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Abstract: The performance of a control chart in statistical process control is often quantified 
in terms of the Average Run Length (ARL).  The ARL enables a comparison to be 
undertaken between various monitoring strategies.  These are often determined through 
Monte Carlo simulation studies.  Monte Carlo simulations are time consuming and if too 
few runs are performed then the results will be inaccurate.  An alternative approach is 
proposed based on analytical computation.  The analytical results are compared with those 
of the Monte Carlo simulations for three case studies.  Copyright © 2003 IFAC 
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1.  INTRODUCTION 
 
In Statistical Process Control (SPC), a variety of 
control charts have been applied including Shewhart, 
CUSUM and EWMA (e.g. Montgomery, 1991; 
Wetherill and Brown, 1991).  Each method has 
associated advantages and disadvantages that have 
been reported in the literature. Control chart 
performance is traditionally quantified in terms of the 
Average Run Length (ARL).  Run length is defined 
as the number of observations from the start of the 
control chart to the first out-of-control signal.   
 
Except for simple cases (e.g. Brook and Evans, 1972; 
Schmid, 1995), Monte Carlo simulations have been 
used to determine the ARL.  This involves the 
realisation of a vector containing a random signal and 
then applying the control scheme and measuring the 
run length (time to the first alarm).  This is repeated 
many times, each time a different random vector is 
generated, and finally the ARL is computed.  The 
main issue with this method is the trade-off between 
computer time and accuracy of the results.  A large 
number of realisations are necessary if the results are 
to be precise (Lowry et al, 1992; Wardell et al, 1994).   
 

Therefore it is believed that an analytical method for 
the computation of the ARL would be desirable. The 
density function of the run length of a control chart is 
first constructed based on the in-control probability 
of an observation.  This approach is similar to that of 
Wetherill and Brown (1991).  They assumed that the 
in-control probability was constant for every 
observation.  In contrast, in this work, this constraint 
is relaxed.  This allows the computation of the ARL 
for more complicated SPC monitoring strategies, and 
ultimately for correlated data. 
 
The ARL is investigated in more detail for three case 
studies.  The first case study looks at the ARL of a 
Shewhart control chart based on independent data 
and is derived for both the in-control and out-of-
control situation. This example demonstrates the 
validity of the approach.  The impact of serial 
correlation on the performance of control charts is 
well known (Alwan and Roberts, 1988; Montgomery 
and Mastralango, 1991).  One solution is to estimate 
an ARMA model (Harris and Ross, 1991) for 
univariate systems, or a VAR model (Mulder et al, 
2001) for multivariate systems, and to monitor the 
residuals, which are free of serial correlation. In the 
second case study, the focus is on the residuals of a 



     

first order AutoRegressive, AR(1), time series model 
as defined by Box et al, (1994). 
 
For the third case study, the ARL of a correlated time 
series generated by an AR(1) model is computed.  
Schmid (1995) claimed that an explicit solution does 
not exist for the ARL of correlated data, and that only 
general statements about the ARL are possible.  In 
this study it will be shown that although there is not 
an explicit solution for the ARL, there is a numerical 
approximation.  The analytical results are compared 
with the results of Monte Carlo simulations for each 
of the three case studies.   
 
 

2.  CONTROL CHARTS 
 
The run length of a control chart is defined as the 
number of observations until the first observation 
moves outside of the control limits.  After this 
observation, the control chart is stopped and 
calculation of the run length is recommenced from 
the next in-control observation.  In this section, the 
density function of the run length is constructed.   
 
The probability that an observation, kX , is in control 
at time point, k, is given by: 
 

( )LCLXUCLP k >>  (1)
 
and the probability that at point, k, observation, kX , 
is out-of-control is defined as: 
 

( )LCLXorUCLXP kk <>  
=1- ( )LCLXUCLP k >>  

(2)

 
Also it is assumed that an observation is either in-
control or out-of-control.  In a control chart, an 
observation is only recorded if the previous point was 
in-control.  That is an observation can only be 
deemed to be in-control at time point k if the 
observations at 1,,2,1 −k…  were in control: 
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Also an observation at time point k in a control chart 
is out-of-control if: 
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Based on equations 3 and 4, the Average Run Length 
is the expectation of the out-of-control run length and 
is given by: 
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Based on the following definition 
 

( ) kk LCLXUCLP β=>>  (6)
 
Equation 2 is given as: 
 

( ) kkk LCLXorUCLXP β−=<> 1  (7)
 
and equation 5 is redefined as: 
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This is as described by Wetherill and Brown (1991), 
except that β  in equation 8 can differ for each time 
point, k. 
 
