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Abstract: Principal Components Analysis (PCA) is increasingly being used for
reducing the dimensionality of multivariate data, process monitoring, model
identification, and fault diagnosis. However, in the mode that PCA is currently
used, it can be statistically justified only if measurement errors in different
variables are assumed to be i.i.d. In this paper, we develop the theoretical basis
and an iterative algorithm for model identification using PCA, when measurement
errors in different variables are unequal and are correlated. The proposed approach
not only gives accurate estimates of both the model and error covariance matrix,
but also provides answers to the two important issues of data scaling and model
order determination.

Keywords: PCA, model identification, measurement errors, data scaling

1. INTRODUCTION

Principal Components Analysis is a multivariate
statistical tool developed primarily to obtain a
parsimonious representation of multivariate data.
This is achieved by choosing a few linear combi-
nations known as principal components, which to-
gether capture most of the variability in the data.
The number of linear combinations chosen is typ-
ically less than the number of measured variables.
In chemical engineering, PCA has been used in
a similar manner for data compression. In recent
years, PCA is also gaining significant importance
as a tool for model identification or to discover
the underlying spatial and/or temporal relation-
ships between variables. For example, PCA is a
critical part of many subspace based dynamic
model identification methods (Viberg, 1995). The
model identified using PCA has also been subse-
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quently used in fault diagnosis (Yoon and Mac-
Gregor, 2000).

If measurements are corrupted by random errors,
then PCA is an optimal procedure for estimating
the model parameters only if the errors in dif-
ferent variables are independently and identically
distributed (Wentzell et al., 1997). An improved
approach, called the maximum likelihood PCA
(MLPCA), has been developed by Wentzell et al.
(1997) for general error covariance matrix struc-
tures. However, their method assumes that the
measurement error covariance matrix is known. It
would be advantageous if the measurement error
covariance matrix can be estimated along with
the model from the same data set. This becomes
especially important in chemical processes, since
the model as well as the error covariance matrix
are likely to change over time.

In this paper, we describe an iterative method
which combines PCA with a maximum likelihood
estimation procedure for obtaining an estimate



of the error covariance matrix. The proposed ap-
proach also provides answers to important ques-
tions on how to scale measured data before ap-
plying PCA, and how to obtain the model order
without a priori knowledge.

2. MODEL IDENTIFICATION USING PCA
WITH NOISE FREE DATA

We first discuss the case of model identification
using PCA when the measurements are not cor-
rupted by noise. Although this is well known, we
present an alternative viewpoint which motivates
the development of our proposed approach. We
will consider the following process identification
problem, which, despite its simplicity, contains
the essential features for describing more complex
processes.

Let x(t) be a set of n variables at time instant
t, which are related by the following set of m
independent linear constraints

Ax(t) = 0 (1)

where A : m × n is a constant time invariant
constraint matrix. The above equations represent
the spatial relations between variables, which are
assumed to hold at all time instants. At each time
instant, measurements y(t) of all the variables
corrupted by random errors are available, which
can be written as

y(t) = x(t) + ε(t) (2)

We assume that the random errors, ε(t), are tem-
porally independent and follow a multivariate nor-
mal distribution with mean zero and covariance
matrix Σε. The random errors are also assumed
to be independent of x(t). Given a sample of N
measurements, y(1) . . . y(N), the objective is to
estimate the constraint matrix (also referred to as
the model).

We assume that the true values of variables,
x(t), are a deterministic sequence satisfying the
following two conditions.

lim
N→∞

{
√

N(x̄− µx)} = 0

lim
N→∞

√
N

[
N∑

i=1

(x(i)− µx) (x(i)− µx)T − Σx

]
= 0

where x̄ represents the average of the sequence
x(t), and µx and Σx are bounded. The above
assumptions ensure that y(t) is a quasi-stationary
signal (Ljung, 1999).

It can be easily observed that due to the con-
straints, the vectors x(t) span a n−m dimensional
subspace of Rn (denoted as Vx). Furthermore,
the rows of A span a m dimensional subspace of

Rn (denoted as Vc), which is orthogonal to Vx.
Thus, given a sample of measurements in Rn, the
objective of model identification can be viewed as
the problem of decomposing Rn into two orthog-
onal subspaces, one of which defines Vx and the
other Vc. It can be further noted that in order to
define Vx and Vc, we only need to identify a basis
for each of these spaces. Thus for identifying the
model, it is sufficient to estimate any m linearly
independent vectors in the row space of A.

