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Abstract: A one dimensional grid of interdependent linear models obtained from
operation data is proposed for modeling repeated finite horizon, nonlinear and non-
stationary process operations. Such finite horizon process operations include start-
ups, grade transitions, shut-downs, and of course batch, semi-batch and periodic
processes. The model grid is identified from data using a novel interpretation of
generalized ridge regression that penalizes weighted discrepancies between one
linear model and the models in its neighborhood. It is furthermore outlined
how different representations of such a model grid may be used off-line as well
as on-line, for prediction, monitoring, control, and optimization. Among these
representations is a linear time-varying state space model which may be used for
design in established linear monitoring and control methodologies.

Keywords: Batch, Non-linear systems, Time-varying systems, Parameter

estimation

1. INTRODUCTION

Batch processes are experiencing a renaissance as
products-on-demand and first-to-marked strate-
gies impel the need for flexible and specialized
production methods. Furthermore, industries such
as food, biochemical, and pharmaceutical depend
on the confinement of faults and contaminations
to single batches. This renaissance propels the
need for modeling and control tools, which can
facilitate optimal and reliable operation of batch
processes. However, the traditional linear model-
ing and control tools are inadequate, when applied
to the often highly nonlinear and time-varying
behavior of batch processes.

In section 2 it is thus proposed to model batch
processes with a time-varying grid of linear models
and it is demonstrated how such model grids may
be applied to both off-line and on-line monitoring,
prediction, control, and optimization. Identifica-

tion of these model grids is addressed in section
3 and it is proposed to use model property based
regularization to overcome excessive variance. The
methods proposed in sections 2 and 3 are applied
to an industrial case study in section 4 and finally
conclusions are given.

2. TIME-VARYING MODELS

Most often the complex and nonlinear dynamics
of continuously operated processes can be approx-
imated with a moderate set of local Linear Time-
Invariant (LTI) models, each of which describes
a characteristic region in the operation window.
These regions described by local models will often
be characterized by a set of active constraints.
For batch and semi-batch processes (from here
on, batch will cover both batch and semi-batch
processes) however, the set of active constraints
will change as the batch progresses. In fact, to



operate a batch process in an optimal fashion, a
specific sequence of constraints is tracked during
operation. This means that local approximations
of characteristic regions are not sufficient to de-
scribe batch operation. The transitions between
these locally approximated characteristic regions
are also needed to provide a complete description
of batch operation. Furthermore, even if specific
sets of constraints were active for longer peri-
ods; local LTI models can not be expected to
describe the time variation due to changing hold-
ups and/or compositions.

The periodic nature and the finite horizon of batch
processes however, make it possible to model the
evolution from each sample point to the next
in a batch with one grid-point LTI model. In
this fashion, both the time variation within the
characteristic regions and the transitions between
these may be approximated with a grid of grid-
point models. Thus, such a model set gives a
complete description of a batch. The finite horizon
of batch processes means that the model set will
be finite. The periodic way in which the same
recipe is repeated batch after batch means that
several measurements from the individual sam-
ple points are available for identification. That
is, the time evolution of a process variable is
measured /sampled at specific sample points dur-
ing the batch operation and as the batch oper-
ation is repeated, several measurements are col-
lected from every sample point. With multiple
data points/measurements from one specific sam-
ple point a grid-point model can be identified for
this sample point. Explicitly, in addition to the
time dimension, data from batch processes also
evolve in a batch index dimension.

2.1 Model Parameterization

Given the discussion above, batch processes are
modeled with sets of dynamic grid-point LTT mod-
els. Such a set of grid-point LTI models could also
be referred to as a Linear Time Varying (LTV)
batch model. These grid-point LTI models can
be parameterized in a number of ways — e.g. as
Output Error (OE) models, AutoRegressive mod-
els with eXogenous inputs (ARX), State Space
(SS) models, etc. In the present contribution the
ARX model parameterization was chosen. This
choice of parameterization offers a relatively good
multivariable system description with a moderate
number of model parameters.

As operation of a batch progresses, different in-
puts and outputs may be used depending on the
current phase of the batch and hence in order to
model batch operation it is convenient to define
the following variables and references for each
time step t: Input variable u;, € R™ (") with refer-

ence i; € R™®) output variable v, € R™®) with
reference g € R™®) and disturbance variable
w, € R™®, Using an ARX model parameteri-
zation, the output deviation g; — y; at time ¢ may
be given as a weighted sum of n4(t) past output
deviations and np(t) past input deviations

Yt — Yt = — Qg1 (gtfl - ytfl) — ...

