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Abstract: In this work, the relationship between performance objective and control-
relevant nonlinearity was investigated for Hammerstein and Wiener systems with
polynomial nonlinearities. Nonlinearity assessment of the systems’ inverses augmented
with first-order linear filters using a numerical measure of nonlinearity showed that
the nonlinearity varies depending on the relative magnitude of the filter time constant,
but generally showed increasing nonlinearity with decrease in time constant. Similar
assessment of the respective nonlinear internal model control structures indicated that
the Hammerstein nonlinearity is weakly dependent on the filter time constant while
the Wiener nonlinearity is strongly dependent.
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1. INTRODUCTION

A key step in designing a control strategy for a
process is determining the degree of complexity
of the control algorithm necessary to optimally
compensate for the intrinsic process nonlinearity
(Ogunnaike et al., 1993). As demonstrated pre-
viously (Hernjak et al., 2002), certain nonlinear
behaviors are more severe than others and some
that appear significant in the open-loop setting
may have little impact on closed-loop behavior.

Work involving use of the optimal control struc-
ture (OCS) as a means for assessing control-
relevant nonlinearity (Stack and Doyle III, 1997)
emphasized another issue of importance in deter-
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mining the optimal degree of controller nonlinear-
ity: the cost of the control action, or similarly,
the desired level of performance of the controller.
The implication of these results is that it is not
only the inherent nonlinearity of the process that
is of importance, but also the desired level of
performance of the controller. In this work, a
numerical measure of nonlinearity is employed to
characterize the relationship between degree of
controller nonlinearity and its performance objec-
tive for Hammerstein and Wiener systems with
polynomial nonlinearities and scalar dynamics.

The particular control structures characterized in
this work are nonlinear internal model control
(IMC) algorithms. IMC algorithms involve the use
of an explicit model of the process in order to com-
pensate for uncertainty, including unmeasured
disturbances (Morari and Zafiriou, 1989). Control



actions are generated from the disturbance pre-
diction using an inverse of the model augmented
with a unity-gain filter to maintain realizability.
The filter time constant is introduced as a tun-
ing parameter to adjust controller aggressiveness.
Analysis of this type was suggested previously
(Stack and Doyle III, 1999) using coherence as
the measure of nonlinearity. Use of strictly linear
IMC algorithms in determining the applicability
of linear feedback for a process has also been inves-
tigated (Eker and Nikolaou, 2002). Other methods
for analyzing control-relevant nonlinearity have
also been proposed (Guay et al., 1995).

In Section 2, the nonlinearity measure is intro-
duced. In Section 3, the open-loop nonlinearity
of the Hammerstein and Wiener structures is
discussed. In Section 4, the nonlinearity of the
model inverse plus filter is investigated. Finally,
in Section 5, the nonlinearity of the classical IMC
structure is analyzed.

2. NONLINEARITY MEASURE

The numerical nonlinearity measure proposed
originally in (Allgöwer, 1995) and elaborated
upon in (Helbig et al., 2000) was used for non-
linearity characterization:

φUN = inf
G∈G

sup
u∈U

‖G [u]−N [u]‖PY
‖N [u]‖PY

(1)

where N : U → Y is the system operator and
G : U → Y is a linear approximation to N . U
is the space of considered input signals, Y is the
space of admissible output signals, and G is the
space of linear operators. φUN is a number between
zero and one where a value of zero indicates the
existence of a linear approximation to the system
whose output matches the output of the original
system over the set of inputs being considered.
A value close to one indicates a highly nonlinear
system.

As (1) represents an infinite dimensional optimiza-
tion problem, approximate computational tech-
niques are utilized to compute lower bounds on
the measure. A general computational technique
involves selecting a representative set of inputs
and then building a linear approximation com-
posed of a weighted sum of linear basis functions,
e.g.:

y(s) = wou(s) +
Nl∑

i=1

wi

τis + 1
u(s) (2)

wi are the weights on the basis functions, τi

are the functions’ time constants, and Nl is the
number of basis functions chosen. It has been
shown (Allgöwer, 1995) that the search for the

optimal set of wi is convex. In this work, a quasi-
Newton optimization algorithm with numerical
Hessian update was employed to calculate the wi.

