three components:
(i) a language for trend representation such as
triangular episodes (Cheung and Stephanopou-
los, 1990), primitive-based language (Janusz and
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Venkatasubramanian, 1991) and piecewise-linear
elements (Mah et al., 1992), (ii) a methodol-
ogy to extract the trends such as wavelet-based
method (Bakshi and Stephanopoulos, 1994a), use
of wavelet, neural networks and B-Splines-based
method (Vedam, 1999) and (iii) a classification
methodology and a knowledge-base to map the
sensor-trends into faults such as decision trees
(Bakshi and Stephanopoulos, 1994b), weighted
symptom trees (WST) (Oh et al., 1997) and
fault or sensor centric trees (Vedam, 1999). Re-
cently Dash et al. (2001) proposed an interval-
halving-based algorithm for automatic trend ex-
traction. The primitive-based language (Janusz
and Venkatasubramanian, 1991) is used for the
representation of the qualitative trends. The seven
primitives, viz. A(0, 0), B(+, +), C(+, 0), D(+,



-), E(-, +), F(-, 0), G(-, -) where the signs are
of the first and second derivatives, respectively,
are shown in Figure 1. The primitives B, D, E
and G are nonlinear primitives. Dash et al. (2003)
also developed a fuzzy-logic-based framework for
trend-matching and fault diagnosis. The overall
activity of trend-extraction and trend-matching is
called qualitative trend analysis (QTA).

While the interval-halving algorithm, the trend-
matching methodology and their application for
FD have been discussed in detail (Dash et al.,
2001; Dash et al., 2003), on-line implementa-
tion has not been discussed. Though the research
work by Vedam (1999) dealt with some of the
issues involved in on-line implementation of trend-
similarity-based FD, little has been discussed in
the published literature. In this article, we discuss
most of the important issues that are involved in
on-line fault diagnosis. In particular, we present
an algorithm for on-line trend extraction using
the interval-halving technique to achieve compu-
tational efficiency and robustness. A framework
for on-line FD using QTA is also presented. The
organization of this article is as follows.

In the next section, an overview of QTA is pre-
sented. In section 3, we motivate the need for an
on-line variant of the interval-halving algorithm
and discuss some of the challenges. We also list the
activities that are carried out in on-line FD using
QTA. In section 4, the design of the algorithm for
the on-line variant is discussed. The framework
for on-line FD is discussed in sections 5 and 6.
Section 5 deals with development of a knowledge-
base (KB) for QTA. Section 6 deals with the use
of the QTA-KB for on-line FD. In section 7, a
succinct discussion on the development of a pro-
totype diagnostic system in Matlab® is presented.
Sample results of FD in the TE process are also
presented. Finally we conclude this article with
discussion on future work.

2. OVERVIEW OF QTA

There are two subtasks in QTA- (i) trend extrac-
tion (Dash et al., 2001) and (ii) trend matching
(Dash et al., 2003). A brief discussion follows.

Trend extraction by using the interval-
halving algorithm: The algorithm works by fit-
ting either a constant, a first order or a second
order polynomial (in that order) to the data and
halving the interval if the fit error is significant
as compared to the noise present in the signal
(as dictated by the F-test) even for the quadratic
function. Once the polynomial is fitted over a
certain interval, a primitive is assigned based upon
the sign of the first and second derivatives (t-test
is used to check the significance of the derivatives).
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Fig. 1. Fundamental language: primitives
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Then the interval-halving procedure is applied to
the remaining data till the entire signal is trans-
formed into a sequence of primitives.

Fuzzy trend-matching: Trend-matching involves
calculation of the following: (a) fuzzy similarity
match between two primitives, (b) similarity mea-
sure between two trends (the time-weighted aver-
age of the similarity match between the primitives
involved in different time intervals) for the same
sensor and (c) multivariate (overall) similarity
measure or confidence index (C.I.) between two
scenarios (given by C.I. = min(Sy, Sa, ..., Sp)
where n is the number of sensors and S is the
similarity measure between the trends of the k**
sensors in the two scenarios). To perform fault
diagnosis by using QTA, the faults stored in the
QTA-KB are rank ordered in decreasing order of
their C.I. The fault with the highest C.I. is the
fault that has most likely occurred. A low value
of C.I. (say below 0.50) for all the faults indicates
the occurrence of a novel fault.