— At t—na(t) (gt—nA(t) - yt—nA(t)>
+bt,t—l(at—l *Ut_l) + ... (1)

+ bt t—np (1) (atan(t) - utan(t))
+ wy

where n4(t),np(t) € [1,...,t] are the grid-point
ARX model orders and a;; € R™®m() and
bi; € Rw()muli) are the grid-point ARX model
parameter matrices. Note, as the grid points
are modeled with individual grid-point models,
the sample points ¢ do not have to be equidis-
tantly spaced in time. Let N be the batch
length(/number of samples) and define the input
u, output y, shifted output 3°, and disturbance
w profiles as

w=[upuy ... uy_,]
y=[vivh ... yn] @
Y=y vl -y

Cwhy ]

Note, not all initial conditions yo are measur-
able and/or physically meaningful — e.g. off-gas
measurements. Thus the ARX model set may be
expressed in matrix form

7-y=—A@F"-y)+Ba—u)+w (3)

where A, B are structured lower block triangular
matrices. The profile w is a sequence of distur-
bance terms caused by bias in the reference input
profile u, the effect of process upsets, and the
modeling errors from linear approximations. This
means that the disturbance w contains contri-
butions from both batch wise persistent distur-
bances, such as recipe/input bias, model bias,
and erroneous sensor readings, as well as from
random disturbances, which occur with no batch
wise correlation. It thus seems resoanble to model
the disturbance profile w with a random walk
model with respect to the batch index &

Wy = Wi_1 + Uy (4)

where vy represents a sequence of batch wise
non-persistent disturbances that are assumed to
be zero-mean, independent and identically dis-
tributed. The assumption of v, being white is
rather crude, but necessary if one whishes to
keep the parameter estimation problem linear.
Considering the difference between two successive
batches



Ay, =y — Y, = AAy] — BAuy + v, (5)

A Dbatch ARX model (5) that is independent
of the reference profiles (y,u) and batch wise
persistent disturbances has been obtained. With
such a batch ARX model the path is prepared for
multivariable, model-based monitoring, control,
optimization, and of course simulation.

During the model derivation above it was assumed
that the outputs are known. This is however not
the case in practice, where only a sequence zj of
noisy observations of the outputs is available

Zp = [yff,o y%]l+€k (6)

where €, is a sequence of measurement noise terms
that are assumed to be zero-mean, independent
and identically distributed.

2.2 Application Specific Models

Depending on the task the batch ARX model (5)
is to be applied to, it is convenient to convert the
batch ARX model into different representations.
If the task at hand is to predict (or simulate)
the behavior of a batch before it is started the
following form is convenient

Ayk = HAyk,O — GAuy + Evg, (7)

Note that the disturbance matrix E models the
propagation of batch wise non-persistent distur-
bances — including batch wise non-persistent
model-plant mismatch.

The form (7) above is also convenient for the task
of classification/monitoring (e.g. normal or not) of
a batch after it has been completed. Furthermore,
the form (7) can be used to determine open-
loop optimal recipes in the sense of optimizing
an objective for the batch. If such an objective
is to minimize the deviations e from a desired
trajectory g, then (7) can be modified into

er=Y—yYp=er_1—HAy, o+ GAu,—Ev; (8)

There are two important points to be made about
the trajectory tracking model form (8). First of
all, as the error profile e; in batch k£ depends on
the error profile e _; from batch k — 1, the effects
of the batch wise persistent disturbances are in-
tegrated with respect to batch index. This means
that a properly designed controller can reject the
effects of the batch wise persistent disturbances
asymptotically with respect to batch index — e.g.
removing the effects of recipe and model bias.
Secondly, given the above mentioned asymptotic
behavior and as the control moves/actions gen-
erated by such a controller are deviations from
the control/input profile realized in the previous
batch, the control actions due to batch wise persis-
tent disturbances will converge asymptotically to

