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Abstract: This contribution addresses the problem of feedforward control design for
batch crystallisers based on moment models. Moment models, which are standard in
the crystallisation literature, are shown to be orbitally flat, i.e. they are flat after an
appropriate time scaling. The reciprocal of the crystal growth rate serves as the time
scaling function such that a new notion of ‘time’ is defined by the increase in crystal
length. For any desired final crystal size distribution (CSD) which is compatible with
the crystalliser model it is possible, exploiting flatness, to analytically compute the

corresponding temperature trajectory.
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1. INTRODUCTION

The quality of crystalline products in the chemical
and pharmaceutical industry is not solely deter-
mined by their chemical composition but also by
physical properties, primarily by the crystal size
distribution (CSD). Therefore, the manufacturing
of crystalline material with a pre-defined CSD is
one of the current challenges in industrial crys-
tallisation (Rawlings et al., 1993). In batch cooling
crystallisers, the CSD can be influenced by the
cooling strategy, i.e. the temperature-time-profile,
applied to the crystalliser.

The temporal evolution of CSD in the domain of
time and crystal size can be modelled by a par-
tial differential equation (PDE) referred to as the
population balance equation (Randolph and Lar-
son, 1988; Ramkrishna, 2000). This PDE is cou-
pled to one or more ordinary differential equations
(ODE) for, e.g., concentration and temperature
of the liquid phase. Under certain conditions, a

finite-dimensional model can be derived from this
infinite-dimensional system. The resulting model
does not describe the evolution of the entire CSD,
but only of a number of its moments.

Based on a population balance model, it is of
course possible to determine the final product
CSD for a given temperature profile by simu-
lation. The inverse problem, i.e. the design of
a feedforward control which produces a desired
CSD, is an area of active research. The most com-
mon approach is to use optimisation techniques
in order to determine a temperature profile that
produces a CSD which is optimal with respect
to some cost function. (Jones, 1974) applied Pon-
tryagin’s maximum principle to obtain an optimal
cooling policy. Dynamic optimisation was applied,
for example, in (Miller and Rawlings, 1994; Lang
et al., 1999; Chung et al., 1999; Zhang and Ro-
hani, 2002).

In this contribution, optimisation techniques are
not used. Instead the feedforward control problem



for batch cooling crystallisers is solved exploiting
differential flatness (Fliess et al., 1992; Fliess et
al., 1995b). The batch crystalliser model can be
shown to be flat after an appropriate time scaling.
Such systems are called orbitally flat (Fliess et
al., 1995a; Respondek, 1998; Guay, 1999). It is
well known that flat systems possess a certain
invertibility property and, therefore, trajectory
planning and feedforward control design can be
done in a very elegant way (Rouchon et al., 1993).

This paper is organised as follows. In the following
section, orbital flatness is defined. In Section 3, a
population balance model for a batch cooling crys-
talliser is presented and a moment model for this
system is derived. In Section 4, orbital flatness of
the moment model is established. Furthermore, it
is shown that, based on orbital flatness, a temper-
ature profile can be computed which produces any
given final CSD compatible with the model. This
is, to the authors’ knowledge, the first time this
problem has been solved for batch crystallisation.

2. ORBITAL FLATNESS

The notion of flatness can be mathematically
defined in a differential algebra setting (Fliess
et al., 1995b) or in the context of differential
geometry of infinite jets and prolongations (Fliess
et al., 1999). In this section, a less formal, more
intuitive definition of flatness is given (Rothfuf} et
al., 1996). A finite-dimensional dynamic system

#(t) = f(x(t), u(t)), =(t) € R", u(t) € R™(1)

is called differentially flat, or simply flat, if there
exists a fictitious output y(t) € IR™ which satisfies
the following conditions.

A The output y(t) can be expressed as a func-
tion of the system state x(t) and input u(t)
and finitely many time derivatives of the in-
put

y(t) = @ (2(t),u(®), a(t), ... u (1)) .2)

B Reversely, the system state and input can be
expressed as functions of the output y(t) and
finitely many of its time derivatives

2(t) = T1 (y(8), 9(0), .- y(OP))  (3-2)
u(t) = B2 (y(t), 9(2), ..., y() #+1) (3-b)

The fictitious output y(t) is then called a flat
output. It completely determines the dynamic be-
haviour of system (1). If a sufficiently smooth tra-
jectory of the flat output is given, the trajectories
of the entire system state z(t) and the system
input u(t) are determined by (3-a) and (3-b), re-
spectively. They can be computed without solving

a differential equation. Therefore, it is obvious
that flatness is a property which facilitates the
problems of trajectory planning and design of
feedforward control considerably. Since the flat
output constitutes an algebraic parameterisation
of the system’s dynamics, flatness also is a partic-
ularly useful property for the solution of dynamic
optimisation problems.

