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Abstract: A robust method for dealing with the gross errors in the data collected for PCA model is
proposed. This method, using M-estimator based on the generalized t distribution, adaptively
transforms the data in the score space in order to eliminate the effects of the outliers in the original
data. The robust estimation of the covariance or correlation matrix is obtained by the proposed
approach so that the accurate PCA model can be obtained for the process monitoring purpose.
Comparisons with the conventional PCA modeling and other robust outlier’s replacement approaches
are illustrated through a chemical engineering example.
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1 INTRODUCTION

Data-driven process monitoring based on multivariate
statistic techniques is widely used in chemical industries
with a large amount of measurements provided by the
modern hardware. The measurement variables are usually
highly correlated and the real dimensionality of the process
variables is considerably less than that represented by the
number of process variables collected. Monitoring this “data
rich” process inevitably need dimensionality reduction
techniques to grasp the driven force embedded in these
measurements. By converting the large amount of data
collected from the process into a few meaningful measures,
one can assist the industrial operators in determining the
status of the operations and in detecting and diagnosing the
faults.  Principal components analysis (PCA) is such a
dimensionality reduction technique and it is heavily used in
modeling the multivariate process for monitoring purpose
(Kresta, et. al., 1991).

The performance of PCA model is based on the accurate
estimation of the covariance or correlation structure of the
data. The optimality of the conventional PCA is based on the
assumption that the data are normal distributed around their
locations with the scales. However, normal distribution
usually dose not exist in real chemical engineering practice,
it is hard to assure the normality even for high quality
measurements. Specially, the frequent presence of gross
errors and outliers violates the assumptions in the
conventional approach (even through the data is auto scaled)
and makes the results invalid (Hoo, K. A. et. al., 2002).

Several approaches can be employed to alleviate the outlier
problem in PCA modeling. One of them is based on filter
approaches to detect the gross outliers and delete them or
replace them with some values before the conventional PCA
is used. This pre-treatment approach is intuitive but it may

suffer information and performance loss due to its subjective
or ad hoc fashion. In addition, the multiple outliers are hard
to be detected by using univariate techniques, which will
result in the loss of efficiency. Another approach is based on
the robust estimation of covariance or correlation matrices of
the data. Some of the methods used are multivariate
trimming (MVT), minimum covariance determinant (MCD)
and minimum volume ellipsoid (MVE) (Devlin et. al.,
1981). In MVT, a certain percentage of the observations
with highest Mahalanobis distance (MD) are removed and
the covariance matrix is formed using the remaining
observations. In MCD, a subset of data is formed by
randomly selecting some percentage of the samples. The
determinant of this subset of data is then computed. The
mean and S.D. of the data subset with the minimum non-
zero determinant are then used to calculate the covariance or
correlation matrices. In MVE, the smallest set ellipse, which
contains half of the data, is obtained. The mean and S.D. of
the samples inside this ellipse are calculated and rescaled so
that they estimate a multivariate normal distribution. Such
techniques may be suffered with the disadvantage that
ignoring the data which are believed to be “good” by process
operators will inevitably result the information loss.

In order to maximally use the information provided in the
data while lessening the effects of the outliers, other robust
approaches have been investigated. In Hybrid projection
pursuit (HPP), an M-estimator like formulation is used for
weighting each observation in the data set according to its
MD so that a weighted PCA is proposed with eliminating the
‘discontinuity problems’ in projection pursuit (Chen et. al.,
1996). However, since HPP relies on the MD, the presence
of multiple outliers may yield erroneous results (Hoo, K. A.
et. al., 2002). Recently, a method of robust multivariate
outlier replacement was developed for PCA modeling (Hoo,
K. A. et. al., 2002). In this approach, a winsorization, which
is a procedure that replaces the observations by its pseudo
values, is carried out iteratively in score space obtained in
PCA. The data, especially the outliers, are transformed into a



tight cluster of majority of data set so that the effect of
outliers can be reduced. A Huber or Hampel like M-
estimator is used in the winsorization process. Even through
it is effective in eliminating the outliers, this approach could
suffer the performance loss. Because by using Huber or
Hampel like estimators, one has to specify the breakdown
points, which are the degrees of the freedom in the
estimators, and these parameters are difficult to be
determined as a priori. Injudiciously specified parameters
will result in performance loss of the method or erroneous
results.