 
2.1 Case 1 - Independent Data 
 
For independent data, the value of an observation is 
independent of its previous value, thus ββ =k  for 

1,,2,1 −k… , and equation 8 becomes: 
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This result agrees with that of Wetherill and Brown 
(1991). 
 
 
2.2 Case 2 - Residuals from an AR(1) Model 
 
An AR(1) time series model is given by: 
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where yt is the observed data, ξt is the underlying 
correlated time series, with α as its autoregressive 
parameter, and et is a white noise vector with 
variance 2

eσ , which is assumed to have a Normal 
distribution, and ηt is the mean shift applied to the 
data vector yt (Kaskavelis, 2000).  The one-step 
ahead prediction errors of an AR(1) model are: 
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When a process is in-control, 0=tη , for all t, then 
the probability that at time point k, the process is in-



     

control is constant, ββ =k , k≥1.  Therefore the in-
control ARL is given by: 
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From equation 12 and for the desired in-control ARL, 
the control limits for the Shewhart control charts can 
be derived.  For the out-of-control case, it is assumed 
that a constant mean shift is applied to yt, η=ηt  for 
all 1≥k .  Thus according to equation 11, at 1=k , 
the probability that, when a mean shift is applied to yt, 
the process is in-control is 1β  and for 2≥k , 

ββ =k .  The mean shift in the residuals for 1=k  is 
different to that for 2≥k . Apley and Shi (1999) 
termed this the fault signature of a step change in the 
residuals for univariate systems.  This issue was not 
considered by Harris and Ross (1991) or Kaskavelis 
(2000).  They assumed that the mean shift in the 
residuals is identical for all k.  The probability that 
the control chart will give an out-of-control signal at 
some point in the future is: 
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since ( ) 11 −∞
−=∑ ββ

k

k  for 10 <≤ β .  The out-of 

control ARL is given by: 
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When ββ =1 , it can be seen that equation 14 is 
equivalent to equation 9 and 12.   
 
 

2.3 Case 3 - Serially Correlated Data  
 
In this section it will be shown how kβ  can be 
computed for AR(1) processes via the probability 
distribution function.  It is assumed that observations 

kX  are monitored using a Shewhart control chart 
with an Upper Control Limit (UCL) and a Lower 
Control Limit (LCL).  The cumulative distribution 
function of observation kX  at time point k is defined 
as (Papoulis, 1991): 
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x
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where fk is the probability density function of 
observation kX  at time point k.  The time series 
structure is defined as in equation 10, where α  has 
variance 21 α− .  A condition of the control chart is 
that an observation at k is only plotted if the 
observation at 1−k  is in-control:  
 

LCLXUCL k >> −1  (16)
 
otherwise the control chart would have been 
terminated at 1−k .  The conditional distribution 
function of X  at 1−k  is given by: 
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The probability distribution function of the term 

1−kXα  is defined as (Papoulis, 1991): 
 

( ) ( )xfxg condkk ,1
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The white noise term et is normally distributed with 
variance 21 α−  so that the unconditional X has unit 
variance.  The probability distribution function of et 
is denoted as ( )xNk .  Since 1−α kX  and et are 
independent, the probability distribution function of 
their sum, the probability distribution function of Xk, 
is given by the convolution product (Papoulis, 1991): 
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The in-control probability is thus the probability that 
observation  kX  lies between the control limits: 
 

( ) ( ) ( )∫=−=β
UCL

LCL
kkkk dzzfLCLFUCLF  
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At the start of a control chart, no other observations 
are known.  Therefore X1 can be regarded as the 
unconditional observation of X, and subsequently 1β  
is computed from equation 15.  For 1>k , kβ  can be 
computed recursively by the procedure described 
above, equations 17 to 19. 

