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Abstract: This paper presents a new results analysis strategy for uncertain real-time
optimization (RTO) systems. The key contributions of this paper are in 1) developing a
mathematical formulation describing the confidence region of a partially constrained
optimum and 2) applying that formulation in deciding whether the optimizer results
should be implemented. The confidence region of the constrained optimum is determined
from the confidence region of the unconstrained optimum, when the inequality constraints
are not considered. The confidence region of the unconstrained optimum is mapped to the
feasible region defined by the inequality constraints to obtain the confidence region of the
constrained optimum. This mapping is developed by minimizing the profit loss between
the unconstrained and constrained optima. The resulting confidence region of the
constrained optimum is used in optimization results analysis; the confidence regions of
successive predicted optima are compared to decide if the difference between two optima
is statistically significant. The comparison is made by calculating the significance level at
which the two confidence regions just overlap. If the value is small, large portions of two
95% confidence regions overlap, and the optimizer result will not be implemented. The
new results analysis approach is applied to the Williams-Otto reactor case study with
controlled inequality constraints, where it significantly reduced plant variability, while
concurrently increasing the operating profit.  Copyright © 2003 IFAC
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1. INTRODUCTION

Real-time operations optimization (RTO) can
improve the operating profit of chemical plants by
tracking the changing optimum due to disturbances
such as changes in plant performance and external
state variables. This paper focuses on the model-
based real-time operations optimization using steady-
state models, in which the RTO execution period is
much longer than the feedback dynamics. In this
situation, a steady-state model is sufficient for
economic optimization.

The main elements in the RTO loop [Marlin and
Hrymak, 1997] consist of the model updater, model-
based optimizer, results analysis and process control
as shown in Figure 1. Real-time measurements (z)
are taken from the plant, checked for reliability and
low pass filtered. Then, the process parameters (ββββ)

are estimated using the data in the model updater.
The estimated parameters are then sent to the
optimizer, in which model-based optimization is
performed. The optimizer results are analyzed in
results analysis [Miletic and Marlin, 1998] before
being transmitted to the process controllers. Only
significant changes in optimization variables are
forwarded to the process controllers for
implementation. The new setpoint can be determined
by trading off the change in profit and the size of the
change of the operating variables [Ronholm and
Marlin, 2002] to make the transition more gradual.

The performance of an RTO system is measured by
two terms: 1) offset between the plant optimum and
noise-free model prediction, and 2) variability of the
prediction. Offset is caused by the structural
mismatch between the plant and the model and the
errors in the parameter values. Variability is caused



by high frequency disturbances and measurement
noise propagating in the RTO loop. Offset and
variability can have a significant impact on the
operating profit, and a small offset and variability is
desirable in profit tracking.

This paper focuses on improving the RTO
performance by reducing the variability of the
manipulated variables in a partially constrained RTO
system. The RTO results are influenced by high
frequency variation and should be evaluated with
respect to the common cause variability. In results
analysis [Miletic and Marlin, 1998], the newly
predicted (uncertain) optimum is compared with the
previous (uncertain) results in deciding whether the
new result shall be implemented or not. In previous
work, it was assumed that the active set of inequality
constraints remains unchanged when the parameters
are perturbed. Therefore, the covariance matrix of
the predicted optimum can be estimated by linear
sensitivity analysis and a statistical test can be
formulated as a Hotelling T2 test. In this paper, the
assumption of a constant active set will be relaxed
and a new strategy of results analysis will be
developed to handle the possible change in the active
set of inequality constraints.

The outline of this paper is as follows. The
mathematical formulation to describe the confidence
region of the constrained optimum is first developed.
The new strategy of results analysis using the
developed formulation for the uncertainty of the
constrained optimum is then presented. Finally, the
proposed approach is applied to the Williams-Otto
reactor system to investigate if the results analysis
can reduce the unnecessary plant movement
responding to high frequency disturbances.

