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Abstract: In this paper two methods are presented for deriving the explicit model-
based tracking optimal control law for constrained linear dynamic systems subject
to persistent disturbances. The first scheme augments explicitly the model dynamics
with a set of integral states that are then readily incorporated with a positive definite
penalty in the system performance measure. The second scheme employs a state
observer for estimating the value of the disturbance and then computes the new state
target. Then it shifts accordingly the state and control values to ensure asymptotic
tracking. The underlying controller structure in both approaches is derived off-line
via parametric programming before any actual process implementation takes place.
The proposed control schemes guarantee steady-state offset elimination and optimal
performance in the presence of unknown constant uncertainties.
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1. INTRODUCTION

Contrary to conventional control design meth-
ods, model predictive control (MPC) (Lee and
Cooley, 1997) is particularly effective for deal-
ing with a broad class of complex multivariable
constrained processes. MPC determines the op-
timal future control profile according to a pre-
diction of the system behaviour over a receding
time horizon. The control actions are computed
by solving repetitively an on-line optimal control
problem over a receding horizon every time a state
measurement or estimate becomes available. The
capabilities of MPC are limited mainly by the
significant on-line calculations that make it ap-
plicable mostly to slowly varying processes. This
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shortcoming is surpassed by employing a different
type of model-based controllers the so-called para-
metric controllers (see section 2)(Pistikopoulos et
al., 2002; Bemporad et al., 2002b). These con-
trollers are based on recently proposed novel para-
metric programming algorithms, developed in our
research group at Imperial College, and succeed
in obtaining the explicit mapping of the optimal
control actions in the space of the current states.
Thus, a state feedback control law for the system
is derived off-line, hence avoiding the restrictive
on-line computations.

However, the inevitable presence of persistent un-
measured disturbances, pertaining for instance to
model inaccuracies, parameter drift, input vari-
ations, have largely been ignored while design-
ing the parametric controllers. Consequently, the
performance of this novel control technique may
lead to infeasibilities and permanent offset from



the target due to inaccurate forecasting of the
process behaviour. The infeasibilities may result
in situations such as off-spec production or haz-
ardous plant operation. Hence, a modification of
the explicit control law is necessary to ensure
feasible and safe operation.

In this work novel methodologies are presented for
designing tracking model based parametric con-
trollers for general linear dynamic systems. The
control policy is derived off-line as a function of
the process states via our parametric program-
ming based theory and techniques (Dua et al.,
2002; Sakizlis et al., 2002a). The proposed control
scheme achieves satisfactory disturbance attenu-
ation, while eliminating any steady state offset
from the target. This is achieved via two methods:
(i) As described in section 3 the first method
incorporates explicitly integral action in the con-
trol design formulation while (ii) the alternative
approach presented in section 4 uses an observer
for estimating the disturbance vector and a refer-
ence target computation for removing the offset.
A comparison of the two schemes is performed in
section 5 while a demonstrative example (section
6) is presented and some conclusions (section 7)
are drawn in the next paragraphs.

2. PRELIMINARIES

For deriving the explicit model - based control
law for a process system, the following receding
horizon optimal control problem is formulated
(Bemporad et al., 2002):
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where z € R" are the states, y € R™, are the
outputs and v € V C 7 are the controls; ¢
is the time when a measurement is taken, k is
the future time instants and N is the prediction
horizon. The outputs are the variables that we aim
to control, i.e. to drive to their set-point, (tem-
peratures, concentrations) whereas the states are

the variables that fully characterize the current
process conditions (enthalpies, specific volume).
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sequence of the control vector over the receding
horizon. The constraints g : R™ x R* x V —
R, Y - R® x V = RY, which may pertain
to product specifications or actuator restrictions,
and bounds on v define the feasible operating
region. We assume that the pair (A4, As) is sta-
bilizable and the pair (A;,B;) detectable. By
considering the current states z* as parameters
and eliminating the equalities in (1) by substitut-

k=1
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states, problem (1) is recast as a multiparametric
quadratic program (mp-QP). The solution of that
problem (Dua et al., 2002) consists of a set of
affine control functions in terms of the states and a
set of regions where these functions are valid. This
mapping of the manipulating inputs in the state
space constitutes a control law for the system. The
mathematical form of the parametric controller is
as follows:

vi(2*) = Acz* + be; if CRIz* 4+ cr? <0
forc=1,...,Ng (2)

where N, is the number of regions in the state
space, A., CR! and b.,cr? are constant matrices
and vectors respectively and the index c desig-
nates that each region admits a different control
law. The vector vyo|. is the first element of the
control sequence, whereas similar expressions are
derived for the rest of the control elements.