 
 

3.  RESULTS 
 
In this section, the theoretical relationships derived in 
the previous section are compared with the results 
from Monte Carlo simulations.  For all Monte Carlo 
simulations 10,000 realisations of the control charts 
were computed.  Each realisation comprised 10,000 
observations and the first observation outside the 



     

control limits was taken to define the run length for 
that realisation. Since the ARL is the mean value of 
the run lengths of the realised control charts, the 
standard error of the ARL is: 
 

N
ARL

ARL =σ  
(21)

 
where N is the number of realisations.  Error bars will 
thus indicate the standard error of the Monte Carlo 
simulations.  For the three cases it is assumed that the 
metric, the data in case 1 and 3, and the residuals in 
case 2, are monitored using a Shewhart control chart.  
For each case it is assumed that the metric used in the 
control chart is normally distributed and that the 
desired in-control ARL is equal to 370.  This 
corresponds to a Shewhart control chart with control 
limits at σ3−  and σ3+ .   
 
 
3.1 Case 1 - Independent Data 
 
The observations, X, are drawn from a population 
with a normal distribution that are offset by a mean 
shift, η.  The mean of the distribution is equal to η 
and its variance is 2

Xσ :  
 

( )2,~ XNX ση  (22)
 
The probability that X lies between the control limits 
is given by: 
 

( ) ( ) ( )∫=−=
UCL

LCL
dfLCLFUCLF ξξβ  

(23)

 
where f is the probability distribution function of X, 
the normal distribution.  Subsequently the ARL can 
be computed from equation 15. 
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Fig. 1. Performance of Shewhart control chart for 

independent data.  
 
The ARL as a function of the mean shift is shown in 
Fig. 1. The dots represent the results of the Monte 
Carlo simulation with error bars that indicate –3/+3 
standard error of the mean and the solid line is the 
theoretical computation. It can be seen that the 

theoretical results correspond with those from the 
Monte Carlo simulations.  
 
 
3.2 Case 2 - Residuals from an AR(1) Model. 
 
The desired in-control ARL is 370.  It is assumed that 
a step function of size η is superimposed on the time 
series yt: 
 

0
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From equation 24, for 1=k , ( )2,~ˆ ek Ne ση  and for 

1≥k , ( )( )2,1~ˆ ek Ne σα−η .  Together with Equation 
15, this allows the computation of β for all k. The 
ARL is computed from equation 14.   
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Fig. 2. Performance of Shewhart control chart for the 

residuals of an AR(1) model.  
 
The ARL as a function of the mean shift for several 
values of alpha is shown in Fig 2, together with the 
results from the Monte Carlo simulations.  The error 
bars indicate the results of the Monte Carlo 
simulations with –3/+3 standard error of the mean.  
The solid line indicates the theoretical calculation. 
Again it can be seen that the theoretical results 
correspond to those from the Monte Carlo 
simulations. 
 
 
3.3 Case 3 - Serially Correlated Data. 
 
The ARL as a function of the mean shift was 
determined in the previous two cases.  In this case 
study, the influence of serial correlation on the in-
control ARL was investigated. In contrast to cases 1 
and 2, there is no direct analytical relationship for the 
ARL.  Therefore a numerical approach was used.  It 
is assumed that the probability distribution function 
of X for the first observation is that of the normal 
distribution with mean zero and unit variance.  Based 
on equations 17 to 20, the probability distribution 
function of the second observation is computed.  
Then 2β  is computed from equation 15.  These steps 
are repeated until kβ  converges.  The values of kβ  



     

are then used in equation 8 to compute the ARL.  
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Fig. 3. The in-control ARL of Shewhart control 

charts for serial correlated data.  
 
The ARL as a function of α is given in Fig. 3, 
together with the results from the Monte Carlo 
simulations. The dots represent the Monte Carlo 
simulations and the error bars indicate –3/+3 standard 
error of the mean and the solid line indicates the 
theoretical calculation. Again it can be seen that the 
theoretical results correspond to those from the 
Monte Carlo simulations.  
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Fig. 4. The in-control ARL as function of the control 

limit for a selection of values for α. 
 