3. ON-LINE FAULT DIAGNOSIS USING QTA:
MOTIVATION AND ISSUES

Our ultimate aim is to implement the QTA-based
fault diagnosis in real plants. In off-line trend
extraction, the interval halving algorithm is ap-
plied on the entire data. During on-line imple-
mentation, more and more data is available from
sensor measurements. The primitives obtained at
current time may no longer correctly represent
the trend at a future time. Thus a key feature of
an algorithm for on-line trend extraction is that
the primitives should be updated as more data
becomes available. On one hand, trend extraction
cannot be performed on all the data available so
far at every sample time. On the other hand, if
one were to find trends corresponding to only the
new data, one would end up assigning only ‘A’
primitives since no useful trend is contained in few
samples. Thus the data set for trend extraction
should comprise of some of the past data and
the newly available data. This poses the question
of how should one choose the data segment for
trend extraction? Some related questions are- (i)



should the data segments chosen for two con-
secutive trend extractions overlap?, (ii) can one
calculate an average primitive in the overlapping
region?, etc. These issues are discussed in the next
section. Further, for real-time FD, we need to
consider the following- (i) building a knowledge-
base of fault-symptom signatures, (ii) detecting
the occurrence of an abnormal event (fault detec-
tion), (iil) extracting the relevant portion of trend
from an arbitrarily long sequence of primitives
(does fault occurrence time play a vital role?),
(iv) time-efficient computation of similarity mea-
sure and (v) learning- updating the QTA-KB if a
novel fault is manually diagnosed by the operator.
Discussion on on-line trend extraction follows.

4. ON-LINE TREND EXTRACTION

Given sensor data, the basic interval-halving al-
gorithm can be applied on the entire data in off-
line fashion to extract trends. From the above
discussion it is clear that the trend extraction has
to be performed over a window of data, that the
window should move as more data becomes avail-
able and that the trend extracted in the current
window has to be intelligently combined with the
already extracted trends. Before trying to device
an algorithm to carry out additional preprocessing
(and possibly post-processing) for on-line trend
extraction, let us briefly analyze the off-line and
on-line implementation of another methodology
for trend-extraction viz. B-Spline based trend ex-
traction (Vedam, 1999).

To implement the B-Spline based algorithm (which
extracts linear primitives) for on-line trend extrac-
tion by using a sliding-window approach, off-line
algorithm is applied on a window containing 2* 41
samples (k is a positive integer). After measuring p
more samples, the window slides by p data points
(the window size does not change). This is similar
to the sliding window approach for on-line de-
noising using wavelet analysis. Now to get a con-
solidated list of linear primitives till the current
time, the primitives in the current window are
combined with the old list of consolidated linear
primitives. Since the primitives to be combined
are linear, an average value can be used at the
starting point of the current window. After this
time instant, the old primitives are replaced by
the primitives in the current window. Every time
trends are extracted, after updating the list of lin-
ear primitives, they are concatenated to get higher
order primitives. The higher order primitives are
not updated directly. Now let us analyze the key
features of the off-line interval-halving algorithm
for trend extraction.

The basic interval-halving algorithm is capable
of extracting nonlinear primitives directly and no

concatenation is needed. This means that if the
interval-halving algorithm identifies a nonlinear
primitive then there is no need to allow this non-
linear primitive to evolve further except when the
primitive length is very small. This is a very good
feature since concatenation requires a parameter
(magnitude threshold) for every sensor and is not
transparent.

Given that one should preserve the ability to
extract nonlinear primitives and avoid concate-
nation, unlike on-line implementation of B-Spline
based methodology, averaging at the starting
point of the current window is not an option. In
fact, averaging would render the polynomial coef-
ficients (which can be used for data compression)
useless. Similarly, concatenation is not allowed.
Yet, the primitives should evolve as more data
comes in. Two key ideas to achieve this effect are
explained below.

Unrestricted evolution of the last primitive
of the current window: By the nature of the
interval-halving algorithm, as more samples are
available, only the last primitive evolves. This
assumption may be violated for very small time
intervals (where one of the primitives before the
last primitive could be an ‘A’ primitive) due
to parameter-less and ‘fit the simplest-primitive’
nature of the algorithm. Such local violations do
not have much effect on similarity measure.

If the last primitive is a linear primitive (‘A’, ‘C’
or ‘F’) then allow it to evolve until it becomes a
nonlinear primitive or it becomes very long (so
that further evolution would require too much
computation). If the last primitive is a nonlinear
primitive then it should not be allowed to evolve
except when its length is too small.