The model-based parametric controller described
here fails to address the impact of persistent,
unmeasured disturbances on the process dynamic
behaviour. These uncertainties (i) tend to cause
a permanent deviation of the steady state out-
put values from their target point and (ii) may
also cause violation of constraints if the reference
signal is close to the feasible region boundaries.
For surpassing those shortcomings Bemporad et
al. (2002b) treated the disturbance as an extra
parameter, thus resulting in a control law that
has an extra feedforward term in (2). This tech-
nique is valid provided the disturbance modelling
is perfect and an accurate measurement of the un-
certainty is available. Otherwise, it fails to address
the issues stressed above. Other techniques are
based on anti-windup (Bemporad et al., 2002q)
, avoiding the incorporation of reference tracking
capabilities in the controller structure. In the next
sections it is shown how to avert the impact of
disturbances by modifying the nominal design of
the model based parametric controller.



3. TRACKING PARAMETRIC
CONTROLLER WITH INTEGRAL PENALTY

In conventional feedback control schemes, (Seborg
et al., 1989) integral action is incorporated for at-
tenuating any permanent deviation of the output
variables from their set-points (e.g. PI-controller).
Here, the incorporation of the integral action for
the same purpose is achieved by introducing an
integral state in the plant dynamics that is equal
to the accumulated deviations of the output from
its reference point, usually the origin. This state
is augmented as an additional penalty on the
objective function. The open-loop control design
optimization problem (1) over the nominal un-
certainty scenario, after the incorporation of the
integral state is modified as follows:
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where zq is the integral state; @1, P; are the
quadratic costs corresponding to that state. By
treating the pure and the integral states as pa-
rameters, problem (3) is recast as a multipara-
metric quadratic program. The solution of that
problem derives a set of piecewise affine control
functions in terms of the states and a set of critical
regions where these expressions hold. These func-
tions constitute a state feedback controller whose
mathematical form is as follows:

v(z*,2q¢") = Ac - 2" + be + De - Xq;
CR.={CR. -z* +cr + CR3-xq* <0 (4)
for c=1,...N.}

The piecewise affine multivariable controller rep-
resented by (4) contains a proportional part A, -
z* with respect to the states, an output integral
part D.xq* and a bias b.. The presence of the
integral term guarantees off-set free tracking of
the output set point giving rise to a tracking
parametric controller. Note that the control law is
partitioned to a set of regions that are completely

defined by a set of constant matrices and vectors
[z* z¢*]T € CR.,CR.={CRL,cr?, CR?}.

Theorem 8.1. The control law defined by (4) is
asymptotically stable, thus it guarantees no steady
state offset from the target point in the presence
of constant disturbances 6; € © C R*, where
® = 0 < 0, < Y on condition that (i)
the dimension of the controls is larger or equal
to the output dimension q¢ > m (ii) the open-
loop transfer matriz defined from the equation:
H(z) = Bi(zI — A1) 1As + B poses no zeros
at the origin, (i) the quadratic cost matriz Qq
that penalizes the integral error is positive-definite
(iv) the terminal cost and the time horizon length
are appropriately tuned according to the criteria in
Rawlings and Muske (1993) and Chmielewski and
Manousiouthakis (1996) respectively and (v) the
reference point of attraction is an interior point
of the feasible region space defined as:

§€Y,Y ={y € R™” Ulysyrt = BiZosr|t + Bavitr (5)
Teprotijt = A1Teqnie + A2Veqr + Wi, 9(Tiqres Vetn) <0,

Y (zeynye) <0, vk €V, 0; €0, k=1,..N—1]}

If the target point does not belong to the feasible
region yr.y = 0 € Y then the equilibrium point
9 # 0 in terms of the control driven outputs
will lie on the boundaries of the feasible region.
Then Theorem 3.1 still holds provided that for
the evaluation of the integral states, the error
of the outputs is shifted according to the modi-
fied equilibrium point, i.e. Tqiiry1)t = TGoqr)e +
(yt+k|t —9)-

—_———

error

4. TRACKING PARAMETRIC
CONTROLLER WITH DISTURBANCE
ESTIMATOR

The design of an offset free parametric controller
integrated with a disturbance estimator is based
on the work of Muske and Rawlings (1993) that
has been extended recently by the work of Muske
and Badgwell (2002) where different types of inte-
grators were added into the plant representations.
The steps of our method are:

1. Generate an input or output disturbance model.
For that purpose a distinction is made between
two systems (i) one being the real process plant
and (ii) the other comprising a model that rep-
resents an estimate of the process behavior, as
shown in Table 1: where vector w is the actual dis-
turbance vector that enters the system, whereas 6
is the disturbance estimate. Vector 6 is modelled
as a step disturbance, thus being constant over



Table 1. Real vs. Prediction Model

Real System
Brp1 = A1y + Azve + Wawy
J: = B1&4 4+ Bavy + Waw,
Prediction model
zi41 = A1z + Agve + W16,
Yyt = Bizy + Bovy + Wab:

the receding horizon, but admitting a different
realization every time a piece of information about
the process plant is available.

