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Abstract: This contribution deals with the design of an observer for state esti-
mation of a batch crystallizer, which is described by a detailed population bal-
ance model. Therefore, the rigorous model containing (partial) integro-differential
equations is first reduced by applying an integral approximation technique to a
model of moments that consists of only a few ordinary differential equations. This
reduced model serves then as the basis for the design of a Luenberger type observer.
The performance of the observer is finally demonstrated by using the rigorous
population balance model for the simulation of the crystallizer plant.
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1. INTRODUCTION

In a lot of crystalline product manufacturing ap-
plications the product quality is determined by
the crystal size distribution. The main difficulty
in batch production is thus to accomplish uniform
and reproduceable particle size distributions. A
suitable model based technique for monitoring
each batch with respect to a reference batch is
the state estimation by an observer (Ray 1981).

Detailed descriptions of particulate processes are
usually based on population balances, which gen-
erally leads to a complex mathematical model
structure. An observer design based on such a
population balance model is thus very difficult,
if not impossible. Therefore, a model reduction
technique will be applied in this contribution,
which reduces the model formulation to a system
of only a few ordinary differential equations. With
the help of this reduced model it will then be
possible to apply standard design techniques for a

nonlinear observer (Schaffner and Zeitz 1995).
The paper is organized as follows: After a com-
pendious description of the population balance
model for the considered batch crystallizer, the
applied model reduction technique, which is based
on integral approximation, will be illustrated. An
observer will then be designed based on the de-
rived reduced model. Simulation results will fi-
nally illustrate the performance of the observer.

2. MODELING OF BATCH CRYSTALLIZERS

The batch cooling crystallizer considered in this
contribution is a two phase system, which consists
of a continuous liquid phase L and a dispersed
solid phase S, see Fig. 1. The continuous liquid
phase, which contains a binary mixture of dis-
solved crystals and solvent, is modeled by material
balances. The population of individual crystals
within the dispersed solid phase is described us-
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Fig. 1. Decomposition of a batch crystallizer.

ing the population balance approach (Ramkrishna
2000). In order to take the cooled operation of the
batch crystallizer on different temperature levels
into account, the model is completed by energy
balances for the overall crystallizer content and
for the coolant inside the cooling jacket.

In the following, the structure of the mathemati-
cal model for the considered crystallizer will be
shortly described. For more details about the
modeling of this type of crystallization processes,
the reader is referred to (Gerstlauer et al. 2002).

2.1 Modeling of the dispersed solid phase

The application of the population balance ap-

proach in order to model the dispersed solid phase

S leads to the following population balance equa-

tion for the number density function F' depending

on time ¢t and the characteristic particle length L:
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The first term on the right hand side of Eq. (1) ac-
counts for crystal growth with the growth rate G.
The source due to nucleation is denoted by Fii .
The term F'% summarizes all sinks and sources
due to attrition of crystals at the stirrer. The
initially added seed crystals are denoted by Fieeq-
All considered phenomena are described using de-
tailed kinetic relations. The number of primary
nuclei is calculated following Mersmann (1996),
considering homogeneous and heterogeneous nu-
cleation. The growth rate
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accounting for integration and diffusion limited
crystal growth (Mersmann et al. 1992, Gahn and
Mersmann 1999) depends on the supersaturation

Acr, 4 and on the size dependent mass transfer
coefficient
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where D 4p is the diffusion coefficient and & and
vr, denote the specific energy input and the kine-
matic viscosity. For the calculation of the attrition
rate § and the number N¢,,, and size distribution
frag of abraded fragments a very detailed model
is used, which takes the stirrer geometry and the
hardness of the crystalline material into account
(Gahn and Mersmann 1999). In the population
balance (1), this leads to a sink

Fo(L) = B(L)F(L) (4)
due to the crystals that collided with the stirrer,
to a source term F;;’l accounting for the resulting
large crystal with a length L' — AL(L') somewhat
smaller than the size L' of the original crystal and
to a source term F;g,z for all produced fragments:

Fia= (L (I — AL(LY) E (L) dL (5)

B, = / Ntrao (L) fra0 (L, I') i (L) dI'.(6)