In this article, an adaptive robust PCA method is proposed
with the aim of maximal use of the information in the data as
well as robustness to the deviation from the ideality caused
by the outliers. A winsorization procedure is employed in
the score space as that in the approach by Hoo, K.A. et. al.,
but a partially adaptive M-estimator based on the
generalized t (GT) distribution is used instead of Huber or
Hampel like estimators. This GT based estimator is obtained
directly from the data in score space and its influence curve
fit the data adaptively. This will improve the performance
and it is optimal in MLE sense. By using GT distribution,
the data can adjust itself to the shape of its distribution, in
such a way the advantages of both robustness and maximum
likelihood estimation (MLE) retained.

The paper is organized as follows. In the next section, a brief
overview of robust estimate and several robust estimators
are introduced. Specially, robust estimator based on GT
distribution and its robust properties are discussed. In section
3, after giving a brief introduction of PCA, the proposed
robust PCA approach using adaptive GT based M-estimator
is developed. The winsorization procedures of the approach
are also highlighted in the section. In section 4, the proposed
method is implemented and its performance is compared
with that of conventional PCA and the robust PCA using
Huber’s M-estimator through the data collected from a
chemical engineering simulation. Finally, the conclusions
are given in the section 5.

2 ROBUST ESTIMATES

2.1 M-estimates

The essence of robust estimates can be explained by the
simple one-dimension parameter estimation problem

( ) εθ += ,xfy (1)

where y , x  and ε  are the dependent, independent and error

variable, respectively. θ  is the parameter to be estimated.
After collecting a set of data, the parameter  θ  can be
estimated by least squares method,
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Under the assumption that the error ε  is normal distributed,
the estimation of θ  is optimal in the sense of maximum
likelihood estimation.

However, if the error is not normal distributed, especially
there are outliers in the data, the above estimate will be
biased. This problem can be solved by designing a robust
estimator, which is insensitive to the deviation of the
assumption for the majority of data. The design of this
estimator is usually converted into choosing the objective
function ( )uρ  (not necessary the quadratic one as in the
conventional approach) in the optimization problem
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where ( ) ( )uplnu −=ρ , ( )up  is the PDF of the residual

( )θ−= ,xfyu iii . Solving the following equations can also
solve the above problem,
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where ( ) ( )uu ρ′=ψ

To be robust, the objective function must give less weight to

large value of u  than its quadratic form 2u  so that the
estimator will down-weight or ignore the contribution of the
large errors in the data. In problem (3), a number of
candidates ( )uρ  can be chosen as the objective function so
that different robust estimators can be obtained. These kinds
of estimators correspond to the M-estimators in robust
statistics. In robust estimation, the ψ  function or influence

function defined by ( ) ( ) uuu ∂ρ∂=ψ  is the usual tool for
comparing alternative M-estimators for their robustness. The
ψ  function measures the “influence” that a residual will

have on the estimation process. Some suggested criteria for
the ψ  function are that: it is (a) bounded, (b) continuous,

and (c) descending and identically zero outside an
appropriate region. The motivation for these properties is
that (a) a single “anomalous” observation would have
limited influence on the estimator, (b) grouping or rounding
of data would have minimal impact on the estimator, and (c)
ridiculously large observations would have no impact on the
estimator.

The typically used robust estimator is Huber’s (Huber, 1981)
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The influence function is in this case
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where, k  is the parameter characterizing the degree of
contamination, being used as tuning parameter for the
estimator’s performance. Other robust estimators can be
found in the literature (Wang, et. al 2000).

Even though the above approaches are less sensitive to gross
errors and outliers, the optimality of the estimation, in MLE
sense, is still dependent on the suitability of the chosen
function with respect to the actual distribution of the data.  It
is generally hard to characterize the distribution of the errors
correctly without posteriori estimation. If the real errors do
not follow the specified distributions, the performance of
estimator may deteriorate and the estimation could be
biased. Considering these disadvantages, a more flexible
probability distribution function will be discussed next to
describe the error distribution. It is designed to allow for a
variety of thickness of tails, to capture the shape of
distribution and to accommodate other distribution as much
as possible as special cases. The corresponding estimator
will then be robust by its ψ  function and be efficient by

estimating its distributional parameters from the data in the
MLE sense.