zero with respect to batch index. In literature it is
said that the controller learns to reject the batch
wise persistent disturbances — i.e. the resulting
controller is an Iterative Learning Control (ILC)
scheme. A more accurate formulation would be
that both output and input errors are modeled
using integrators with respect to batch index. The
trajectory tracking model representation (8) is
similar to that of Lee et al. (2000), but the rep-
resentations differ significantly since (8) includes
the effect of initial conditions (HAyy ) and dis-
turbance propagation (Ewvy). Another important
difference is that (8) does not have double depen-
dence on the batch wise persistent disturbances —
i.e., the trajectory tracking model representation
(8) only include the batch wise persistent distur-
bances as represented by er_; and not as both
the part of egx_; caused by the batch wise per-
sistent disturbances and the batch wise persistent
disturbances themselves.

The two forms (7) and (8) of the batch ARX
model above are applicable to off-line or inter-
batch type applications. For on-line estimation,
monitoring, feedback control, and optimization
however, it is convenient to use a state space
realization of the batch ARX model. To achieve
such a realization it is necessary to simplify the
batch ARX model structure with the assumption
that the number of outputs is constant n,(t) =
ny for t =1,..., N. In an observer canonical form
the state space realization is given as

Tt = Aexp -1 + BeAug t—1 + Evpt (9)

Ayk,t = ka,t
with the initial condition xy o = [Ay;,o, o,...,07.
Just as (7), the SS model form (9) is convenient
for prediction, monitoring, and optimization type
applications, but also facilitates on-line implemen-
tations of these. Furthermore, the SS model form
(9) is particularly well suited for closed-loop or
feedback control applications. For tracking con-
trol applications the SS model form (9) can be
modified into

Tt = A -1+ BrAug -1 + Evg e (10)
Cpt = Ck—1,t — Cil?k,t
Following the discussion above, a multivariable
feedback controller properly designed using the
trajectory tracking SS model form (10), will re-
ject the effects of the batch wise persistent dis-
turbances asymptotically with respect to batch
index. That is, due to the output and input error
integration in the model framework, a controller
designed to reject disturbances with respect to
time in one batch at a time will also asymptot-
ically reject the effects of batch wise persistent
disturbances with respect to batch index.



3. MODEL IDENTIFICATION

With the batch ARX model (5) derived above,
the parameterization of the batch model is in
place, however the model orders and the model
parameters still need to be determined from pro-
cess data. One major drawback of the proposed
parameterization is the immense dimensionality
of the resulting set of models — in practice
this immense dimensionality will render any stan-
dard Least Squares (LS) identification problem
ill-conditioned. It turns out however, that as the
grid-point models are progressively constrained by
the smoothness of the model grid, the condition-
ing of the identification problem improves.

8.1 Data Pretreatment

In industry, the process variables Z; ;(p) € R are
most often logged individually at times T(k‘, t,p),
giving N:(k,p) + 1 observations of variable p in
batch k. What is needed however, is up to N + 1
noise free observations of the variables at times
T'(t) in the Ng batches available for identification.
These noise free or expected observations can be
estimated using local polynomial regression and
If the profile of process variable p in batch £ is
defined as Zj,p, then the estimation problem can
be given explicitly (Hastie et al., 2001) as

gk,t(p) = Sk,p,ték,p (11)

where sy, ,; is a smoothing vector. If it is further
assumed that process variable p will be used
throughout the batch, then the estimated profile
of variable p in batch k is given as

S li
zk(p) = [s;c,pﬁ S;c,p,l s S;CJLN] zk(p) (

" 12)
= Skpzk(p)

Let the true observation z; € Rw®+nu(®) he
given as

Zp = %k + wi (13)
where Zzj, is the estimated observation and wy, is
a sequence of estimation errors. The estimation
error wy, will consist of both systematic errors such
as the height of a characteristic peek being un-
derestimated due to excessive smoothing and/or
trimming the hills and filling the valleys due to
too low local regression order, and random errors.
Thus the estimation error wy is modeled with a
random walk with respect to the batch index k

WE = Wk—1 + Vi (14)

where vy, represents a sequence of batch wise non-
persistent estimation errors that are assumed to
be zero-mean. Consider the expected difference
between two successive batches, then

E{Azy} = 2, — Zp—1 + E{vi} = Az, (15)

is given as the difference between their respective
estimates. The expected output and input differ-
ence profiles which are all contained in AZy, are
thus given as