2.2 Modeling of the continuous liguid phase

The continuous liquid phase L inside the crystal-
lizer consists of two components: the solute and
the solvent, i.e. component A and B, respectively.
The fundamental balance equations for the liquid
phase are thus a balance for the total number of
moles np,

dnL . .
W = (a + 1) : (_nnu - ngr) ’ (7)
and a component mole balance for the number of
moles ny, 4 of dissolved crystals (component A)

dnr, a . .
% = —Tpy — Ngr - (8)
Initial conditions for the balance equations (7)
and (8) are given by

np(t=0)=nro and np a(t =0) =ng a0 -

The variable a in Eq. (7) denotes the number
of solvent molecules that form a crystal hydrate
together with a single molecule of solute. The total
molar fluxes 1, and ng, on the right hand sides
of Egs. (7) and (8) describe the exchange of mate-
rial between the continuous liquid phase and the
dispersed solid phase due to primary nucleation
and crystal growth. With the nucleation rate By,
and the growth rate G these molar fluxes are given
by
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The symbols ky and cs in Egs. 9 denote the
volume shape factor of the crystals and their
molar density. The minimum size, which nuclei
must have to be stable, is characterized by the
critical crystal length L..;;.

2.3 Energy balances

Besides the population balance (1) and the ma-
terial balances (7) and (8) energy balances ac-
counting for the overall crystallizer temperature
Ter and for the temperatute 7; of the coolant
inside the cooling jacket are required to complete
the crystallizer model.

With the heat capacity Cp., of the crystallizer
content, the change of the crystallizer temperature
with time is determined by

dT,
CP,c‘r —=

el AR, (Npy + figr)

+ Jcool + Wst (10)
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depending on the heat due to crystallization Ah?,,
the energy exchange J o, with the cooling jacket
and the energy dissipation W; by the stirrer. In
a similar way, the change of the temperature T}
inside the cooling jacket is given with the heat
capacity C'p; of the coolant as

T o,
Cp,j,inTcool \ 1 j,in

CP,jE— _Tj)_Jcool-(ll)

In this equation, the symbol cp; ;, denotes the
molar heat capacity of the inflowing coolant 7.,0;
and Tj;, is the temperature of the inflowing
coolant, which is the only manipulating variable
to operate the process. Initial conditions for the
energy balances (10) and (11) are given by

Tc,«(t = 0) = Tcr,O and Tj (t = 0) = Tj’g .

This concludes the description of the rigorous
crystallizer model, which is made up of a partial
integro-differential equation (1) for F(L,t) and
of four ordinary integro-differential equations (7),
(8), (10) and (11) for nr(t), nr,a(t), Ter(t) and
T;(t). This rigorous model will be the starting
point for the following model reduction, and it
will be used to validate the subsequently designed
observer.

3. MODEL REDUCTION
With the model reduction technique described in
this section, the infinite dimensional population

balance (1) can be reduced to a set of six ordinary
differential equations for the lower order moments

uk(t)z/oooLkF(L,t) dL k=0,...,5 (12)

of the crystal size distribution F(L,t). From a
process engineering point of view, this reduction
is not really a restriction, since the knowledge of
the lower order moments is sufficient for most
practical applications, but the great advantage
of the resulting reduced model of moments is its
model structure, which finally consists of only ten
ordinary differential equations.

Such a moment based model reduction has already
been applied by Hulburt and Katz (1964), but
as mentioned by many authors, the analytical
derivation of the moment equations

dpr _ [k _0(GE) | py |
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which can be derived by differentiating Eq. (12)
with respect to time ¢, leads in general to an
unclosed set of ordinary differential equations. In
contrast to the analytical derivation (Hulburt and
Katz 1964), in this contribution a numerical inte-
gral approximation, which is based on Gaussian
quadrature rule (McGraw 1997), will be applied
to evaluate the integral on the right hand side of
Eq. (13). To illustrate this technique, the approx-
imation of the k* moment yields for example

() = / LE (L) AL~ LEQ wilt), (14)

i=1

where L; amd w; are so called abscissas and
weights (Lanczos 1956). Since the sum on the right
hand side of Eq. (14) results in the exact value of
the integral for k£ < 2n — 1, the time dependent
abscissas L;(t) and weights w;(t) can be calculated
from

wy +we +...+w, = Ug
L1w1 +L2w2++ann = M1
Liw; + Laws + ...+ L2w, = po (15)

2n—1 2n—1 —
Ll ’LU1++Ln Wp = HU2pn—1 -

For the solution of this problem of weighted mo-
ments (Lanczos 1956), several methods have been
reported, see e.g. (Sack and Donovan 1972). All
these methods are based on the fact that the
abscissas L; for the Gaussian quadrature rule can
be determined as the zeros of orthogonal polyno-
mials, which can be computed as the eigenvalues
[L;I — J] = 0 of a tridiagonal matrix

Bo a O
J=a (1 a (16)
0 a1 ,62
of sizenxn (3x3for k=0,...,5), where o; and

B; depend on the moments uy. The weights w; can
finally be obtained from the first components of
the corresponding eigenvectors v;



w; = povi(1)? . (17)

Using the abscissas L; and the weights w;, the
integrals on the right hand side of Eq. (13) and in
Egs. (9) can thus be approximated by applying

/oo L* (L) F(L,t) dL
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with ®(L) being any sufficiently smooth (kinetic)
expression.