2.2 The generalized T density and its robust properties

The proposed robust estimator for PCA modeling in this
work is based on the assumption that the data in score space
is following the generalized T distribution (GT) (Butler, et.
al., 1990), which has flexibility to accommodate various
distributional shapes

( )

∞<<∞−















σ
+σ

=σ + u

q

u
1q,p1Bq2

p
)q,p,;u(f

p1q

p

p
21

GT

(7)
Where q,p,σ  are distributional parameters, σ corresponds

to the standard deviation, p  and q  are parameters

corresponding to the shape of distribution. This density is
symmetric about zero, uni-modal, and suitable to describe
the error characteristics in most cases. By choosing different
values of p  and q , the GT distribution will accommodate
the real shape of the error distribution. The larger the value
of p  or q , the “thinner” will be the tail of the density.

Similarly, smaller values of p  and q  will be associated

with “thicker” tails. The tails behavior and other
characteristics of the distribution, depend upon these two
distributional parameters, which will be estimated from the
data (Wang et. al., 2003). In addition, the GT distribution
defines a very general family of density functions and
combines two general forms, which include most of
stochastic specifications one meets in practice as special or
limiting cases.

The robustness of the estimator based on a GT distribution
can be discussed by investigating its ψ  function. This ψ

function, corresponding to the objective function
( ))q,p,,;uflog)q,p,,u( GT σ−=σρ  is given by
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For finite q , this influence function is bounded and reaches

a maximum for positive u  at ( )( ) ppqpu
1
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maximum value of

( ) ( )( ) ( )[ ]

p1

p1p

q

1pp1p
q,p,;u

σ
−+

=σψ
−

∗ (9)

Furthermore, ( ) 0,,;lim =σψ
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qpu
u

, so this influence

function exhibits a descending pattern. Consequently,
“large” deviation will not have an impact on this estimator
when q  is finite. Also, for a given finite q , p  control the

behavior of ( )qpu ,,;σψ  near the origin. For example, if

2>p , then this influence function will be less steeply

sloped near the origin than the influence function for the t
distribution with q2  degrees of freedom.

3 PCA AND ITS ROBUSTNESS BASED ON M-
ESTIMATE WINSORIZATION

3.1 Principal Component Analysis

The cornerstone of data-driven process monitoring approach
is the projection method of PCA. The philosophy of this
technique is to reduce the dimensionality of the problem by
forming a new set of variables. The method generates the
new set of variables, called principal components. Each
principal component is a linear combination of the original
variables. All the principal components are orthogonal to
each other so there is no redundant information. The
principal components as a whole form an orthogonal basis
for the space of the data. The first few principal components
can capture the most of the variance in the data so that they
are used as the model. The new data will be fitted by the
model in order to see if the measures developed are in the
normal range.

Let X  be a mn ×  data matrix containing n  process
measurements of m  variables ( )nm ≤ . PCA decomposes
the observation X  as
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Mathematically, ip  and it  can be calculated by finding the
eigenvalues and their companion eigenvectors of covariance
or correlation matrix S  of data X ,
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where Λ  is the diagonal matrix containing the ordered
eigenvalues of S  and P  is the corresponding eigenvector
matrix.  In PCA, P  is defined as loading matrix and T  is
defined to be the matrix of principal component scores. The
loadings provide information as to which variables
contribute the most to individual PCs and they are the
coefficients on the principal component model; whilst the
score matrix provide the information on the clustering of the
samples and the identification of transitions between
different operating regimes.

In general, if the process variables are collinear, the first k
principal components can be used to explain sufficiently the
variability in the whole data set with less information loss,
and the determination of the number k  can be obtained via
several techniques such as scree test and cross-validation. It
then follows that
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Once the PCA model is established, analysis and usage of
these lower dimension orthogonal variables are preceded and
the measures such as 2T and SPE along with some
visualization plots in score space can be employed for
process monitoring.