In the absence of measurement errors, if we have a
sample of n−m linearly independent realizations
of x(t), then we can use it as a basis for Vx.
We can then construct m linearly independent
vectors orthogonal to Vx, which define a basis for
Vc exactly. Note that this is sufficient to solve the
stated problem.

If we use PCA to solve the above problem, then
we will determine the orthonormal eigenvectors
of the data variance matrix Sy = 1

N Y T Y (which
is identical to Sx = 1

N XT X in the absence of
measurement errors), where

Y = [y(1), y(2), . . . , y(N)]T (3)

Since the column space of Sy is identical to Vx,
the matrix Sy has rank n−m. Thus, it will have
n − m nonzero eigenvalues, while the rest are
zeros. The eigenvectors corresponding to the non-
zero eigenvalues is an orthonormal basis for Vx.
These eigenvectors are linear combinations of the
variables xi, and are called principal component
directions. The eigenvector corresponding to the
largest eigenvalue is the direction in Vx of maxi-
mum variability, and so on, in decreasing order of
the magnitudes of the eigenvalues. The transpose
of the m eigenvectors corresponding to the zero
eigenvalues represent a basis for Vc. Note that
these eigenvectors are not uniquely defined, be-
cause the corresponding eigenvalues are all equal.
Although in some applications the PC directions
may be useful, from the viewpoint of model iden-
tification they do not have any advantage over
any other basis choice. Nevertheless, PCA does
identify a basis for Vc exactly in the absence of
measurement errors.

3. EFFECT OF SCALING IN PCA

We can raise the question of whether we can
obtain an exact basis for Vc in the absence of
measurement errors, if we scale the data before
applying PCA. In order to answer this question,
we will consider the following general linear trans-
formation of the data

ys(t) = Dy(t) = Dx(t) = xs(t) (4)

where D is any nonsingular matrix. If D is di-
agonal, then the above transformation defines a



scaling of the data. We can apply PCA to the vari-
ance matrix Sys = 1

N Y T
s Ys where the scaled data

matrix Ys is defined in a manner analogous to eq.
3. Since D is nonsingular, the rank of Sys is also
equal to n−m. Thus, if we apply PCA using Sys

,
the transpose of the m orthonormal eigenvectors
corresponding to the zero eigenvalues represent a
basis for the space orthogonal to the scaled data
vector xs(t). If we denote the transpose of these
eigenvectors by As, then we can write

Asxs(t) = 0 (5)

Using eq. 4 in the above equation we get

AsDx(t) = 0 (6)

From the above equation, we can deduce that
the rows of the matrix A = AsD is a basis for
Vc. Thus, in the absence of measurement errors,
we obtain an exact basis for Vc even if we apply
PCA to transformed (or scaled) data using eq. 4.
However, it must be noted that the rows of A are
not orthonormal and they also do not correspond
to the eigenvectors of Sy.

4. MODEL IDENTIFICATION WITH
KNOWN Σε

We now consider the problem of model identifica-
tion from noisy measurements using PCA, under
the assumption that the measurement error co-
variance matrix, Σε, is known. If measurements
are noisy, then Sy will be a full rank matrix,
and by using PCA we will not be able to obtain
an exact basis for Vx or Vc. In fact, it is not
possible to establish a relationship between the
orthonormal eigenvectors of Sy and those of Sx.
Furthermore, if we scale or transform the data
using eq. 4, the eigenvectors of Sys and those of
Sy do not bear any simple relation to each other
(Morrison, 1967). Both these problems have been
hitherto tackled in a heuristic manner in model
identification from noisy data using PCA. If we
assume that the error variances are much smaller
compared to the variances in x(t), then we can
expect Sy to possess n−m dominant eigenvalues
and m small eigenvalues. The orthonormal eigen-
vectors corresponding to the small eigenvalues can
be used as an estimate for the basis of Vc. It has
also been suggested that if x contains variables
which are not commensurate, then it is better
to scale the data using standard deviations of
the measurements. Other scaling strategies have
also been suggested which can be applied under
restrictive assumptions (Wentzell et al., 1997).
The effect of these heuristics on the quality of the
identified model cannot be easily assessed. In what
follows, we describe a procedure which effectively
resolves the issue of appropriately scaling noisy
data, such that a basis for Vc can be exactly

obtained using PCA, under the assumption that
Σε is known.

Let L be the square root of Σε defined by

LLT = Σε (7)

Similar to eq. 4, we will transform the measure-
ments using L−1 as the nonsingular transforma-
tion matrix. The transformed measurements are
given by

ys(t) = L−1y(t) = L−1x(t) + L−1ε(t)

= xs(t) + L−1ε(t) (8)

If Σε is a diagonal matrix, then L is also a diagonal
matrix containing the standard deviations of mea-
surement errors, and the above transformation is
equivalent to scaling the data using standard de-
viations of the corresponding measurement errors.