The application of this model reduction technique
leads thus to a reduced model of moments that
contains the material balances (7) and (8), the
energy balances (10) and (11) and six ordinary
differential equations for the first six moments
Ho, - - -, 5 instead of the population balance (1).
The resulting model can thus be formulated as

s — F(2)+g(u); at=0) =
y_hia) Y

with the state vector,
T
= (ng npa Tor Tj pro p1 piz p3 pia pis ), (20)

the output vector y and the control vector wu,
which in case of this batch crystallizer only
contains the temperature T} ;, of the inflowing
coolant. This form allows the derivation of a stan-
dard Luenberger type observer design (see e.g. in
(Schaffner and Zeitz 1995)), which will be subject
of the next section.

4. OBSERVER DESIGN

For state estimation, either for process monitoring
tasks or with the objective of process control, the
entire state of the batch crystallizer in terms of the
number of moles n; and nr 4, the temperatures
Ter and T; and the moments po — ps of the crys-
tal size distribution has to be reconstructed from
available measurements. Nowadays, very efficient
sensors are available for temperature measure-
ment, as well as for the online determination of
supersaturation, see e.g. the crystallizer setups de-
scribed in (Miller 1993, Neumann 2001). Besides
these sensors, also techniques are available for
determining particle size distributions, e.g. from
light scattering (MALVERN) or from chord length
(LASENTEC) measurements. However, a drawback
of these methods is that they work quite well,
if additional information about the shape of the
crystal size distribution is available, e.g. to cal-
culate the size distribution from a chord length
distribution (Ruf et al. 2000). But from these
measurements values for certain moments can be
derived, as e.g. u; from the LASENTEC FBRM

(Ruf et al. 2000) or po from the application of
the MALVERN sensor (Miller 1993). Therefore, the
following approach for an observer design will be
based on the availability of either the first moment
p1 or the second moment .

In case of the here considered batch crystallizer,
the measured supersaturation, which is equivalent
with the knowledge of the mole fraction zp 4 =
np a/nL, leads directly to the determination of
the model states ny and nr 4, since the overall
content of material keeps constant throughout the
batch time. Moreover, the knowledge of z 4 al-
lows the calculation of the third moment us using

Nseed +

1

——(n — TL AN ,(21
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with ngeeq being the number of moles of the seed
crystals Fieeq-

Thus, an output vector y can be defined con-
taining six state variables, which are measured or
directly related to measurements

T
Yy = (nL nL,A Ter Tj Hox /J'S) (22)

with u, defining either u; or ps. Based on this
output vector y, a Luenberger type observer
(Schaffner and Zeitz 1995) of the form

fl(@) +g(u) + Ly - 9); 2(t=0) = 2o 53
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can be established. Here, & represents the vector
containing the estimated states, f(&) + g(u) is
a copy of the right hand sides of the reduced
model, Lyps(y — ¢) the correction term, and ¢(&)
represents the estimator output vector. The initial
values & for the observer states are given by the
initial states 2¢ of the reduced model of moments,
which can be calculated from the initial conditions
of the original rigorous population balance model.
For convergence of the estimated states & against
the states of the plant, the difference y — ¢ has to
converge to zero. In order to obtain this, a matrix
L,ps has to be designed. Since the reduced model
of moments has due to the involved eigenvalue
problem a very complex nonlinear structure, it is
not possible to determine Lgs by an analytical
design method. But from physical considerations
the structure of the matrix L.y, can be identified
for the here considered batch crystallizer as

X'00000000 0\
0X20 000000 0
|l 00oXx3000000 0
Lobs = 00 0X:00000 0 (24)
000 0XX5X70 0 0
000000 0XSXJXxM0



All the entries X;; represent adequate gain val-
ues, depending on the availability of u1 or us.
These gain values can be adjusted as constant val-
ues following again physical considerations. With
this gain matrix L,p,, the lower order moments
o — pe are adjusted with the measured p; or po,
the higher order moments u3 — ps by ps. Due
to the ratio between the moments, this leads to
typical gain values of e.g. X§ = 1-1072 and
X2 =184-10"C.