E{Ay,} = Ay,
E{Auk} = Aﬁk

B{AYY =880 (g

3.2 Parameter Estimation

Several suggestions to how (sets of) LTI or (pe-
riodic) LTV models should be identified from
data can be found in literature. All these au-
thors employ some or other coefficient shrinkage
or subspace method to improve the condition-
ing of the identification problem and hence lower
the variance of the model parameter estimates.
Simoglou et al. (2002) suggested estimating a set
of independent, overlapping local LTI SS models
using Canonical Variant Analysis (CVA). Instead
the present contribution proposes estimating a
grid/set of interdependent grid-point LTT ARX
models using a novel interpretation of generalized
ridge regression.

The batch ARX model (5) can be formulated as
linear regression

Ay, = Axpb + vy (17)

where Az, = Azg(AyY, Auy) is a structured
regressor matrix with past outputs and inputs and
6 = 0(A, B) is a column parameter vector with
the model parameters from the batch ARX model.
Taking the expectation of the linear regression
(17) and recalling (16) we find that

A:l;[k = E{Awk}e + E{’Uk} = Az, 0 (18)

with Ay, = Az (AgY, Ady,). This means that, if
the process variable estimation error model (14) is
a valid approximation, then estimation of model
parameters from the pretreated data will give
unbiased model parameter estimates. Although
unbiased, model parameter estimates based on
data from a single batch would have excessive
variance. Thus to lower the variance of model
parameter estimates, all available data should be
used for the model parameter estimation

Y = [A4; A% .. Agl, ]
= [Az) Az} ... Adly, ] 0=X6

The linear system (19) would however, most likely
still be rank-deficient and solving it in a Least
Squares (LS) sense would still produce estimates
with low bias, but excessive variance. Such exces-
sive model parameter variance would despite the
low bias, yield poor model predictions (Larimore,
1996). Hence, to improve the predictive capabil-
ities of an estimated model the variance of the
estimated model parameters must be further re-
duced.

(19)



A possible approach to reducing the variance of
model parameter estimates is to enforce that the
estimated model possesses some desired model
properties. One such model property could be that
neighboring grid-point models are analogous in
the sense that they exhibit similar behavior. In
fact, without this property, the model would be a
set of independent models and not a grid of in-
terdependent models. Enforcing model properties
however, inevitably introduce bias into the model
parameter estimates. There will thus be a trade-
off between the bias and variance of the model
parameter estimates and this trade-off will deter-
mine the predictive capabilities of estimated mod-
els. A parameter estimation method that could
incorporate model properties into LS estimates is
generalized ridge regression, which also is referred
to as Tikhonov regularization. We thus propose
to estimate the model parameters by solving the
extended LS problem

O(A) = argmm[ (Y - X0) (Y - X6)

+ (ALB) (ALB) (20)

= (X'X +L'A’L)' X'Y
where the penalty AL is a column vector of
weighted differences between parameters in neigh-
boring grid-point models. In this fashion, the
structured penalty matrix L maps the parameter
vector @ into the desired parameter differences
and the diagonal regularization matrix A weights
the parameter differences. The estimated parame-
ter vector @(A) is a function of the regularization
matrix A, which determines the shrinkage and
hence the trade-off between bias and variance.
This means that the regularization matrix A can
be used to tune the predictive capabilities of the
model estimate. Through the particular choice of
penalty matrix L, the regularization matrix A
also determines the interdependency between the

grid-point models in the model grid.

3.3 Model Orders and Regularization Weights

Several methods for choosing (optimal) regular-
ization weights can be found in literature (Hansen,
1996), but all of these consider either scalar reg-
ularization weights or diagonal penalties. In the
present work it is proposed to simply select a
regularization matrix from a finite set A € Qjy,
that yield near minimum mean squared prediction
error, when the estimated model is cross-validated
through “pure-simulation”. That is, given the
“pure-simulation” prediction error profile ¢ (A)
from cross-validation batch k

Cu(A) = AGP" = H(A)AGLE +G(A)AG™ (21)

the regularization matrix A is the solution to the
discrete optimization problem

Ngal
p— 1 P /
A= arg min v(A) = Z Cr(A)'Cr(A)
k=1 (22)
st. AeQp
(X'X + L' A*L) nonsingular

where N};,“l is the number of batch difference pro-
files available for cross-validation. In this fashion,
the computational burden of solving (22) is deter-
mined by the number of elements in the finite set
Q4.