A less rigorous but more computationally efficient
lower bound on (1) can be obtained by limiting
the space of admissible inputs to sinusoids of
varying amplitude and frequency. Provided that
the nonlinear system preserves periodicity, the
output after any transients have decayed can be
represented by a Fourier series:

ys = Ao +
∞∑

k=1

Ak · sin(kωt + φk) (3)

By choosing the norm:

‖y(t)‖ = lim
T→∞

√√√√√ 1
T

T∫

0

y2(t)dt (4)

it can be shown (Allgöwer, 1995) that the follow-
ing is a lower bound on (1):

χUs

N = sup
a∈A,ω∈Ω

√
1− A2

1

2A2
o +

∑∞
k=1 A2

k

(5)

where A,Ω are the sets of input signal amplitudes
and frequencies being considered. χUs

N usually lies
within 10-15% of the best value obtained through
use of the optimization method discussed above.

3. OPEN-LOOP NONLINEARITY

The Hammerstein and Wiener models studied in
this work consist of a first-order linear dynamic
element with unity gain and time constant and
a static polynomial nonlinearity of order n. The
Hammerstein model is of the form:

v = un, ẋ = −x + v, y = x (6)

and the Wiener model is of the form:

v = u, ẋ = −x + v, y = xn (7)

Hammerstein and Wiener model structures have
been applied in modeling many nonlinear process
systems (e.g., (Eskinat et al., 1991), (Pottman and
Pearson, 1996)) including pH systems and systems
with nonlinear control valves.

The degree of open-loop nonlinearity for these
systems is assessed using the LB (5). An input
range of 0 ≤ u(t) ≤ 1 centered at a steady-
state of u = 0.5 is considered along with integer
values of n ranging from 2 to 5. It is informative
to consider the value of (5) computed at each
frequency individually to study how different fre-
quencies contribute to the nonlinearity measure,



as is plotted in Figures 1 and 2. This will be
referred to as the frequency dependence of (5),
but note that the true value of (5) is the maximum
value of each of the curves. The results show that
the frequency dependence of (5) follows opposite
trends for the two systems with the Wiener system
reaching its highest values at low frequency and
the Hammerstein system approaching its highest
values at high frequency. The results also indicate
a trend of increasing nonlinearity with n.
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Fig. 1. Frequency dependence of Wiener system
open-loop nonlinearity as measured using the
LB (5) for various polynomial orders and an
operating range of 0 ≤ u(t) ≤ 1.
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Fig. 2. Frequency dependence of Hammerstein
system open-loop nonlinearity as measured
using the LB (5) for various polynomial or-
ders and an operating range of 0 ≤ u(t) ≤ 1.

An analysis of the results in Figures 1 and 2
reveals that the low frequency results are identical
for both systems. Because the low frequencies
correspond to the region below the reciprocal time
constant (1 rad/sec), these results correspond to
the steady-state nonlinearity of the system, thus
negating any effects of the linear dynamics and its
placement in the structure.

The high frequency behavior is explainable by
considering the frequency behavior of the linear

dynamics. The linear dynamics are first order and
therefore attenuate to an increasing degree the
higher frequency inputs. As can be seen in Figure
3, for the Wiener system at high frequencies, the
linear dynamics attenuate the single-frequency
input to the point where the nonlinearity has little
effect.

For the Hammerstein system, the static nonlinear-
ity will first generate additional frequencies due to
the ability of many nonlinear functions to generate
harmonics (Pearson, 1999). The result of this, as
can be seen in Figure 3, is that the final output
exhibits a large positive bias from the steady-
state value due to the linear dynamics not atten-
uating the zero-frequency harmonic (steady-state
bias) generated by the static nonlinearity. This
bias adds greatly to the value of the nonlinearity
measure.
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Fig. 3. Wiener (solid) and Hammerstein (dashed)
systems time-domain signals for an input
sinusoid of amplitude 0.5 and frequency 8.33
rad/sec when n = 2. y∗(t) is the deviation
from the steady-state output.

The results provided in this section are generaliz-
able to other static nonlinearities and linear dy-
namics with only slight modifications as they rely
only on the generation of harmonics by a nonlinear
system and the attenuation characteristics of the
dynamics.