As another consequence of the complex nonlinear
system used for the observer design, it is not
possible to investigate stability properties analyt-
ically. Therefore, simulation studies for different
disturbed and undisturbed operation modes have
to be carried out, in order to verify the applica-
bility of the designed observer.

5. SIMULATION RESULTS

In this section, simulation results will be pre-
sented, in order to demonstrate the performance
of the observer designed on the basis of the re-
duced model of moments. Therefore, the crystal-
lizer setup by Miller (1993) will be considered, for
which the detailed population balance model has
already been validated (Gerstlauer et al. 2002).
In this setup, a commonly used linear cooling
regime for Tj ;,(t) is applied, as depicted in Fig. 2.
All the following investigations are performed by
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Fig. 2. The applied, approximately linear cooling
rate in the crystallizer setup by Miller (1993).

using the rigorous population balance model for
the simulation of the batch plant. The population
balance is therefore discretized by a Method of
Lines approach (Schiesser 1991) using 1000 grid
points. For all simulations 10g of normally dis-
tributed seed crystals (mean: 500um; deviation
50um) are used. Both the plant model as well
as the observer are solved using a standard ODE
solver in MatLab?!.

The robustness and performance of the observer
based on the reduced model of moments and de-
scribed in Egs. (23) and (24) will in the following
be analyzed by adding disturbances to the pro-
grammed cooling profile in Fig. 2. Therefore, the

1 MatLab 5.3, The MathWorks Inc., 3 Apple Hill Drive,
Natick, MA 01760-2098, USA

considered batch process will be simulated under
rather heavily disturbed cooling profiles as can
be seen in Fig. 3. For the further investigation
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Fig. 3. Applied disturbed cooling profiles.

of the observer behavior, two state estimators
will be used, one for the availability of u; and
another for the measurement of ps. In the follow-
ing comparisons between the estimated observer
states with the states of the rigorous plant model,
only those states will be discussed, for which no
measurements are available.

In the first case, an observer based on the avail-
ability of u; is considered. As can be seen in
Fig. 4, this observer achieves very good results for
an undisturbed operation of the batch crystallizer
as well as for a disturbed cooling profile (*dist
I’ in Fig. 3). Fig. 4 shows clearly the significant
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Fig. 4. Comparison of estimated moments g,
w2, pa and ps (dashed black lines) with the
moment values calculated from the rigorous
plant model (thick grey lines) for an observer
based on the availability of p;.

consequences of the applied disturbance. The esti-
mated states (dashed black lines) follow the plant
states (thick grey lines) very well, even after the
disturbance occured.

The observer considered in the second case, which
is based on the availability of ys has some more
difficulties to follow the rigorous plant model, as
can be seen in Fig. 5. As a consequence of dis-
turbance II the estimated moments uo and
start slightly drifting away from the plant states
at about 2500s, but due to the correction term
Lops(y — 9) in Eq. (23) both po and p; converge
again and reach the plant states again after 3000s.
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Fig. 5. Comparison of estimated moments o,
p1, pa and ps (dashed black lines) with the
moment values calculated from the rigorous
plant model (thick grey lines) for an observer
based on the availability of us.

The higher moments ps and p5 are in perfect
accordance during the whole process.

As depicted in Figs. 4 and 5 observers can be
designed that achieve quite good results for both
cases, the availability of p; or us.

6. SUMMARY AND CONCLUSIONS

In this contribution, an observer is designed
for the state estimation of a batch crystallizer.
The rigorous population balance model that de-
scribes this crystallization plant consists of (par-
tial) integro-differential equations (Gerstlauer et
al. 2002). After applying a model reduction tech-
nique, which is based on integral approximation
using Gaussian quadrature rule (McGraw 1997),
this infinite dimensional model can be reduced to
a finite dimensional model that consists of only
ten ordinary differential equations. On the basis
of this reduced model of moments standard Luen-
berger type observers (Schaffner and Zeitz 1995)
can be constructed, based on the availability of
measurements of the first or the second moment
of the crystal size distribution. As a consequence
of the complex nonlinear design model, these ob-
servers are designed and tuned on the basis of
process knowledge and physical considerations.
In the finally presented results, the rigorous popu-
lation balance model is used to simulate the undis-
turbed and disturbed operation of the considered
batch crystallizer. For all performed simulation
studies, both observers behave very well, which
demonstrates the applicability of these observers
either for process monitoring or for the objective
of process control.
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