By taking the expectation of Sys
, it can be easily

shown that
Σys = Sxs + I (9)

In the above equation Σys is the population vari-
ance matrix of ys, while Sxs = L−1SxL−T (since
x(t) is deterministic).

From eq. 9 and the Eigenvalue Shift Theorem, the
following two important results can be immedi-
ately derived.

(1) The eigenvectors of Σys are identical to those
of Sxs .

(2) The eigenvalues of Σys are equal to the cor-
responding eigenvalues of Sxs increased by
unity.

Since Sxs is of rank n − m it will have m zero
eigenvalues. From the above results, we can con-
clude that the corresponding eigenvalues of Σys

will be unity. Furthermore, the eigenvectors, cor-
responding to the eigenvalues of Σys that are
greater than unity, define a basis for Vxs . We have
already shown that we can obtain the basis for
Vx exactly, given the basis for Vxs . Thus, given
a sample of measurements, we can transform the
measurements as in eq. 8 and apply PCA on Sys .
The eigenvectors corresponding to the eigenvalues
that are close to unity, can be used to obtain a
basis for Vc (refer to the discussion that follows
eq. 6). Using Theorem 2.3 (Ljung, 1999) for a
quasi-stationary signal, we can prove that Sys is
a consistent estimate of Σys . Thus, in the limit as
the sample size goes to infinity, an exact basis for
Vc is obtained using this method.

Wentzell et al. (1997) proposed a maximum like-
lihood estimation technique for model identifi-
cation using PCA when the covariance matrix
of measurement errors is known, and the model
order is also specified. Their procedure is an al-
ternating regression procedure which does not
scale the data. Instead, it iteratively transforms



the model identified by PCA on unscaled data,
until the maximum likelihood estimates of x(t) are
obtained. In contrast, the procedure we have de-
scribed above is a non-iterative technique, which
has a stronger theoretical basis and also provides
additional useful information. In particular, the
fact that the eigenvalues of Sys corresponding
to the eigenvectors which define a basis for Vc

should be unity, can be used to obtain the model
order m. If an incorrect value of m is assumed,
then the eigenvalues corresponding to the last m
eigenvectors of Sys

may not be close to unity.

5. SIMULTANEOUS MODEL
IDENTIFICATION AND ERROR

COVARIANCE MATRIX ESTIMATION

If Σε is unknown, then the method described in
the preceding section can be applied, if we can
estimate the error covariance matrix from the data
along with the model. We describe an iterative
algorithm for achieving this by combining PCA
with a maximum likelihood estimation (MLE)
method for obtaining an estimate of the error
covariance matrix. We will assume that an initial
estimate of the model constraint matrix, Â0, is
available. (Such an estimate can be obtained by
applying PCA to the measured data). Using this
initial model estimate, we compute the constraint
residuals at each time instant as

r(t) = A0y(t) (10)

If the estimated model is exact, then the con-
straint residuals will be independent normally dis-
tributed variables with zero mean and covariance
matrix Σr = Â0Σε(Â0)T . Thus, the joint density
function of r(1) . . . r(N) can be easily obtained,
and an estimate of Σε can be obtained by maxi-
mizing the log likelihood function of r(1) . . . r(N).
This results in the following nonlinear optimiza-
tion problem.

min
Σε

N log |Â0Σε(Â0)T |

+
N∑

i=1

(rT
i (t)(Â0Σε(Â0)T )−1ri(t)) (11)

The above MLE problem can also be interpreted
as a procedure for extracting an estimate of Σε,
given an estimate of the covariance matrix of
constraint residuals Σr. This follows from the
fact that the maximum likelihood estimate of
Σr (which maximizes the likelihood function of
r(1) . . . r(N)) is the sample covariance matrix Sr.
The estimate of Σε, which maximizes the same
likelihood function, is the one that satisfies the
following relation.

Â0Σ̂ε(Â0)T = Sr (12)

F1 F3

F2

F4 F5

Fig. 1. Schematic of a flow process

Depending on the number of constraints and num-
ber of variables, it may or may not be possible to
satisfy the above equation. Typically, the number
of spatial relations m is usually less than n. In
such cases, if we attempt to estimate all diagonal
and off-diagonal elements of Σε, multiple solutions
that satisfy the above equation are obtained. One
possibility is to assume that Σε is diagonal, and es-
timate only the n diagonal elements corresponding
to the measurement error variances. Even in this
case, a non-degenerate estimate for Σε is obtained
only if m(m + 1) ≥ 2n. Other techniques have
been proposed for estimating the measurement er-
ror covariance matrix, given the constraint model
and the covariance matrix of constraint residuals
(Romagnoli and Sanchez, 1999). However, these
methods are not maximum likelihood estimates.