Fig. 1 Closed-loop RTO system

2. MATHEMATICAL FORMULATION FOR THE
UNCERTAINTY OF THE CONSTRAINED
OPTIMUM

In this section, the method to estimate the confidence
region of the constrained optimum is presented. The

optimization problem considered in this paper is
formulated as follows

Maximize   P(x, u, ββββ)
      x, u

Subject to   h(x, u, ββββ) = 0
                   w(x, u, ββββ) ≤ 0

(1)

where x is the vector of decision variables
implemented to the plant, u is the vector of
dependent variables, h and w are the equality and
inequality constraints respectively and P is the
objective function. The vector of parameters, ββββ, is
estimated from the updater, and its uncertainty is
described by the confidence region given in (2)
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where ββββ�  is the nominal value of the estimated
parameters, βQ  is the covariance matrix of the
estimated parameters, χ2 is the Chi-square
distribution, α% is the level of confidence and νβ is
the degrees of freedom which is equal to the number
of the estimated parameters, assuming the covariance
matrix is known [Anderson, 1984]. In this work, a
possible change in the active set of the inequality
constraints, w, may occur for the anticipated
uncertainty of ββββ given in (2).

The confidence region of the constrained optimum,
*
cx , which is the solution of (1), is obtained by

�mapping� the confidence region *
ux  to the region

defined by the inequality constraints as shown in
Figure 2. The unconstrained optimum, *

ux , is the
solution of the following optimization problem,
which is the original problem (1) without the
inequality constraints.

Maximize   P(x, u, ββββ)
      x, u

Subject to   h(x, u, ββββ) = 0

(3)

Fig. 2 Transformation of the uncertainty from the
constant active set to the feasible region
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The confidence region of *
ux  can be determined by

linear sensitivity analysis [Fiacco, 1983] of problem
(3) because the active set of inequality constraints
remains constant.  All linearizations are performed at
the nominal value of the estimated parameter, β� , and

the unconstrained optimum, *
ux� , estimated from β� .

The covariance matrix of *
ux  is given in (4).
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The procedure in calculating the sensitivity matrix

β
x*

u
d

d
 for problem (3) is discussed in Wolbert, et al.

(1994). The confidence region of *
ux  is given in (5)
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where νx is the degrees of freedom in (3) which is
equal to the dimension of x.

The confidence region of *
cx  can be derived by

mapping every point inside the confidence region of
*
ux  given in (5) to the feasible region defined by the

inequality constraints in the reduced space. By
eliminating u using h(x, u, ββββ) = 0, Equation (1) can
be written as follows

Maximize   Pr(x, ββββ)
       x

Subject to   g(x, ββββ) ≤ 0

(6)

where Pr and g are the objective function and
inequality constraints in the reduced space. The
solution of (6) is exactly the same as *

cx  if we can
analytically solve for u from h(x, u, ββββ) = 0. If we
must linearize h(x, u, ββββ) = 0 to eliminate u, Equation
(6) is an approximation of (1).

As shown in Figure 2, the collection of the points
after the mapping in the region bounded by g(x, ββββ) ≤
0 defines the confidence region of the constrained
optimum. For a given value of ββββ inside the
confidence region defined in (2), the unconstrained
optimum *

ux  can be estimated from the linear
approximation as follows.
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For every value of ββββ, the difference in profit at *
ux

and *
cx  should be minimum. Therefore, (6) can be

expressed without changing the result [Pr( *
ux , ββββ) is a

constant] as follows

Minimize Pr( *
ux , ββββ) - Pr(x, ββββ)

        x

Subject to   g(x, ββββ) ≤ 0

(8)

and *
cx  is the optimum solution of (8). Furthermore,

when Pr(x, ββββ) can be approximated by expanding the
profit function using Taylor’s series around the point

*� ux , Equation  (8) can be re-written as follows.
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        x

Subject to   g(x, ββββ) ≤ 0

(9)

The reduced Hessian matrix can be obtained when
calculating the sensitivity matrix in (4) using
Wolbert�s approach [1994].  For any point ββββ sampled
from the confidence region in (2), *

cx  can be
estimated by solving (7) and (9). We can estimate the
uncertain ranges of *

cx  by solving (7) and (9) for
different values of ββββ sampled from (2). If the
inequality constraints are linear(ized), (9) becomes a
quadratic programming (QP) problem that we can
solve efficiently.