2. Estimate the disturbance. Two different esti-
mation schemes are used here:

e Least squares recursive estimator.

Gr1 =G + (e — y1)
;= (By- Wy + Wo)¥ - ¢ (6)

where (B; - Wi + W3)F is the pseudo-inverse
of matrix By -Wj +W,. This algebraic manip-
ulation performs disturbance estimation via
the least squares method (Stengel, 1994).

o Augmented Kalman Filter Estimator This
scheme provides an estimation for the current
states and the disturbances if they are not
measured directly. Consider the augmented
with the disturbance state space system.

Te41 | A1 W1 . Tt A2 .
=10 LR (6]
—_—— ~—— ——

zTer41 Ay Ao

By =[B1 W] (7)
The estimator equations are:

TEi41 = Al (I — MBl)xet + (1‘_12 — AlMBz)Ut
+A1 M7,
Y = Bl (I — MBl)IL'et + BlMgt (8)

The input to that filter are the measure-
ments from the plant, the inputs to the plant
and the previous state/ disturbance estimate:
[J¢, v, Ter]. The output from the filter are the
output filtered estimate, the state estimate
and the disturbance estimate: § = [ze,ye]T.
M is the filter gain that is a function of (i)
Q°, R° cost matrices of the estimator, (ii) the
structure of the input noise to the system.

3. Based on the disturbance value a new steady
state point [z; ws] is computed. If the dimension
of the output variables y is equal to the dimen-
sion of input controls v and no input and state
constraints are violated in the new steady state,
then this is done as follows:

e ] ] @

Otherwise if ¢ = dimv > m = dimy the evalu-
ation of zs, v, is done via (Muske and Rawlings,
1993):

min (vy — v°)7 Rs(vs — v°)

s.t I—Al —A2 . Ts | _ W1-0t
o B1 Bz Vs B —W2 . Ht
0> g(yo,xs,vs), 0> W(wsavs) (10)
In the case where there are more measurements

than control inputs the evaluation of z,,v, is
performed via solving:

min (y° — Bizs — Bavs — Wab)T Q4

Ts,Vs

(y° = Bixs — Bavs — Waby)
T
s.t. [I—Al —A2] - |:1) :| = [Wet]

S

0> gy’ ws,vs), 0>1°%(xs,v,) (11)

where v° are the prior-to-disturbance control
nominal values, usually taken as v® = 0; y° are the
output nominal set-points, usually y° = 0. Note
that problems (9) - (11) are constrained quadratic
problems that can be recast as multiparamet-
ric quadratic programs (mp-QPs) by treating 6;
as parameters. The analytical solution (Dua et
al., 2002) of these problems:

vs =05l + B85, xs =050 + B

if CR.(6;) <0, c=1,---N, (12)
4. The state and input constraints are shifted
according to the new target point resulting in the

following open-loop optimal control formulation
(Rawlings, 2000):

— . T —
&(Z¢j¢) = minz, y Py y
v

N-1
+ Z [y$+k|tot+k\t + 77;T+kR7_’t+k]
k=0
s.t.
Tippt1)t = A1Typp)s + A2Vitk
Yi+k|t = B1Zypp)t + BaUpyk
0 > glYsyrie: (Tetnje + Ts) (Tegr + vs)]
= CoYsykit + C1* (Tpqp|t + Ts)
+C2 - (Ug4k +vs) +C3
0> Y(Tyqnpe + Ts)
= D1 - (Ty4nN|t +Ts) + D2
vs = ag 0y + 85
zs = ag0; + B
if CRe(6:) <0, c=1,---Ne
Ty =2"; k=0,1,2,.N (13)
Note that the dynamic system is shifted (f =
T — %5, U = v — vs) to bring the system to
the output target point, however, the constraints
remain unaltered. As such, (13) can be viewed as a

set of N, quadratic programs each one pertaining
to every individual region of (12). Hence, once 6,



and Z* are treated as a parameters, each one of
the N, programs (13) is recast as an mp-QP. The
solution of these problems can be unified resulting
the following control law:

ve(2*,0:) = {{Ac,;z" + Bc,j0 + be,j
if CR, ;7" + CR*6; + crl ; <0
for c=1,..,N,} if; CR(6;) <0, j=1,---N;}
(14)
5. REMARKS

o Note in controller (4) that the input and state
constraints do not include any integral states.
Hence, if the current states lie in a critical
region where at least one of those constraints
is active the corresponding control functions
in (4) do not include any integral term.
Thus, when constraint saturation occurs the
integral action is switched off automatically
by our controller. Hence, our compensator
features explicit anti-reset windup properties
as they are defined in the scheme of Kothare
et al. (1994).

