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Abstract: In this paper, we present an adaptive extremum seeking control scheme for
continuous stirred tank bioreactors. We assume limited knowledge of the growth kinetics.
An adaptive learning technique is introduced to construct a seeking algorithm that drives the
system states to the desired set-points that maximizes the value of an objective function.
Lyapunov’s stability theorem is used in the design of the extremum seeking controller
structure and the development of the parameter learning laws. A simulation experiment is
given to show the effectiveness of the proposed approach.
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1. INTRODUCTION

The goal of extremum seeking is to find the operating set-
points that maximize or minimize an objective function.
Since the early research work on extremum control in the
1920’s (Leblanc 1922), many successful applications of
extremum control approaches have been reported (e.g.,
(Vasu 1957), (Astrom and Wittenmark 1995), (Sternby
1980) and (Drkunov et al. 1995)). Recently, Krstic et.
al ((Krstic 2000), (Krstic and Deng 1998)) presented
several extremum control schemes and stability analysis
for extremum-seeking of linear unknown systems and a
class of general nonlinear systems ((Krstic 2000) and
(Krstic and Deng 1998)).
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In this study, we investigate an alternative extremum
seeking scheme for continuous stirred tank bioreactors.
The proposed scheme utilizes an explicit structure infor-
mation of the objective function that depends on sys-
tem states and unknown plant parameters. However, it
is assumed that the objective function is not available
for measurement. Furthermore, no explicit knowledge of
the microbial growth kinetics are assumed. A Lyapunov-
based adaptive learning control technique is used to ap-
proximate the unknown kinetics and to steer the system
to its unknown extremum. The technique ensures conver-
gence of the system to an adjustable neighbourhood of
its unknown optimum that depends on the approximation
error. We also show that a certain level of persistence
of excitation (PE) condition is necessary to guarantee
the convergence of the extremum-seeking mechanism.
The paper is organized as follows. Section 2 presents
some notations and the problem formulation. In Section
3, an parameter estimation algorithm is developed. Sec-



tion 4 presents the adaptive extremum seeking controller
and the stability and convergence of the closed-loop ex-
tremum seeking system. Numerical simulation is shown
in Section 5 followed by brief conclusions in Section 6.

2. PROBLEM

Consider the following microbial growth models

ẋ = µ(s)x − ux (1)

ṡ =−k1µ(s)x + u(s0 − s) (2)

y = k2µ(x, s)x (3)

where states x ∈ [0,+∞) and s ∈ [0,+∞) denote
biomass and substrate concentrations, respectively, u ≥ 0
is the dilution rate, y is the production rate of the reaction
product, s0 denotes the concentration of the substrate
in the feed, and k1, k2 > 0 are yield coefficients. We
consider the case where only s and y are measurable,
the biomass concentration x is not available for feedback
control.

In this work, we consider the extremum seeking problem
for plant (1)-(2) with an unknown substrate-dependent
growth rate expression µ(s). One of the most common
growth rate model is Monod’s model given by

µ(x, s) = µ(s) =
µms

Ks + s
(Monod) (4)

where µm > 0 is the maximum value of the specific
growth rate, and positive constant Ks, Kc and K0 to K2

denote the coefficients for different growth rate models.
While this simple model form is very useful in practice,
a wide variety of growth patters and characteristics exist
where the Monod expression is not applicable.

The extremum-seeking control of plants described by
the Monod model have been investigated in (Zhang et
al. 2002). In this study, we extend the result to a broad
class of uncertain plants with unknown growth rate repre-
sentations. As in (Zhang et al. 2002), the control objective
is to design a controller, u, such that the production rate
y achieves its maximum.

The strategy developed in this paper consists in approx-
imating the growth rate expression using a neural net-
work approximation technique. In this paper, radial basis
function (RBF) neural networks presented in (Sanner and
Slotine 1992) shall be used to approximate a continuous
function φ(z) : Rp → R

φ(z) = W ∗T
S(z) + µl(t) (5)

with NN approximation error µl(t), and basis function
vector

S(z) = [s1(z), s2(z), · · · , sl(z)]T

si(z) = exp

[−(z − ϕi)
T (z − ϕi)

σ2
i

]

, i = 1, 2, ..., l(6)

where ϕi is the center of the receptive field, and σi is the
width of the Gaussian function. The ideal weight W ∗ in
(5) is defined as

W ∗ := arg min
W∈Ωw

{

sup
∣

∣

∣
WT S(z) − φ(z)

∣

∣

∣

}

(7)

where Ωw =
{

W
∣

∣

∣
‖W‖ ≤ wm

}

with positive con-

stant wm to be chosen at the design stage. Universal
approximation results stated in (Funahashi 1989) (Sanner
and Slotine 1992) indicate that, if l is chosen sufficiently
large, then W T S(z) can approximate any continuous
function to any desired accuracy on a compact set.