The confidence region obtained by solving (7) and
(9) for a sample of ββββ values is characterized by a
collection of data points. In results analysis, it is
difficult to evaluate two uncertain optimizer results
from two sets of data points, since this is a bilevel
optimization problem. Therefore, (9) is reformulated
to a system of algebraic equations using Karash-
Kuhn-Tucker (KKT) conditions so that we can
reformulate the results analysis easily. By taking the
KKT conditions of (9), we can obtain the following
system of equations that are equivalent to equations
(7) and (9), along with a restriction on ββββ being within
its approximate α % confidence region.
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g(x, ββββ) ≤ 0 (10b)
µigi(x, ββββ) = 0 (10c)
µi ≥ 0 (10d)
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where i denotes the ith inequality constraint.
Equations (10e) and (10f) define the uncertainty of ββββ
and the unconstrained optimum, *

ux . Equations (10a)
– (10d) defines the mapping which transforms the
uncertainty of *

ux  in the reduced space to the

uncertainty of *
cx  in the region defined by g(x, ββββ) ≤

0. Because of the change in the active set, the



sensitivity matrix of *
cx  with respect to ββββ (i.e. 

β
x*

c
d

d
)

is not defined over the entire region of interest. The
change in the active set is represented by the
complementarity equation in (10c). Equations (10a)
– (10f) describing the α% of confidence region of

*
cx  will be used for results analysis in RTO systems.

3. RESULTS ANALYSIS IN REAL-TIME
OPTIMIZATION

In this section, a new results analysis strategy to
handle possible changes in the active set of
inequality constraints is presented. The control
structure has to be considered in results analysis. In
this paper, we focus on the case in which the
inequality constraints are the bounds on the decision
variables, which are final elements or setpoints
regulated by controllers at a much higher frequency
than the RTO loop.  In this situation, the inequality
constraints are not a function of ββββ. Therefore,
Equations (10a) – (10f) can be simplified further as
follows
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µigi(x) = 0 (11c)
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where (10e) and (10f) are combined to form (11e)
and *

ux
Q  can be calculated from (4). Equations (11a)

– (11e) defines the α% confidence region of the
constrained optimum which will be used in results
analysis.

The proposed strategy of results analysis compares
the overlapping of two confidence regions of the
optima predicted in successive RTO executions. The
strategy is shown in Figure 3. The level of
confidence, α%, that two confidence regions start
overlapping is first estimated. If α is small (α ≤ α0),
we expect that large portions of 95% confidence
regions of two uncertain optima overlap. Therefore,
we conclude that the difference between two
uncertain optima is due to common cause variability,
and the new setpoint will not be implemented. If α is
large (α > α0), only small portions of 95%
confidence regions overlap or two 95% confidence
regions are even disjoint when α% is larger than
95%.  We conclude that the new setpoint should be
implemented, because the difference between two
uncertain optima is due to non-stationary
disturbances.

The confidence level, α%, at which two confidence
regions just overlap can be determined by solving an

optimization problem. When two confidence regions
just overlap, there exists a value of x that satisfies the
system of equations (11a) – (11e) for the last
implemented and current RTO executions. Therefore,
α can be calculated from the parameter, c, in (12).

Minimize  c 
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and α can be found from the Chi-square distribution
table as ),(c x

2 ναχ= .  In (12), j = 1, 2 which
denotes the previous and current RTO results. The
value, α, is compared to a pre-specified value, α0. If
α is larger than α0, the new setpoint will be
implemented in the plant.

The parameter, α0, is the tuning parameter for the
results analysis for trading off variability and
tracking. If α0 is chosen to be 0%, results analysis
will be turned off and all the variability will be
transmitted to the plant. If α0 is chosen to be 100%,
there will be no variability, but the RTO system
cannot track the changing optimum. Therefore, the
designer has to choose a value of α between 0% and
100% to achieve an appropriate trade-off between
tracking and variability.

Fig. 3 Strategy of results analysis
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The proposed results analysis strategy compares two
approximate confidence regions linearized at the
current and newly predicted optima. This strategy is
appropriate when the current and newly predicted
optima are �close� to each other, so that using
linearized confidence regions for results analysis is a
good approximation. In typical RTO applications, the
plant model is optimized subject to a trust region to
avoid a large plant movement in a single step. Since
large plant moves are prevented in RTO, results
analysis using linear confidence regions is
appropriate.

4. WILLIAMS-OTTO REACTOR CASE STUDY

The proposed approach is applied to the simulated
Williams-Otto reactor system described in Yip and
Marlin (2002) as shown in Figure 4. It is assumed
that there is no structural mismatch between the plant
and the model used in RTO, but substantial
parametric uncertainty exists. The optimization
variables are the setpoint of the feed flow rate of B
(Fb) and reactor temperature (Tr).