Parameters and selection of the window:
Three important parameters are the default win-
dow length, the length of the shortest primitive
(minNLP _len) and the length of the longest linear
primitive (maxCFlen). For choosing the window,
the endpoint of the current window should coin-
cide with the last sample available. The starting
point of the window can be chosen to coincide with
the starting point of the last primitive. With this
rule in effect, the window size changes adaptively.
One exception to this rule is that if the last prim-
itive is nonlinear and is very long then one can
choose the starting point of the window so as to
keep the window size equal to the default window
size. Depending upon how window is selected, one
should keep a record of the primitives that would
not evolve anymore so that the most updated list
of primitives can be obtained simply by appending
the primitives in the current (or latest) window to
the existing list of non-evolving primitives. The
above procedure of window selection is schemati-
cally shown in Figure 2. A flowchart for the overall
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Fig. 3. Flowchart for on-line trend-extraction

algorithm is shown in Figure 3. Figure 4 shows
a snapshot of trend-extraction in two consecutive
windows for a sample signal. If one were to use the
interval-halving algorithm on a sliding window of
fixed length (65), the last primitive (at the current
time) would still have been ‘A’. Also, unnecessary
computation would have been performed over a
certain portion of the first primitive.

5. BUILDING QTA KNOWLEDGE-BASE

Development of the QTA-KB primarily involves
trend-extraction for all known faults. Some of
the parameters (which are universal for a given
plant) related to QTA-KB are- description of the
faults stored (including whether the fault truly
corresponds to an abnormal scenario), description
of the sensors which are used for trend extraction
viz. sample rate, normal value, noise etc., the
start and endpoints of the data used for trend
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Fig. 4. Snapshots during two consecutive windows

extraction for each sensor in every fault scenario,
the global parameters related to on-line trend
extraction such as default window length etc. For
small-scale plants, where the number of sensors
is small (say, less than 100), one may be able
to compute similarity measure for all the sensors
with all the fault scenarios in real-time but for
large plants, it may be infeasible. For large plants,
one must consider the issue of computational com-
plexity. Apart from computational infeasibility, it
is expected that the sensors that are physically
located near the fault origin would show departure
from their normal operating region (NOR) before
the sensors that are located far away. Hence, such
sensors are useful in detecting the fault occur-
rence and they should be chosen for estimating
the similarity measure. Thus optimal selection of
sensors (that should be used for calculation of
similarity measure) corresponding to each fault
is very important. Other issues in optimal selec-
tion of sensors are- (i) consistency among simi-
lar faults: the sensors should show similar trends
for multiple manifestations of the same fault and
(ii) discrimination from other faults: the sensors
should be chosen so that they provide maximum
discrimination from other (different) faults. These
ideas have been earlier discussed and implemented
by Vedam (1999). Further, when lesser (but suf-
ficient) number of sensors are chosen, most likely
the chosen sensor would show fast evolution. This
would result in robustness in the calculation of
similarity measure, particularly during the incipi-
ent stage of fault evolution, the duration in which
one is interested in diagnosing the fault. Since
the confidence index assigned to a fault is the
minimum of the similarity measure for the sensors
dedicated to diagnose the fault, if all the sensors



are chosen blindly for assessing every fault then
correct diagnosis would be delayed. To summarize
these ideas, the sensors dedicated for diagnosing
various faults should be chosen with respect to
three criteria: (i) consistency among similar faults,
(ii) fast dynamics for the fault and (iii) discrimina-
tion from other faults. The procedure for optimal
screening of sensors is discussed below-

[1] Extract trends for all the sensors for all the
fault scenarios.

[2] Compute a global similarity matrix containing
the similarity measure for each sensor for all pairs
of faults. Perform the steps 3-7 for every fault.
[3] Identify the set of faults that are similar to this
fault, and the set of faults that are different.

[4] Corresponding to the set of similar faults,
for each sensor, extract the similarity measures
from the similarity matrix and take the mini-
mum. Rank the sensors in decreasing order of the
minimum. Thus the sensor that shows maximum
similarity would be on the top of the list (list 1).
[5] Corresponding to the pairs of this fault with
the different faults, extract the similarity mea-
sures for all sensors, take the maximum for each
sensor, and rank the sensors in increasing order
of the maximum. Thus the sensors that shows
least similarity measure (maximum discrimina-
tion) would be on the top of this list (list 2).

[6] Rank the sensors in decreasing order of speed
of evolution (the sensor that evolves the fastest
should be on the top) (list 3).

[7] Prepare a new list by selecting sensors from list
1 and list 3 (rank them according to a weighted
criterion). This new list is a ranked list of sensors
in decreasing order of consistency and speed of
evolution. If the value of the weighted criterion
is equal for two or more sensors in this list then
sort them according to list 2 (decreasing discrim-
ination). Now select sensors from the new list one
after another till the fault can be resolved from all
other (different) faults.