We apply eq.(5) to develop an approximation of the
growth rate expression given by

µ(s(t)) = W ∗T
S(s(t)) + µl(t) (8)

where W ∗ and S are as defined in eqs.(6)-(7). Addi-
tionally, we make the following assumption about the
approximation error µl(t).

Assumption 1: the NN approximation error satisfies
|µl(t)| ≤ µ̄l with constant µ̄l > 0 over a compact set
in the state space.

We first calculate the system’s equilibria corresponding
to a constant dilution rate ue. By setting the right-hand
side of (1)-(2) to zero, we obtain two equilibria. The first
is xe = 0 and se = s0 which is called the wash-out
equilibrium. The second is

xe =
s0 − se

k1

where se is a positive solution of the equation

ue = µ(se).

At the steady-state, the production rate can be expressed
by

ye =
k2

k1
µ(se)(s0 − se) (9)

Following eq.(8), the steady-state production rate is ap-
proximated by

ye =
k2

k1
W ∗T

S(se)(s0 − se) (10)

From (2) and (4), we have



∂ye

∂se

=
k2

k1
W ∗T

(

dS(se)(s0 − se) − S(se)
)

(11)

and

∂2ye

∂s2
e

=
k2

k1
W ∗T

(

d2S(se)(s0 − se) − 2dS(se)
)

(12)

where dS = ∂S
∂s

and d2S = ∂2S
∂s2 . Assuming that the

parameter vector W ∗ is such that ∂2ye

∂s2
e

> 0,∀se ≥ 0

then ye(s) has a maximum

y∗ = ye(s
∗) =

k2

k1
W ∗T

S(s∗)x∗ (13)

with x∗ = s0−s∗

k1

at the system equilibrium.

The objective of this study is to develop a controller that
maximizes the steady-state value of the production rate,
y∗. However, since the exact values of the ideal weights,
W ∗, are not known a priori , they must be estimated. In
the next section, we propose an adaptive extremum seek-
ing algorithm is developed to search the unknown process
set-point where the production rate, y, is optimized. The
strategy attempts to estimate the gradient of the produc-
tion rate with respect to the substrate concentration, s. A
controller is then designed to bring the process to points
where the gradient vanishes and where the second order
derivatives of the production rate with respect to the sub-
strate is negative. The resulting technique provides a real-
time optimization techniques that can be used to a large
class of bioreactors and chemical reactors.

3. CONTROLLER DESIGN

In this section, we design a control strategy that tracts the
unknown optimum production rate. We first develop the
parameter estimation algorithm for the unknown parame-
ter vector W ∗. Equations (1)-(2) can be re-expressed as

ẋ = (W ∗T
S(s) + µl(t))x − ux (14)

ṡ =−k1(W
∗T

S(s) + µl(t))x + u(s0 − s) (15)

We assume that the biomass and the substrate concentra-
tion are available for measurement.

Let Ŵ denote the estimate of the true parameter W ∗ and
let ŝ and x̂ be the predictions of s and y. The predicted
states ŝ and x̂ are generated by

˙̂x = ŴT Sx − ux + kxex + c1(t)
T ˙̂
W (16)

˙̂s =−k1Ŵ
T Sx + u(s0 − s) + kses + c2(t)

T ˙̂
W(17)

with gain functions ks, ky > 0, prediction errors es = s−
ŝ and ex = x− x̂ and c1(t), c2(t) time-varying functions
to be assigned later. It follows from (14)-(17) that

ėx = W̃T Sx + µl(t)x − kxex − c1(t)
T ˙̂
W (18)

ės =−k1W̃
T Sx − k1µl(t) − kses − c2(t)

T ˙̂
W (19)

where W̃ = W ∗ − Ŵ .

The objective of the extremum-seeking control is sta-
bilize the closed-loop system around a point where the
gradient of the production y with respect to s given in
eq.(11) vanishes while attenuating the effect of the mod-
elling uncertainty µl(t). Since the parameter vector W ∗ is
unknown, we first design a controller to make the system
states track points where the estimated gradient

z =
k2

k1
ŴT

(

dS(s)(s0 − s) − S(s)
)

(20)

vanishes. In order to ensure that the estimated gradient
approaches the true gradient asymptotically, we have to
ensure that the parameter estimates approach the optimal
weight vector W ∗. To achieve this objective, an excitation
signal is designed and injected into the adaptive system to
ensure convergence of the estimated parameters to their
true value. The extremum seeking control objective is
achieved when the system systems are stabilized at the
optimal operating point x∗, s∗.