4. SYSTEM INVERSE NONLINEARITY

In the linear IMC framework, its ISE optimal
control results from the use of specific filters
(which depend on input characteristics) coupled
with the appropriate model inverse. While the
optimality properties do not transfer directly to
nonlinear IMC structures, these structures are
still important for control-relevant analysis since
they maintain many of the useful qualities of
linear IMC structures (Economou et al., 1986).
The equivalent classical controller designs arising
from IMC algorithms for the Hammerstein and



Wiener systems are shown in Figures 4 and 5.
As outlined in the figures, the nonlinearity of the
individual elements of these control structures and
the overall structures themselves are considered
separately in the sections of this paper. In this
section, the nonlinearity of just the process inverse
is considered as this structure corresponds to the
IMC algorithm in the ideal case when there is no
model error or output disturbances. In that case,
the process inverse serves as an open-loop con-
troller relating setpoint changes to manipulated
variable moves.
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Fig. 4. Classical control structure corresponding
to IMC design for a Hammerstein system. P
= linear dynamics, N = static nonlinearity,
F = filter.
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Fig. 5. Classical control structure corresponding
to IMC design for a Wiener system. P =
linear dynamics, N = static nonlinearity, F
= filter.

To ensure realizability, the inverse is augmented
with a first-order filter:

F (s) =
1

λs + 1
(8)

where λ is the filter time constant. A first-order
design is the minimum filter order necessary in
this case to maintain realizability. Higher order
filters could be designed but would correspond to
controller designs with sluggish dynamic proper-
ties.

As seen in Figure 4 (Hammerstein structure), the
inverse of the linear dynamics for a first-order
system augmented with the filter is a lead-lag
system, i.e.:

FP−1(s) =
s + 1
λs + 1

(9)

Therefore, the frequency behavior of the system
is a function of the filter time constant. For large
λ, the lag behavior of the system dominates and
the high-frequency signals are attenuated, while
for small λ, the lead behavior dominates and
the high-frequency signals are magnified. Similar
observations can be made for the Wiener system,
but note that the filter and the inverse linear
dynamics are separated by the inverse of the
static nonlinearity. The nonlinearity of the inverse
systems is considered in the range 0 ≤ y(t) ≤ 1
centered at y = 0.5.

The effects of the lead-lag element on the nonlin-
earity can be seen for the Hammerstein system
in Figure 6. At large λ values, the lag behavior
dominates and the nonlinearity follows the Wiener
trend seen in Figure 2. At small λ, the lead be-
havior dominates and there exists a maximum
nonlinearity in the middle of the frequency range.
It should be noted that, at low frequency, all of the
curves in Figure 6 asymptote to the nonlinearity
of the static nonlinearity block. Figure 7 is the
corresponding plot for the Wiener inverse, demon-
strating the same trend as the open-loop Wiener
system for large λ and a completely different trend
for low λ. The large λ trend is expected as the
filter placement causes the first two blocks of the
inverse to resemble a Wiener system of their own
with a time constant that will dominate that of
the inverse linear dynamics. Note that, for the
Wiener system, the λ = 1 trend is not flat thus
showing the effect of placing the nonlinearity be-
tween the two linear dynamic blocks.
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Fig. 6. Inverse Hammerstein system (n = 3)
nonlinearity as a function of frequency for
various values of the filter time constant, λ.

By the definition of (5), the true nonlinearity of
the inverse system is the maximum value over
the frequency range for each value of λ. Figure
8 shows these results for both systems. For the
Hammerstein system, the inverse’s nonlinearity
is a weak function of λ over selected intervals.
For λ ≥ 1, the nonlinearity is that of the static
nonlinearity block and for λ < 1, the nonlinearity
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Fig. 7. Inverse Wiener system (n = 3) nonlinearity
as a function of frequency for various values
of the filter time constant, λ.

is that of the peak value shown in Figure 6. For
the Wiener inverse, the nonlinearity matches that
of the Hammerstein system for λ > 1 and steadily
grows for λ < 1.
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Fig. 8. Wiener and Hammerstein systems (n = 3)
inverse nonlinearity as a function of the filter
time constant, λ.