As can be observed in Fig. 3, the in-control ARL 
only depends on the absolute value of α.  It also can 
be seen that for increasing α, the in-control ARL 
increases. This means that on average it takes longer 
to detect a false alarm.  Although this might appear 
advantageous, in practice the in-control ARL can be 
considered as a design parameter since it is implied 
by the choice of significance level δ.  For 
independent and identical data, the in-control ARL is 
1/δ, but for serially correlated data this relationship is 
not valid.  Kaskavelis (2000) proposed an alternative 
philosophy which was to treat the in-control ARL as 
an explicit design parameter. The above method 
allows the rapid computation of the ARL for a range 
of values for the control limits. In Fig. 4, the ARL as 
a function of the control limit is shown for selected 
values of α. The control limit is given in terms of the 
standard deviation of yt. From this figure the control 
limits for an AR(1) process can be determined. 

Table 1 Control limits to guarantee an in-control 
ARL of 370 for AR(1) process 

 
 α  Control Limit  α Control Limit  
 0  3.00  0.5 2.98 
 0.1 3.00  0.6 2.96 
 0.2 3.00  0.7 2.93 
 0.3 3.00  0.8 2.86 
 0.4 2.99  0.9 2.71 
 
Since the calculations of the ARL closely match the 
results of the Monte Carlo simulation, Fig. 5, the 
impact of the mean shift on the ARL is investigated 
in greater detail without further comparisons being 
undertaken with simulations. In Fig. 5 the solid line 
refers to the theoretical calculations and the dots with 
arrow bars are the Monte Carlo simulations with the 
associated three standard errors of the mean  
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Fig. 5. The ARL as a function of alpha with adjusted 

control limits, with various mean shifts applied 
on the time series yt.  

 
The ARL of a Shewhart control chart with the control 
limits as given in Table 1 are shown in Fig. 5 where 
various mean shifts are applied to the time series data, 

ty .  In this situation, the control limit for negative α 
is equal to that of its positive counterpart.  The 
calculations are in agreement with the Monte Carlo 
simulations.  When no mean shift is applied, which 
corresponds to the in-control situation, the 
calculations do not give exactly 370, because of the 
rounding of the control limit to two decimals in Table 
1. Compared with Fig 3, the in-control ARL does not 
deviate from 370. 
 
In Fig. 6, the ARL is shown as a function of the mean 
shift and α. It can be observed that the ARL is only 
dependent on the mean shift and not on α, except for 
large positive values of α. Thus a Shewhart control 
chart with control limits adjusted to ensure the 
desired in-control ARL will exhibit the same 
sensitivity for equal sized mean shits regardless of 
the value of α.  In practice the autoregressive 
parameter, α, is determined by either matching the 
autocorrelation function (Kaskavelis, 2000) or 
through estimation of the autoregressive parameter of 
an AR(1) process from the data. 



     

 
 
Fig. 6. The theoretically computed ARL as a function 

of alpha and the mean shift. 
 
 

4. CONCLUSIONS 
 
Within the paper, it is shown, based on the in-control 
probability at individual points in a control chart, 
how the density function of the run length of control 
charts can be determined.  The density function can 
consequently be used to calculate the Average Run 
Length (ARL) of a control chart.  The ARL is a 
widely used metric for comparing between 
monitoring strategies in SPC.  The proposed 
approach is more generic than that described by 
Wetherill and Brown (1991). 
 
The theoretical ARL for in-control data and out-of 
control data with step changes in the mean were 
calculated for three cases, independent data, the 
residuals of AR(1) models and serially correlated 
data.  The theoretical results corresponded to the 
ARL obtained through Monte Carlo simulations.  It is 
also shown that, in contrast to the claim of Schmid 
(1995), the ARL of serial correlated data in-control 
charts can be computed. 
 
The in-control ARL’s were computed as a function 
of the magnitude of the control limits. The control 
limits for Shewhart charts that realise an in-control 
ARL of 370 were determined for various values of 
autoregressive parameter for an AR(1) process.  The 
impact of mean shifts on the performance of the ARL 
was subsequently investigated. It was found that the 
ARL depends only on the mean shift and not on α, 
except for large positive values of α. 
 
The outcome of this work is that time consuming 
Monte Carlo simulations can now be replaced by the 
approach proposed for the assessment of the 
performance of control charts.  This work can also be 
extended to more complicated SPC monitoring 
schemes, such as multivariate systems.  However for 
multivariate problems, the problem is compounded 
by the fact that the parameter space may be large 
making the problem computationally intensive.   
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