Define

zs = ŴT
(

dS(s)(s0 − s) − S(s)
)

− d(t) (21)

where k2

k1

> 0 has been removed for simplicity and
d(t) ∈ C1 is an excitation signal that will be assigned
later. In the remainder, the dependence of the radial basis
functions S on the substrate concentration s is implied
and we write S, dS and d2S.

Next we define the variables,

η1 = ex − c1(t)
T W̃

η2 = es − c2(t)
T W̃ (22)

η3 = zs − c3(t)
T W̃

where c3(t) is a vector of time-varying functions to be de-
fined in the design procedure. We propose the Lyapunov
function candidate

V =
η2
1

2
+

η2
2

2
+

η2
3

2
. (23)

We pose the following equation for the dither signal, d(t),

ḋ(t) = c3(t)
T ˙̂
W + ΓT

1
˙̂

W − (ŴT Γ2)
2d(t)

+ŴT Γ2a(t) + kzzs (24)

where a(t) is an external signal providing excitation to
the process and kz > 0 is a positive gain function to be
assigned. We then assign ċ1, ċ2 and ċ3 as



ċT
1 =−kxcT

1 + xST

ċT
1 =−ksc

T
2 − k1xST (25)

ċT
3 =−kzc

T
3 − k1xŴT Γ2S

T

and we let the control be given by

u =
1

(s0 − s)

(

k1Ŵ
T Sx + a(t) − ŴT Γ2). (26)

Taking the time derivative of V , we substitute eqs.(24)-
(26) and we substitute ex, es and zs using eq.(22) to
obtain

V̇ = µl(t)xη1 − kxη2
1 − k1xµl(t)η2 − ksη

2
2

−k1xµl(t)Ŵ
T Γ2η3 − kzη

2
3 . (27)

where Γ1 = dS(s0 − s) − S and Γ2 = d2S(s0 − s) −
2dS. Next, we complete the squares and assign the gain
functions

kx = kx0 +
k4

2
x2

ks = ks0 +
k3k5

2
x2 (28)

kz = kz0 +
k3k6

2
x2(ŴT Γ2)

2

where k4 > 0, k5 > 0, k6 > 0, kx0 > 0, ks0 > 0
and kz0 > 0 are positive constants. We finally obtain the
inequality

V̇ ≤−kx0η
2
1 − ks0η

2
2 − kz0η

2
3

+

(

1

2k4
+

1

2k5
+

1

2k6

)

µl(t)
2 (29)

Eq.29) establishes that the state, η, converges to a small
neighborhood of the origin. It remains to show that the
original state variables, ex, es and zs and the parameter
estimation errors W̃ converge to a small neighborhood
of the origin. Note that it is not sufficient to check
that ex, es and zs can be made small since the value
of zs depends on the parameter estimates, Ŵ . To this
end, we derive a persistency of excitation condition that
guarantees the convergence of the parameter estimates to
the ideal weights, W ∗.

Consider the following matrix,

Υ(t) =





c1(t)
T

c2(t)
T

c3(t)
T





By construction, this matrix solves the matrix differential
equation

Υ̇(t) = −K(t)Υ(t) + B(t) (30)

where

K(t) =





kx 0 0
0 ks 0
0 0 kz





and

B(t) =





xST

−k1xST

−k1xŴT Γ2S
T



 .

A bound on the parameter estimates Ŵ can be ensured by
choosing the following parameter update law.

˙̂
W =



















γwΓ if ‖Ŵ‖ ≤ wm or
if‖Ŵ‖ = wm and ŴT Γ ≤ 0

γw

(

I − ŴŴT

ŴT Ŵ

)

Γ otherwise
(31)

where Γ = Υ(t)T e. Eq.(31) is a projection algorithm
which ensures that ‖Ŵ‖ ≤ wm. The convergence of the
parameter estimation scheme is considered in the sequel.

By the property of the projection algorithm and for the
specific choice of basis function it is possible to show
that the norm of B(t) is bounded. Using the exponential
stability of system eq.(30)and the bound on B(t), an
explicit bound for the solution of eq.(30) can be obtained
as follows,

‖Υ(t)‖ ≤C2e
−λ2(t−t0) + C2

BM

λ2
. (32)

where C2 = ‖Υ(t0)‖ > 0 and λ2 > 0 is a positive
constant. Next, we want to show that the parameter es-
timation error W̃ converges to a neighborhood of the
origin.

Substituting for e = η + Υ(t)W̃ we obtain the perturbed
dynamics

˙̃
W = −γwΥ(t)T Υ(t)W̃ − γwΥ(t)T η

+















0 if ‖Ŵ‖ ≤ wm or
if‖Ŵ‖ = wm and ŴT Υ(t)T e ≤ 0

γw

ŴŴT

ŴT Ŵ

(

Υ(t)T Υ(t)W̃ + Υ(t)T η
)

otherwise

(33)

To establish the convergence of the parameter estimation,
we make the following persistency of excitation assump-
tion.