The conclusion that can be drawn from the data
presented in this section is that the nonlinearity of
these system inverses is dictated by the time con-
stant of the linear filter (i.e., the closed-loop time
constant). As the filter time constant varies in
magnitude relative to the system’s open-loop time
constant, the severity of the nonlinearity changes
in differing manners. Admittedly, consideration of
λ values greater than one is not of much practical
relevance since such tunings would correspond to
a closed-loop time constant that is larger than
the open-loop time constant. It is informative to
consider the λ > 1 case since the overall results
indicate a trend of increasing nonlinearity as one
proceeds from the λ > 1 region to the λ < 1
region, corresponding to an increase in desired
controller performance.

5. CLASSICAL CONTROL STRUCTURE
NONLINEARITY

The final step in the control analysis is to consider
the classical realization of the IMC controller. As
shown in Figures 4 and 5, the input considered
now is the setpoint error (yd − y, where yd is
the set-point). This form of the IMC design is re-
ferred to as the “classical” realization, equivalent
to the form of PID and other standard control
algorithms in which setpoint error is the input and
manipulated variable value is the output.

As is desired for this realization, the controllers
will integrate the input (error) signals. For in-
stance, for the Hammerstein structure, the N−1

block can be moved beyond the loop leaving a
purely linear loop. In that case, it can be shown
that the equivalent loop operator has the form:

L(s) =
s + 1
λs

(10)

containing integral action. For the Wiener case,
the P−1 block can be moved beyond the loop
first followed by the N−1 block leaving only the
filter in the feedback loop. The loop operator thus
reduces to 1/λs, again showing integral action.
The preceding analysis also demonstrates that the
classical structures have the same general struc-
tures as the process inverses, i.e., the Hammer-
stein controller has a Wiener structure and the
Wiener controller has a “linear-nonlinear-linear”
block sandwich structure.

Given the integrating nature of the systems, the
LB formulation of the nonlinearity measure can-
not be used. Instead, the optimization-based al-
gorithm discussed in Section 2 was used to char-
acterize the system nonlinearity for a finite time
horizon. Twenty stochastic input signals were im-
plemented spanning the same magnitude and fre-
quency ranges of u(t) used to characterize the
inverse system nonlinearity. The basis functions
chosen for the linear approximation included one
pure integrator and two unstable functions (i.e.,
τi < 0) to account for any other positive feedback-
induced behaviors of the system as well as 13
stable first-order lags with logarithmically-spaced
τi ∈ [0.075, 60].

Figure 9 includes the results of the classical IMC
nonlinearity assessment. The slight roughness of
the trends in Figure 9 is due to the stochastic
nature of the input signals. Signals with more
precisely designed frequency content would result
in smoother trends.

The Hammerstein system nonlinearity in Figure 9
is essentially invariant with respect to λ, which is
consistent with the results for the inverse nonlin-
earity in Figure 8. The result in this case is due to
the role of λ in the loop operator (10) in which
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Fig. 9. Nonlinearity of the classical IMC structures
as functions of the filter tuning parameter, λ.

it acts purely as a gain, therefore affecting all
frequency components uniformly. For the Wiener
system, the results in Figure 9 suggest a uniformly
high nonlinearity for the λ < 1 region and a
sharp decrease beyond λ = 1 again indicating
decreased nonlinearity with detuning. In general,
the results indicate that the nonlinearity of the
controller necessary to effectively control either of
these systems is quite high.

6. CONCLUSIONS

The results of this work demonstrate that the per-
formance objective of a controller can greatly im-
pact the control-relevant nonlinearity of the sys-
tem. It was shown that the degree of nonlinearity
of the process inverses and the classic realizations
of the IMC controller is strongly dependent on
the relative magnitude of the filter time constant
as compared to the open-loop time constant for
Wiener systems and, at most, weakly dependent
for Hammerstein systems.

The results in Section 3 showed that the open-
loop nonlinearity of the Hammerstein systems is
generally greater than that of the Wiener systems.
In comparing these results to the control-relevant
results, it is suggested that the high Hammerstein
open-loop nonlinearity mandates a uniformly high
controller nonlinearity to optimally control these
systems. For the Wiener systems, highly nonlinear
control is only necessary when high levels of
performance are desired. Therefore, at least in
regards to IMC design, these common classes of
systems are representative of two different cases:

(1) highly nonlinear open-loop systems that re-
quire highly nonlinear control for optimal
performance (Hammerstein),

(2) mildly nonlinear open-loop systems that re-
quire highly nonlinear control only when high
levels of performance are required (Wiener).
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