Allowing an appropriate state-dependent time
scaling, the advantages of flat systems can be
extended to a somewhat larger class of systems
(Fliess et al., 1995a; Respondek, 1998; Guay,
1999). A new ‘time’-variable 7 is defined as fol-
lows:

[tO tend]*—)[TO Tend]

dt

7 = s®),u(), 7(to) =70. (4)

The mapping of ¢ to 7 is bijective iff
0 < s(z(t),u(t)) < oo, Vt. (5)

This makes the time transformation invertible;
hence, a control law u(7) designed in new time 7
can be transformed back and applied in real time
t. In new ‘time’, the system (1) evolves according
to

7, = L) u(m)s(@(7),u(r)).  (6)

=rg(a(r)u(r))

If the time scaled system (6) is flat then the
original system (1) is called orbitally flat.

3. BATCH CRYSTALLISER MODEL

A batch cooling crystalliser (Figure 1) is operated
as follows. Initially, the crystalliser contains un-
dersaturated solution. As the solution is cooled, it
becomes supersaturated. At this point, small seed
crystals may be added. Supersaturation drives
the formation of new crystals and the growth
of existing crystals. Both processes, nucleation
and growth, consume solute from the solution
such that the concentration decreases while the
amount of crystalline material increases. At the
end of the batch the vessel is discharged and the
product undergoes further processing steps such
as filtering and drying. Product quality as well as
the efficiency of downstream processing is heavily
influenced by the CSD.

For modelling purposes, the size of crystals is
defined by a characteristic length L. A number
density function f(L,t) representing the number
of crystals per crystal length and volume of slurry
formalises the concept of CSD (Randolph and
Larson, 1988).
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Fig. 1. Sketch of a batch cooling crystalliser

In the following, a standard model for batch crys-
tallisers (Miller and Rawlings, 1994) is presented.
It is assumed that all crystals grow at the same
rate, i.e. the growth rate G is independent of
crystal size, and that nuclei have a negligibly small
size. Writing down a balance equation for the
number of crystals in an infinitesimal interval of
crystal length, a PDE is obtained which, together
with appropriate initial and boundary conditions,
describes the temporal evolution of the CSD

of(L,t) G(t)0f(L,t)

ot~ oL (7-a)
f(0,t) = % (7-b)
f(L7 0) = fseed(L)~ (7—(3)

The nucleation rate is denoted by B(t). The size
distribution of seed crystals is fseeq(L). Equation
(7-a) is called the population balance. An ordinary
differential equation for the solute concentration
¢(t) is obtained from the mole balance for the
liquid phase

de(t)
dt

— 3pokh / LG (L, t)dL, (8)
0

where p. is the density of crystals, h is a conver-
sion factor (volume of slurry per mass of solvent)
and k, is a volume shape factor defined such
that the volume of a crystal with length L is
Vc’rystal (L) = kvL3~

The dependence of (secondary) nucleation and
growth rates on supersaturation S(t) and CSD
f(L,t) is empirically modelled by

G(t) = kgS(t) (9)

B(t)=ka(t)bkv/L3f(L,t)dL, (10)
0

with supersaturation

The saturation concentration cg,; is modelled by
the empirical relation

Csat(t) = Ag + A1 T(t) + AT (1) (12)

The parameters kg, ks, g and b depend on the ma-
terial to be crystallised, the crystalliser geometry
and operating conditions whereas Ag, A1 and As
are solely determined by the combination of solute
and solvent substances.

According to (9)-(12), the rates of nucleation
B(t) and growth G(t) depend on the temperature
T(t). Hence, T'(t) can be used as a manipulated
variable to affect the CSD. As the temperature
T(t) cannot be influenced directly, a subsidiary
feedback controller may be used which controls
the temperature T'(¢) by manipulating the cooling
jacket temperature T}(t).

From population balance (7-a) with boundary
condition (7-b), a set of ODEs for the moments
of the CSD

1 (t) ::/Lif(L,t) dL, i=0,1,2,...(13)
0

can be derived. The zeroth moment po(t) gives the
overall number of crystals. The second moment
u2(t) is proportional to the overall crystal surface,
and the third moment us3(t) is proportional to
the volume of the crystalline material in the
crystalliser.