e In controller (14) note that both estima-
tors incorporate an integrator: ¢ in the least
squares, # in the Kalman filter estimator. The
compensator can be viewed as the propor-
tional part of the controller and the estimator
as the integral part (Vogel and Downs, 2002).

e The main advantage of the tracking paramet-
ric controller (4) vs. (14) is that it does not
necessitate the existence of a disturbance or
uncertainty estimator.

e The tracking parametric controller (4) is eas-
ier to tune since its tunings can readily be
obtained via a modified Ziegler Nichols or
IMC approach.

e The tracking parametric controller with es-
timator (14) can provide improved perfor-
mance and feasibility provided the estimator
represents exactly the plant and the distur-
bance profile. In fact in the unlikely case
where the model is perfect and the distur-
bance is estimated exactly, controller (14)
ensures constraint satisfaction over the tran-
sient as well as asymptotic system behaviour.

e Controller (14) does not wind-up and ex-
hibits less overshoots and aggressiveness than
controller (4).

6. ILLUSTRATIVE EXAMPLE

A 2-state MIMO example is presented here. The
problem is concerned with deriving the explicit
tracking control law for an evaporator process
studied in a sequence of works starting from
(Newell and Lee, 1989). The constraints and the

nominal values of the system outputs are: C} =
25%, 25% < Cy < 30%, P} = 50.57KPa,
40K Pa < P, < 80K Pa. Similarly for the control
inputs: Plyy = 193.37TKPa, 0OKPa < Pjgpo <
400K Pa, F}y, = 207.52kg/min, 0 < Fyy <
400kg/min. Two parametric tracking controllers
are designed (At =1 min, N = 3) following the
procedure described in sections 3 and 4. The
controller with integral penalty is partitioned to
97 critical regions for a wide range of variations of
the pure and integral states. For example in the
region defined by the following set of inequalities:
45<02C; <6

1.210 - 10° < 4.887 - 10® 4 0.3296 P> + 4.8868

The control functions are the following;:
Pi1oo = —16.575C> + 3.8956 P> + 414.18;

Fa00 = —97.842C2 4 675.86 P2 — 0.63C2q + 45.63 P24
—3.149 - 10*

The control law consists of the assembly of these
control functions. Note that the prescribed func-
tion of the first control variable P;qq is not affected
at all by the integral states. The reason is that
when the states lie on that region the system
operates in the neighborhood or on the boundary
of the constraint Cy > 25%. Thus, the control
variable Pjgq that largely affects Cy is readjusted
to ensure constraint satisfaction and does not fea-
ture target tracking capabilities. Whereas, when
the states enter the region where none of the
constraints is active the control activity features
integral action and the corresponding expressions
are:

Pioo = —3.11-101C + 3.89Py — 1.45 - 101 Cy + 7.75 - 102
Fa00 = —1.72-10%C3 +6.75 - 102 P, — 7.56 - 10" Ca,
+1.45 - 102Pyy — 2.96 - 10%

Thus, the values of the integral coefficients in
the control functions are alternating according to
how close the constraints are to saturation. This
characteristic clearly manifests, therein, the anti-
windup properties of our proposed tracking con-
troller. The tracking parametric controller with
the disturbance estimator is derived in a similar
fashion.

The execution of the tracking controllers is com-
pared with the nominal controller. The system is
initially perturbed to Cs—o = 26% and P 1—¢ =
51.57K Pa and as it is driven back to the origin
a sequence of non-vanishing persistent step dis-
turbances in C7, F; occur. The disturbances have
overall a magnitude of AF; ~ +0.16kg/min and



AC; ~ 40.4%. The profiles of disturbance F; and
of output Cs corresponding to the action of the
nominal parametric controller (nominal parco),
the tracking parametric controller with integral
penalty and with estimator (tracking parco / in-
tegral, tracking parco / estimator) are displayed
in Figure 1. A Kalman Filter estimator is used for
the simulation of the corresponding tracking con-
troller and its estimation of disturbance Fj is also
shown in Figure 1. The nominal controller exhibits
severe constraint violations since Cy(t) < 25%.
The tracking controllers however, respect the con-
straints over the complete envelope of operation
because they bring the system into the interior of
the feasible region after every disturbance step.
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Fig. 1. Output and control profiles for nominal
and tracking parametric controller

7. CONCLUSIONS

In this paper a novel framework is presented for
designing model-based tracking parametric con-
trollers for linear dynamic systems that are sub-
ject to input disturbances and uncertainties. Two
control schemes are developed that consist of
piecewise affine expressions for the control vari-
ables in terms of the states. The implementation
of the control action is achieved by simple linear
function evaluations, thus avoiding any expen-
sive on-line computations. The controller guaran-
tees effectively disturbance attenuation and offset
elimination.
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