3.2 Robust PCA Based on M-estimate Winsorization

PCA transform the data set by projection onto loading
vectors to form score vectors which are uncorrelated. Hence,
univariate concepts can be employed in the score space. The
outliers present in the original data manifest themselves in
the score space. By recurrently winsorizing the scores and
replacing them with suitable values, it is possible to detect
multivariate outliers and replace them by values, which
conform to the correlation structure in the data. The concept
of winsorization is briefly explained first and its application
to robust PCA is then investigated.

Consider the linear regression problem

( ) ε+θ= ,Xfy              (14)

where ( )′= n21 y,...,y,yy  is a 1n × vector of dependent

variables, ( )′= '
n

'
2

'
1 x,...,x,xX is a mn ×  matrix of

independent variables, and θ  is a 1p ×  vector of

parameters, ε  is a 1n ×  vector of model error or residual.

An estimation of parameter θ , θ̂ , can be obtained by
minimizing the function
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where s is an estimation of the scale of the distribution of
residuals and ρ  is objective function to be minimized.

With the parameter θ̂  estimated, the prediction or estimation
of the dependent variable )n,...,1i(yi =  is given by

( )θ= ˆ,xfŷ iii              (16)

and the residual is given by
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In winsorization process, the variable iy  is transformed
using pseudo observation according to specified M-estimates
such as Huber’s;
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here the parameter k  is the degree of freedom, which
regulate the amount of robustness and is is the estimation of

scale associated with ir .  Other robust estimates can also be
employed, especially the one based on GT distribution:

( )q,p,;yy iGT
w
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q,p,σ  are the parameters which accommodate the shape of

the residual distribution. These parameters can be estimated
with the data iy .

The technique of winsorization can be used in PCA to
eliminate the effects of outliers in the following. The data
value y in score space can be transformed into a new value

wy  by winsorization as follows,

( ) n,...2,1i,yy i
w
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where ψ  is any robust influence function discussed before.

Using the winsorization process, the large values exhibited
as outliers in the original data set will be brought closer to
the other observations after they are transformed from the
score space back to the original data space. A new PCA
model is obtained using the new data set. This process is
carried out iteratively until there is not much change in the
loading vectors.

The advantage of using GT based robust estimate over
Huber-like robust estimate is obvious. The GT based
approach can accommodate the shape of the residual
distribution so that it should be more effective when the
winsorization is processed, because the estimate is optimal
in MLE sense. Huber-like approach needs to pre-specify the
robust parameter in an ad hoc manner, this may result in the
inefficiency of the estimation.



 The steps of the robust PCA based on GT winsorization are
described as follow:

1) Scale the data matrix jX  ( j  is the iteration number,

,...2,1j = ) using some estimates of scale and

location ( )jj ,σµ . Calculate the correlation matrix

S .
2) Apply PCA to the correlation matrix S  and

generate the PC loadings and scores
3) Fit the score data to the GT distribution and

calculate its influence function ψ . Winsorize the

score space variables using the transformation:
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4) Reconstruct the actual data using the loading vector
and winsorized score vector,
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5) Check for the convergence of the loading vectors,

( ) s
1jj PPmax ε≤− −  where sε  is a user-defined

threshold.
6) If convergence is not achieved at iteration j , then

go back to step 1, otherwise stop.

4 SIMULATION STUDY

The heat-exchanger network example (Romagnoli and
Sanchez, 2000) will be used to demonstrate the performance
of the proposed robust PCA modeling method based on GT
winsorization (Figure 1).

Process stream A  is heated by process streams C,B  and D
at various junctions. The system has 16 measured variables
which are either flow rates or temperatures. The open loop
data are generated by adding Gaussian noise with zero mean
and variances of 2% of their values on all the values when
the process is operating at the normal conditions. 200
samples are generated and the sampling time is 0.1 hour.

Figure  1 Heat Exchange Network

The data generated above are treated as real good data set

and labeled as *X .  In order to compare the performance of
the proposed method with the others, outliers are introduced
by adding randomly to anywhere in *X  with the larger
values (variances up to 10% of their median values) from
different error distribution such as Gaussian, t and non-
central t distribution. The case of non-central t distribution
will be reported here. Figure 2 shows the measurement data
corrupted by non-central t distribution. This corrupted data
set is labeled as X .