Since the duration of the batch, t.,q, is finite and
the growth rate G(t) is bounded it follows that the
size of crystals is bounded also. Hence, there is a
maximum length L,,,, such that the following is
true

f(L, ) =0, VYL > Liqs. (14)

Consequently, by partial integration it follows
from (7-a), (7-b) that

dpo(t) _
dt = B(1)
dud;'t(t)ziG(t),ui,l(t), 1= 1,2,... (15)

Since the overall mass of solute in the crystalliser
is constant, an additional algebraic equation can
be derived, relating the third moment u3(t) and
the solute concentration c¢(t)

c(t) = co + pekvh(p3,seed — ps(t)),  (16)

where ¢g is the initial solute concentration and
U3,Seed = fooo fseea(L) dL is the third moment
of the seed CSD. Note that the integral expres-
sion in (10) is the third moment, i.e. B(t) =
kykyS(t)?u3(t). Because of (9),(11),(12) and (16),



B(t) and G(t) are entirely determined by ps(t)
and T'(t). Hence, the differential equations for the
first four moments can be written as

du; t(t) =B(us(t),T(t)) (17-a)
dlgt( D G, T®) - mo®)  (17-b)
du;t( D = 20y, 7@) - i) (170
dust(t) =3G (u3(1), T(1)) - pa(t), (17-0)

This constitutes a simplified model for the batch
crystalliser. It is clearly nonlinear, but finite-
dimensional. The moments pug(t) ... us(t) are the
system states, and temperature T'(t) serves as
the control input. This model exactly describes
the dynamics of the moments of the CSD but
it does, of course, not describe the evolution of
the entire CSD. However, as mentioned above,
the moments have a clear physical meaning and
for many applications they represent the most
important aspects of the CSD.

4. FEEDFORWARD CONTROL
4.1 Flatness of crystalliser model

In this paragraph, it is demonstrated that system
(17-a)-(17-d) is orbitally flat. With scaling func-
tion

1

O = Gmo. 10 18)

a new notion of time is defined by

dr = G(us(t), T(t))dt, 70=0. (19)
As G represents the crystal growth rate, the
new ‘time’ 7 is the increase in length which
crystals have gained since the beginning of the
batch. This is a very natural way to describe
the progression of the batch. According to (5),
the scaling function has to be strictly positive
and finite. Because of (9) and (11), this implies
that the liquid in the crystalliser has to be kept
supersaturated, i.e. ¢(t) > csqi(t), Vt. Since in a
crystalliser crystals are to be grown rather than
dissolved this condition makes eminent sense from
a practical point of view. Using new time 7, the
system (17-a)-(17-d) is transformed to

dpo(r) _ Bus(r),T(r)) !
i G0 ) 209

B — o) (200

BT oy (20-0)

dps(7)
= . 20-
g = oka(7) (20-d)
It is now shown that for the output
y(7) = ps(r) (21)

both conditions A and B in the definition of flat-
ness hold. As u3(7) is a state variable, (2) and
therefore requirement A hold trivially. Differenti-
ating the output y(7) four times with respect to
T yields

W) — 3y (22-0)
TV — 6y (221)
dilyT(sT) = 6uo(7) (22-c)
diy(r) _  Blus(r), T(r)

= SGmrey Y

From (21), (22-a)-(22-c) it is obvious that the
states us(7) ... po(7) can be computed from y(7)
and its first three derivatives. The input T'(7)
can be determined from (22-d) by additionally us-
ing the fourth derivative. Hence, equations (3-a),
(3-b) and therefore requirement B also hold. Con-
sequently, y(7) is a flat output, and the trans-
formed system (20-a)-(20-d) is flat. This implies
orbital flatness of the moment model (17-a)-(17-d)
in original time.

4.2 Control synthesis procedure

In the following, two characteristics of the batch
crystalliser model are exploited to facilitate feed-
forward control design. These characteristics are,
on the one hand, the orbital flatness property of
the moment model and, on the other hand, the
simple form of the population balance equation
(7-a) when rewritten in new time 7. Applying the
time scaling (19) to the original PDE (7-a) yields
the simple transport equation
of(L,7) _ _9f(L,7)

ar oL (23)

This implies that f(L,t) is constant on straight
lines in the (L, 7)-domain with 4& = 1, see Figure
2. Furthermore, the size distribution f(L,7) can
be split into two parts, where one part represents

grown seed crystals

fs(L,7) = f(L,7), for L>7  (24)

and the other part describes the distribution of
crystals produced by nucleation

fu(L,7) = f(L,7), for L<T. (25)
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Fig. 2. Evolution of CSD in the (L, 7)-domain

Obviously, the distribution of grown seed crystals
fs(L, T) cannot be influenced by control since it is
equivalent to the initial seed distribution shifted
in size by the length AL = 7, ie. fo(L,7) =
fseea(L + 7). In contrast, the distribution of par-
ticles created by nucleation f,(L,7) can be influ-
enced by appropriate manipulation of the crys-
talliser temperature T'(7), since nucleation rate
B(7) depends on temperature. Consequently, a
necessary condition for a desired CSD at the end
of the batch fenq(L) to be attainable is

fend(L) = fseed(L - ALend)a
for L > ALgpg, (26)

where ALg,q = Tenq is the increase in size which
a crystal gains over the whole batch run.