Thus far only estimation of a specific batch ARX
parameterization, i.e., a batch ARX model with
model orders n4(t) and ng(t) for t = 1,...,N
has been considered. These model orders are how-
ever unknown and will also have to be identified
from data. This means that in addition to the
regularization weighting matrix A also the model
orders can be used to tune the predictive capa-
bilities of the model estimate. Traditionally, ARX
model orders are selected based on minimization
of measures such as Final Prediction Error (FPE)
or Akaike’s Information Criterion (AIC) both of
which are proportional to the optimal value of the
LS objective being minimized as part of the iden-
tification, to prevent modeling noise/disturbance
characteristics, i.e., overfit. Overfit is however also
prevented if the ARX model orders are selected
based on minimization of the mean squared pre-
diction errors from cross-validation of the esti-
mated models. This means that the ARX model
orders can be selected based on minimization of
N
|: {nA (t)}t=1 :| _ minN ['Y(A)}
{nA(t>}fN:1 (23)

{nB(t)};=1
s.t. A given by (22)
If the ARX model orders are assumed constant

throughout the batch na = na(t) and ng = ng(t)
for t =1,..., N, then (23) simplifies to

{np(t)}L,

(na,n5) = min [1(A)

(24)
s.t. A given by (22)

4. APPLICATION

To demonstrate the capability of the proposed
data-driven models, an industrial, production
scale Bacillus protease fermentation has been
modeled from historical data (Novozymes A/S).
The modeling objective was prediction of the on-
line measured variables used to supervise the fer-
mentation as well as the product activity which
is measured sparsely off-line. That is, the ob-
jective was to obtain a model that can predict
the course and outcome of a batch given the
batch recipe and its initial conditions. For this
Bacillus protease fermentation the batch recipe
consists (essentially) of reference profiles for two
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Fig. 1. Example of cross-validation of an industrial Bacillus protease fermentation model. The five
outputs, Dissolved Oxygen (DO), Carbon dioxide Evolution Rate (CER), Oxygen Uptake Rate
(OUR), pH, and product activity, are predicted given information about their initial conditions and
the batch recipe (assuming perfect control) — i.e., pure-simulation prediction. The thin solid lines
(or ‘x’ for the product activity) are the historical measurements as logged, the bold solid lines are the
pretreated data (as the data from which the model was identified, but not used in the identification),

and the dotted lines are the model predictions.

substrate feeds, an alkaline feed, pressure, and
temperature — i.e., these reference profiles are
the inputs of the model. For most of these inputs
the current practice is however, that the reference
profile is either not logged or not manipulated
from batch to batch. As a temporary workaround,
perfect control was assumed and the reference
profiles were replaced by the realized profiles. As
is common practice in supervision of fermenters,
Dissolved Oxygen (DO), Carbon dioxide Evolu-
tion Rate (CER), Oxygen Uptake Rate (OUR),
and pH were chosen as process indicators. Along
with the product activity these process indicators
makeup the outputs of the model.

The historical data was smoothened and re-
sampled to 30 minutes intervals. The product
activity was re-sampled using linear interpola-
tion, while the remaining inputs and outputs were
smoothened using local constant regression and
bandwidths ranging from 6 to 73 nearest neigh-
bors. Before identification the batch difference
profiles were normalized. The model was identified
using data from 29 batches and cross-validated us-
ing data from 9 batches, one of which is shown in
figure 1. The identified model orders ranged from
0 to 20 and the total number of model parameters
estimated was 12,135. The mean cross-validation
prediction error was 0.13.

5. CONCLUSION

In the present paper it is proposed to model finite
horizon, time-varying and nonlinear process oper-
ations with 1-dimensional grids of interdependent

ARX models. Such model grids can be used for
both off- and on-line monitoring, prediction, con-
trol, and optimization applications. It is further
proposed that these model grids are identified
from historical process data using ridge regression.
By identifying all the ARX models in a model
grid simultaneously, the interdependency of the
ARX models can be used to reduce the variance
of their estimates and thereby improve the predic-
tive capabilities of the estimated model grid. The
proposed data-driven modeling scheme has been
demonstrated through modeling of an industrial
fermentation process.
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