Of course, in the above procedure, a fail-safe ap-
proach should be adopted so that sufficient num-
ber of sensors are chosen to ensure discrimination
from other faults. In some rare cases, where the
data used for developing the knowledge-base is not
collected properly, consistency with similar faults
and discrimination from different faults could be
in conflict. In such cases, a robust and reliable
knowledge-base cannot be developed.

6. ON-LINE FAULT DIAGNOSIS

During online implementation, the primitives are
continuously extracted. When a fault occurs, the
sensors start deviating from their normal values.
Thus the first step is fault detection. In QTA-
based fault detection, the presence of a non-
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Fig. 5. Importance of fault occurrence time

A primitive and departure from the NOR indi-
cates presence of a fault. A suitable multivari-
ate methodology also can be used for fault de-
tection. After detection, it is very important to
estimate the time at which the fault occurred
so that an appropriate portion from the infinite
sequence of primitives can be extracted. If the
fault occurrence time is not estimated properly
then poor similarity measure may be obtained
(see Figure 5) even for very similar trends. Due
to excessive computational complexity, similarity
measures with shifted trends cannot be evaluated
in real-time and hence, good estimate of fault oc-
currence time is required. The methodology used
for the estimation of the fault occurrence time is
called backtracking. As shown in Figure 6, once
a fault is detected, we try to fit an ‘A’ primitive
in the last interval. If an ‘A’ can be fitted then
there is little variation which means that the fault
occurred sometime before this interval. So the es-
timation window is stretched backwards and this
procedure is repeated over the stretched window
till an ‘A’ primitive cannot be fitted i.e. there is
enough variation in the data in the estimation
window. This procedure always terminates since
last primitive is a non-A primitive. Trends are re-
calculated for the data after the fault occurrence
time. It can be seen that this method does not
take into account the time-delay but that is not
a problem because, to ensure robust estimation of
similarity measure, the same methodology can be
used during the development of the QTA-KB. As
the fault evolves, more and more sensors deviate
from their NOR. These sensors are used for the
estimation of similarity measure and C.I. for var-
ious faults. This ensures that similarity measure
for a slowly evolving sensor or a sensor that is
not showing enough deviation would not result in
incorrect C.I. for the actual fault. To summarize,
the main activities involved in on-line FD are:

Fault detection
Estimation of the fault occurrence time

Computationally efficient trend matching
Learning and updating the QTA-KB
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7. A PROTOTYPE DIAGNOSTIC SYSTEM

A prototype diagnostic system to implement the
framework discussed above has been designed in
Matlab®. To give a brief idea about the important
features of the framework, some of the compo-
nents are succinctly discussed below:

Development of QTA-KB: Trends for various fault
scenarios are extracted and sensors to be used for
estimating the C.I. for various faults are identified.
On-line trend extraction: The adaptive trend-
extraction algorithm is used.

Fault detection: Presence of a fault is triggered if a
sensor deviates from its NOR and shows a non-A
primitive.

Fault occurrence time: Backtracking methodology
is used. The relevant trends are re-calculated.
Fault diagnosis: C.1. for various faults are calcu-
lated. The operator is informed about the abnor-
mal sensors and the known or an unknown event.
Learning and updating the QTA-KB: If a novel
event occurs and the operator diagnoses the fault,
it is added to the QTA-KB.

The diagnostic system has been tested on the TE
process (sample time is 0.001 hr for all 14 sensors).
No optimal sensor assignment has been carried
out for this case study. Out of the 33 possible
faults, 26 faults are used to build the QTA-KB.
Results for three test scenarios are as follows:

(1) Fault 1: correct diagnosis.

(2) Fault 25: faults 17, 25 and 18 (located in the
same control loop).

(3) Fault 28 (novel fault): fault 20 (located in the
same control loop as fault 28).

Thus the prototype diagnostic system is quite
robust with respect to correct FD and detection
of novel events. Interaction with the operator,
learning and maintenance is also easily facilitated.
Another important characteristic of the overall
approach is that most of the parameters used can
be easily tuned and that reasonable variation in
them does not degrade the overall performance.
For example, in the TE process, characteristic
time is few hours. The normal window size is
255 (1/4'" of the number of samples per hour).

maxCFlen and minNLP_len are 1000 and 50,
respectively. The window shift length is 15 (to
allow the necessary computations every minute).

8. CONCLUSIONS AND FUTURE SCOPE

Various issues in on-line trend extraction and fault
diagnosis have been discussed. An algorithm for
the same has been presented. A framework for on-
line fault diagnosis has been presented. Important
components have been discussed. A prototype for
FD has been developed in Matlab®. Some results
for FD of the TE process have been discussed. Our
future work will include improvement in on-line
trend extraction (to further reduce computation
time) and multiple fault diagnosis.
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