Assumption 3.1. The solution of eq.(30) is such that there
exists positive constants T > 0 and kN > 0 such that



t+T
∫

t

Υ(τ)T Υ(τ)dτ ≥ kNIN (34)

where IN is the N-dimensional identity matrix.

By a standard adaptive control argument, the persistency
of excitation condition guarantees that the origin of the
differential equation

˙̃
W = −γwΥ(t)T Υ(t)W̃ (35)

is an exponentially stable equilibrium. Since B(t) is a
bounded function, it is shown that the parameter estima-
tion error is guaranteed to decay exponentially as

‖W̃‖ ≤ α4e
−λ4(t−t0) +

|µ̄l|√
2kmc3

(36)

Hence the parameter estimation error and the redefined
state variables, η, converge exponentially fast to an ad-
justable neighbourhood of the origin. By definition, con-
vergence of η and W̃ to a neighbourhood of the origin
implies that ‖e‖ ≤ ‖η‖ + ‖Υ(t)‖‖W̃‖. Substituting for
‖η‖, ‖Υ(t)‖ and W̃ , we obtain

‖e‖ ≤ α5e
−λ5(t−t0) + β5 (37)

where α5 > 0 and β)5 > 0 are computable positive
constants.

The convergence of the error vector, e, implies that the
convergence of the prediction errors, ex and es and the
exponential convergence of the closed-loop system to an
adjustable neighbourhood of the unknown steady-state
optimum. We summarize the result of the above analysis
as follows.

Theorem 3.1. Consider the two-state bioreactor model
eqs.(1)-(2) with production rate, eq.(3) in closed-loop
with the state-observer eqs.(16)-(17), the controller eq.(26),
the dither signal eq.(24) and the adaptive learning law
eq.(31). Assume that the signal a(t) is such that

t+T
∫

t

Υ(τ)T Υ(τ)dτ ≥ kNIN (38)

for positive constants T > 0 and kN > 0 where Υ(t) is
the solution of eq.(30). Then

• the error dynamics eqs.(18)-(19) converge exponen-
tially to a small neighbourhood of the origin

• the parameter estimation errors W̃ converge expo-
nentially to a small neighbourhood of the origin

• the tracking error from the unknown steady-state,
zs, converges exponentially to a small neighbour-
hood of the origin.

4. SIMULATION RESULTS

To show the effectiveness of the proposed design, a
simulation study is performed on three models.

In the first example, we consider a bioreactor with Hal-
dane kinetics,

µ(s) =

(

µms

Ks + s + KIs2

)1.5

The following parameters and initial states are used in the
simulation experiment.

Ks = 0.2, µm = 1.0, Y = 0.5, k1 = 2.0,

k2 = 1.0, KI = 0.1, s0 = 10.0, x(0) = 1.0

s(0) = 0.1, x̂(0) = 0.5, ŝ(0) = 0.5

The design parameters in the adaptive controller (26) and
the adaptive law eq.(31) are

γw = 100.0, kz0 = kx0 = ks0 = k4 = k5 = k6 = 2.0

The NN radial basis function approximation is of dimen-
sion 6 with parameters ϕi = i and σi = 1 for 1 ≤ i ≤ 6.
The initial conditions for the adaptive learning weights
are

Ŵi(0) = 0, 1 ≤ i ≤ 6

The dither signal was set to

a(t) = exp(−0.1t)

6
∑

i=1

(sin((0.5i)t) + cos((0.5i)t) )

We let d(0) = 0 and Υ(0) = 0.

Simulation results are shown in Figures 1-3. Figure 1
shows the value of the production rate y and its esti-
mated value. The closed-loop system converges quickly
to a small neighbourhood of the origin. Moreover, the
estimated production rate is shown to converge to the
a small neighbourhood of the true production rate. In
this case, the true optimum, 3.036, was recovered by the
adaptive learning scheme. The required control action of
the extremum-seeking control is shown in Figure 2. The
biomass concentration and the substrate concentration are
shown in Figure 3.



5. CONCLUSION

We have solved a class of extremum seeking control
problems for continuous stirred tank bioreactors repre-
sented by an unknown growth kinetic model. An adaptive
learning technique is used to derive an extremum seeking
controller that drives the production rate to an adjustable
neighbourhood of the unknown optimal production. It has
been shown that when the external dither signal is de-
signed such that the persistent excitation condition is sat-
isfied, the proposed adaptive extremum seeking controller
guarantees the exponential convergence of the production
rate of the bioreactor to an adjustable neighborhood of its
maximum.
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