Assuming that the number of diagonal and off-
diagonal elements of Σε that we are estimating is
less than or equal to m(m+1)/2, we can minimize
(11). We can also impose lower bounds on the
elements of Σε that we are estimating, and solve
the constrained optimization problem. Let us de-
note the estimate of measurement error covariance
matrix obtained using the above method as Σ̂0

ε .
Note that this estimate has been obtained assum-
ing that the model has been estimated exactly.
We can use Σ̂0

ε to transform the data as described
in the preceding section, and apply PCA on the
transformed measurements to get an updated es-
timate of the constraint matrix. We can repeat
the entire procedure until the estimates for the
model and error covariance matrix converge. A
simple test of convergence is to check that the
singular values obtained using PCA do not change
significantly from one iteration to the next.

6. SIMULATION RESULTS AND
DISCUSSION

A flow process example shown in Fig. 1, has been
chosen to test the proposed procedure. The above
example has been chosen so that it satisfies the
condition m(m + 1) > 2n (in the above example
m = 3 and n = 5). We will assume that the
measurement error covariance matrix is diagonal.

In order to simulate the true values of variables
at each time instant, a set of independent flow
variables are chosen (in the above example F1 and
F2 are chosen as independent variables). The true
values of independent variables are simulated by



adding normally distributed random fluctuations
to their base values. The true values of the depen-
dent flow variables are calculated such that they
satisfy the flow balance constraints. The base val-
ues of variables and the standard deviations of the
fluctuations are given in Table 1. In the simulation

Table 1. Data for simulating true values
of variables.

Flow variable True values σε

Base value Std of fluctuation

F1 10 1.0 0.1
F2 10 2.0 0.08
F3 F1 + F2 0.15
F4 F3 0.2
F5 F4 - F2 0.18

procedure, the measured values of variables are
simulated by adding normally distributed random
noise to their true values. The standard deviations
of measurement errors are also given in Table 1.
A sample of 1000 measurement vectors is simu-
lated and the procedure described in Section 5 is
applied.

In order to evaluate the accuracy of the estimated
basis for Vc, the distance between the row spaces
of the true constraint matrix and the estimated
constraint matrix can be used. The minimum
distance of each row of A from the subspace
spanned by the rows of Â is given by

αi = ||AT
.i −AT

.iÂ
T (ÂÂT )−1Â|| (13)

A consolidated measure of model estimation ac-
curacy is given by

α =
∑

i

αi (14)

The above measure treats all bases sets for the
row space of Â as equivalent. Alternatively, the
angle θ between the row spaces of A and Â can
also be used as a measure of the model estimation
accuracy.

The results obtained for the above example using
PCA for different choices of data scaling and the
proposed iterative method (denoted as IPCA) are
presented in Table 2. In both approaches, the
actual number of constraints are assumed to be
known.

In Table 2, the first three rows are the results
obtained using PCA, respectively, when the mea-
sured data are not scaled, scaled using sample
standard deviation of the corresponding measure-
ment, and scaled using true standard deviations
of measurement errors. The last row gives the
results obtained using the proposed method. The
constraint matrix obtained by PCA is used as an
initial estimate in IPCA. From the values of α
and θ, we can conclude that a good estimate of
the model constraints is obtained using both PCA

Table 2. Quality of the model identified
for different scaling choices.

Case Scale α× 103 θ (deg)

PCA None 5.86 0.17
PCA σy 10.22 0.24
PCA σε 1.62 0.028
IPCA 1.2 0.03

and IPCA. This is due to the fact that in this
simulation, the signal to noise variation is high
(ratio of their standard deviations is more than
10). However, even in this case, the proposed itera-
tive method is able to improve the accuracy of the
model obtained through PCA by more than 80%.
The number of major iterations required for IPCA
to converge was around ten, although within three
to four iterations the estimates obtained are very
close to the final converged values. The estimated
standard deviations of measurement error vari-
ances obtained using the proposed method are
[0.1121 0.0837 0.1406 0.2031 0.1775], which are
close to their true values. For the given sample
of data, the best achievable model accuracy is
obtained when the data are scaled using the true
standard deviations of measurement errors, as
shown in the third row of Table 2. It is observed
that the accuracy of model obtained using IPCA
is very close to this achievable limit.