      

Figure  2  Data Set X

The performance criterion which will be used to compare the
efficiencies of the various PCA methods is the mean-squared
error (MSE):
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where,  is the eigenvalue vector of data matrix ,  is
the eigenvalue vector of reconstructed data matrix by
different PCA approaches with corrupted data ,  is the
dimension of the variables or the number of principal
components chosen.  The MSE is constructed such that
better performance is obtained if its value is driven toward
zero.

Figure 3 shows the normal plot of the data . If the data fell
on the straight lines, then their distribution is assumed to be
normal. Clearly, it shows that the data  are not normal
distributed.

Three PCA methods are applied to the data , the results
are shown in the tables. Table 1 lists the explained variation
in the data by each eigenvalue along with the cumulative
percentage of the explained variation.  If the selection of the
number of principal components is based on a requirement
that 85% of the variance be explained, then eight principal
components are required for original data. However, for the
same criterion seven principal components are required
based on the conventional PCA with the corrupted data .
The robust PCA approaches can recover the real variation
explained by the principal components so that they diminish
the effects of outliers in the data. The proposed GT based
winsorization has better performance than the winsorization



      

Figure  3 Normal Plot of Data 

using Huber estimator. This is due to that GT winsorization
can accommodates the distribution of the data, while
winsorization based on Huber estimator relies on a priori
parameters so that it is not adaptive. Judiciously specifying
the threshold in Huber-like winsorization may improve the

performance. The normal plots of the filtered data  are
given in Figure 4. It is shown that after the winsorization
based on the GT, the distributions of the data are normal so
the correct results can be obtained by using PCA with the
data X . The MSE criterion is listed in table 2, which shows
that the proposed approach has the best performance. It is
also observed in table 1 that for the outliers-free case, the
proposed robust PCA approaches still have acceptable
performance.

5 CONCLUSIONS

A Robust PCA modeling method based on winsorization in
score space using adaptive robust estimator was developed
and presented. The effects of outliers in the data can be
eliminated by the method while the effectiveness as well as
the robustness is kept by using GT-like estimator. The
performance of the proposed method is compared with the
others using a chemical example. The usage of the approach
in process monitoring such as faults detection, identification
and diagnosis is promising.
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Figure  4 Normal Plot Data after Winsorization

Table 1. Results of PCA
Num.
of PCs

Explained
variance(%)

Cumulative
explained

variances(%)

Explained
variance(%)

Cumulative
explained

variances(%)

Data *X X

1
2
3
4
5
6
7
8

conventional
17.6918
16.1712
15.6300
10.0487
9.2196
8.3142
6.7640
5.4261

17.6918
33.8630
49.4930
59.5417
68.7613
77.0755
83.8395
89.2656

21.3087
16.2429
14.5289
11.9913
9.3763
6.9700
5.4210
4.3469

21.3087
37.5515
52.0805
64.0718
73.4482
80.4182
85.8392
90.1862

1
2
3
4
5
6
7
8

Huber’s
18.7511
17.1491
11.8246
10.2274
9.2651
7.5333
6.0656
4.7430

18.7511
35.9002
47.7249
57.9523
67.2174
74.7507
80.8163
85.5593

19.3563
15.3889
11.6123
10.8261
9.2336
7.6582
6.7601
5.9184

19.3563
34.7452
46.3576
57.1837
66.4173
74.0755
80.8356
86.7540

1
2
3
4
5
6
7
8

GT
17.2848
16.4029
13.0628
10.2440
9.2602
7.3126
6.9677
6.1711

17.2848
33.6877
46.7505
56.9946
66.2548
73.5674
80.5351
86.7062

17.3761
14.3915
14.2124
11.4886
9.3367
8.1144
6.6013
5.1630

17.3761
31.7676
45.9801
57.4687
66.8054
74.9198
81.5211
86.6841

Table 2.  MSE values of different methods
Conventional
PCA

Huber’s
Winsorization

GT
Winsorization

MSE 4.7826 2.6002 0.9374