Since f(L, ) is constant on the characteristic lines
% = 1, the values of a desired fe,q(L) in the size
range 0 < L < ALgpq can be traced back to values
of the CSD at the lower boundary of the size range
f(0,7) for 0 < 7 < Tenq- Consequently, if the CSD
at the end of the batch is fixed to a certain desired

distribution
f(L7 Tend) = fend(L)7 (27)

then the time profile of the boundary condition
that is necessary to produce the desired distribu-
tion fenq(L) is determined by

f(O,T) = fend(Tend - T), 0<7< Tend-(28)

Note that 7..q is equivalent to the maximum
length of nucleated crystals ALg,q, which is
also fixed when choosing the desired final CSD
fena(L). Because of (28) the desired fe,q(L) de-
termines the trajectory of the boundary condition
(7-b) and according to (22-d) this determines the
fourth derivative of the flat output

(C Choose desired CSD at end of batch feng(L) D)

transport equation

(__trajectory of boundary condition f (0, 7) innewtimer )

integration

(C trajectory of flat ouput y(7) D
flatness

( trajectory of input T () D

real-valued solution in allowable range?

yes no

inverse time transformation

(_trajectory of input T (t) in original timet ) fend (L) physically impossible )

Fig. 3. Open Loop Control Design Procedure

d*y(7)
drt

= Gfend(Tend - 7_)‘ (29)

The flat output as a function of new time 7 is
obtained by integrating (29) four times. According
to the definition of flatness, all system states and
the system input can be determined from the flat
output and its derivatives. In particular, the feed-
forward control T'(7) which produces the desired
final CSD fenq(L) can be computed. Eventually,
the time transformation (19) has to be inverted to
obtain the control T'(¢) in original time. Depend-
ing on the parameterisation of the flat output,
the time transformation may not be invertible
analytically. Therefore, the inversion may have
to be done numerically. In these cases, the open
loop control T'(t) is determined at a number of
time instances but not as an explicit function of
time. However, this is not a severe restriction for
practical implementation.

Due to the quadratic expression in (12), the so-
lution of (22-d) yields two results for T'(t) of
which at most one is physically meaningful. If
both results are not meaningful, e.g. in the case of
complex conjugate solutions, this implies that the
desired CSD f,,4(L) is not compatible with the
model, i.e. it cannot be produced by the system
from the given initial CSD fseeq(L)-

Summarising the results of this section, a proce-
dure is obtained which makes it possible to check
whether a desired final CSD f,,4(L) is physically
possible and, if so, to compute the correspond-
ing feedforward control 7T'(t). This procedure is
depicted schematically in Figure 3. It works as fol-
lows. First, a desired CSD fep4(L) complying with
(26) is chosen. Then, because of the simple struc-
ture of the time-transformed population balance,
the trajectory of the boundary condition f(0,7) in
new time is determined by (28). The computation
of the flat output y(7) basically requires integrat-
ing the boundary condition four times. Then, by
flatness, the temperature trajectory T'(r) can be
obtained from y(7) and its first four derivatives.
Finally, the time transformation (19) is inverted



to obtain the feedforward control T'(t) in original
time.

5. CONCLUSION

It was shown that moment models for batch
crystallisation, which are commonly used as a
basis for design of feedforward control for these
processes, are orbitally flat. The state dependent
time scaling function used to render the system
flat is physically meaningful: it represents the
growth rate of crystals. This leads to a new
notion of ‘time’ which is very natural for the
crystallisation process, namely the increase in
length of crystals.

The flatness property of the model was exploited
for feedforward control design. A procedure was
presented to check whether a desired product CSD
is achievable and, if so, to analytically compute the
corresponding control signal, i.e. the temperature
trajectory, producing this specific CSD. This is a
problem which, so far, has been unsolved in batch
crystallisation.

Due to the fact that the flat output completely
parameterises the system dynamics, flatness also
greatly facilitates the problem of dynamic opti-
misation of the CSD. Conventionally, the control
signal is parameterised, e.g. piecewise linearly. In
each optimisation step, the cost function, depend-
ing on the final CSD, is determined by numerical
solution of the system’s differential equations. In
a flatness based approach, in contrast, the desired
final CSD can be parameterised directly. The cor-
responding trajectories of system states and input
are computed as shown in Section 4 without solv-
ing differential equations. Thus, the dynamic opti-
misation problem is reformulated such that it does
not involve the solution of differential equations.
This constitutes a significant simplification of this
type of problems (Guay et al., 2001). Details on
flatness based optimisation of batch crystallisers
are presented in (Vollmer and Raisch, 2003).

Furthermore, future work will focus on the exten-
sion of the methods presented in this contribution
to less restrictive models. In particular, the case
of a crystal growth rate that depends on crystal
size is of primary interest.
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