Fig. 4 Williams-Otto reactor system

The parameters selected for updating are the
frequency factors, ββββT = [A1 A2 A3], using a single
data set for updating. The measured variables are the
reactor volume and temperature, feed flow rates of A
and B, and all the compositions. Zero mean white
noise is added to the process variables to simulate the
measurement errors. The standard deviations for
measurement noise are 1% for flows, 2% for reactor
volume, 3% for composition and 3.3 R for
temperature.

The inequality constraints in the optimizer are the
maximum flow rate of feed B and the maximum
allowable reactor temperature. There are no
inequality constraints in model updating. Therefore,
the covariance matrix for the estimated parameter in
Equation (2) can be determined by linear sensitivity
analysis. The confidence region of the optimizer
results is determined from Equation (9) or Equations

(11a) � (11e), where the covariance matrix of *
ux  is

related to the covariance matrix of ββββ by Equation (4).
The approximate 95% confidence region for the
constrained optimum gives a good approximation for
the uncertain constrained optimum, as shown in
Figure 5.  Samples of ββββ were used in the 500 Monte-
Carlo nonlinear optimizations. The approximate 95%
confidence region for the constrained *

cx  is bounded
by solid lines on the constraints and the solid curve
inside the feasible region. Most of the data points
obtained from nonlinear optimizations are inside the
approximated 95 % confidence region.

The performance of the RTO system with and
without results analysis is shown in Figure 6. In this
case study, 100 closed-loop RTO calculations were
simulated and a 50% step increase in A1 occurred at
the 50th RTO execution. Without results analysis,
there are excessive plant movements due to the
propagation of measurement noise. When the results
analysis in (12) is implemented, unnecessary plant
movements have been significantly reduced as shown
in Figure 6.

The performance of the strategy for one value of the
tuning parameter (α0) is shown in Figure 6. When α0
is equal to 50 %, an increase in total operating profit
is achieved because of the reduction of the plant
movements. Plant movements can further be reduced
by choosing a larger value of α0. However, the total
profit achieved may be lower because the RTO
system becomes less effective in profit tracking.
When α0 was chosen to be 0.7, the total profit
achieved was $106370, which was smaller than profit
attained when there was no results analysis.
Therefore, the designer has to trade off tracking and
variability when tuning the results analysis.

The results analysis optimization problem in (12)
may have multiple solutions because of the
complementarity equations in the constraints, which
are non-convex. We need to make sure that the
solution of (12) is the global minimum for comparing
with α0. In the Williams-Otto reactor case study,
after the value of α had been obtained, the α%
confidence regions of two successive predicted
optima were plotted to make sure that the solution
was reasonable. This can be done because the
optimization problem has a dimension of two. In
large dimensional problem, we may need global
optimization or re-formulation to obtain the global
minimum of (12).

A + B → C rT/1B
11 eAk −=

C + B → P + E rT/2B
22 eAk −=

P + C → G rT/3B
33 eAk −=

Tr

Fb
Fa = 14500 lb/h

Fa + Fb

Component BComponent A

Vr = 4640 lb



Fig. 5 Comparison of the approximated 95 %
confidence region for the constrained optimum
(bounded by solid lines on the constraints and solid
curve inside the feasible region) with nonlinear
optimization for sampled values of ββββ (+).

Fig. 6 RTO performance with and without results
analysis for tracking the disturbance change of +50%
change in A1. Top: No results analysis, bottom: α0

equal to 0.5. (� : setpoint implemented, ■ : true
optimum before and after the disturbance)

5. CONCLUSIONS

A new results analysis strategy for a constrained
RTO system has been proposed in this paper. The
uncertainty of the constrained optimum, which

represents the common cause variability, is
determined by mapping the confidence region of the
unconstrained optimum to feasible region. The
mapping equations contain the complementarity
equations, which model the change in the active set
of inequality constraints for the anticipated
uncertainty in the parameters. The mapping
equations are used in the results analysis to compare
two uncertain optima. The strategy of results analysis
involves determining the level of confidence that two
confidence regions start overlapping. The level of
confidence is compared to a pre-specified value to
determine if the optimizer result shall be
implemented or not.

The proposed results analysis strategy has been
successfully applied to the simulated Williams-Otto
reactor case study. Plant movements responding to
measurement noise have been significantly reduced
and a higher operating profit can be achieved for a
well-chosen tuning parameter.
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