The converged singular values, [236.5 17.7 1.01
1.0 0.99], obtained using IPCA reveal an inter-
esting feature. It can be observed, that the sin-
gular values corresponding to the last three PCs
(which correspond to the assumed number of con-
straints) are very close to unity, as theoretically
predicted. In contrast, the singular values ob-
tained using PCA for the three scaling strategies
are, respectively, [33.32 1.9 0.18 0.16 0.11], [19.84
1.35 0.15 0.08 0.06], and [238.9 18.8 1.06 0.99
0.97]. Clearly by scaling the data differently, we
can alter the singular values, and it may make
it difficult to determine the number of PCs to
be retained/rejected. In other words, we may not
be able to determine the number of constraints
precisely by examining the singular values of the
scaled data, unless we use the standard deviations
of measurement errors for scaling. It may also
be noted that if the data is auto-scaled, a worse
model may be obtained compared to the case
when the data is not scaled at all (compare results
of first and second rows of Table 2).

In order to evaluate how the proposed method
performs for low signal to noise variation, the
standard deviations of the true value variations in
F1 and F2 are reduced to 0.2 each, while retaining
the standard deviations of measurement errors as
before. The results obtained for this case are given
in Table 3. As expected the accuracy of the mod-
els estimated by both approaches has decreased.
However, a good estimate of the model is still



Table 3. Quality of the model identified
for low signal to noise ratio.

Case Scale α× 103 θ (deg)

PCA None 447.0 12.73
PCA σy 252.1 7.61
PCA σε 21.1 0.49
IPCA 32.5 1.39

obtained using the proposed approach, and there
is a 90% improvement over the model obtained
using PCA. The estimated standard deviations of
measurement errors using the proposed approach
are [0.1121 0.0838 0.1406 0.2031 0.1774], which
are same as before. Thus even though the model
is estimated less accurately, the measurement er-
ror standard deviations are estimated fairly ac-
curately by the proposed approach. The con-
verged singular values obtained are [233.5 2.4 1.01
1.0 0.98], which again satisfy the condition that
the singular values corresponding to the assumed
number of constraints are close to unity.

In order to demonstrate that our proposed method
can be used even if errors in different variables
are correlated, we simulated data for the above
example using an error covariance structure which
contained an off-diagonal element. It should be
noted, that since the above process has only 3 con-
straints, we can estimate at most 6 elements of the
error covariance matrix. This implies that besides
the diagonal elements, at most one off-diagonal
element can be estimated from the measured data.
The true flow rates in this case are simulated as
described in Table 1. The non-zero elements of
the measurement error covariance are chosen as
[0.0244 0.0064 0.0369 0.04 0.0324 0.03], where the
first five elements are the diagonal elements (error
variances) and the last element is the covariance
between errors in variables 1 and 3. The results
for this case are shown in Table 4.

Table 4. Model identification for non-
diagonal error covariance matrix.

Case Scale α× 103 θ (deg)

PCA None 10.53 0.20
PCA σy 13.68 0.27
PCA cholesky factor of Σε 1.21 0.024
IPCA 1.47 0.043

The above results again indicate that the model
obtained using IPCA is better than that obtained
using PCA, and is close to the maximum achiev-
able accuracy. The non-zero elements of the esti-
mated error covariance matrix are [0.0266 0.007
0.0367 0.0402 0.0312 0.0312], which are also close
to their corresponding true values. The converged
singular values obtained using IPCA are [2458.5
27.53 1 1 1]. As theoretically predicted, the last
three singular values are unity even in this case.

We had stated that it may also be possible to
determine the number of constraints using the

proposed approach. As a test of this, the number
of constraints was incorrectly assumed as four
instead of three in the above simulations, and
the proposed method was used. In this case, the
estimated std of measurement errors obtained are
[1.118 1.117 0.047 0.242 1.127], and the singu-
lar values are [434.37 1.72 1.00 0.15 0.11]. Since
the singular values corresponding to the last four
eigenvalues are not close to unity, this indicates
that the number of constraints has been incor-
rectly assumed.

7. CONCLUDING REMARKS

In this paper, we have proposed an algorithm
for simultaneously estimating an accurate process
model and the measurement error covariance ma-
trix from noisy data, using an iterative PCA tech-
nique. As part of the development, the outstand-
ing issue of appropriately scaling or transforming
noisy data before applying PCA, has also been
resolved. A new criteria for determining model
order by examining the eigenvalues obtained us-
ing PCA on the transformed data is proposed,
which has a rigorous theoretical basis. As part
of future research, the technique described here
can be extended to methods which use PCA as
an integral component such as PCR, PLS, and
subspace based model identification.
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